%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
\section[CgHeapery]{Heap management functions}
\begin{code}
module CgHeapery (
initHeapUsage, getVirtHp, setVirtHp, setRealHp,
getHpRelOffset, hpRel,
funEntryChecks, thunkEntryChecks,
altHeapCheck, unbxTupleHeapCheck,
hpChkGen, hpChkNodePointsAssignSp0,
stkChkGen, stkChkNodePoints,
layOutDynConstr, layOutStaticConstr,
mkVirtHeapOffsets, mkStaticClosureFields, mkStaticClosure,
allocDynClosure, emitSetDynHdr
) where
#include "HsVersions.h"
import StgSyn
import CLabel
import CgUtils
import CgMonad
import CgProf
import CgTicky
import CgParallel
import CgStackery
import CgCallConv
import ClosureInfo
import SMRep
import Cmm
import CmmUtils
import Id
import DataCon
import TyCon
import CostCentre
import Util
import Constants
import Outputable
import FastString
import Data.List
\end{code}
%************************************************************************
%* *
\subsection[CgUsagesheapery]{Monad things for fiddling with heap usage}
%* *
%************************************************************************
The heap always grows upwards, so hpRel is easy
\begin{code}
hpRel :: VirtualHpOffset
-> VirtualHpOffset
-> WordOff
hpRel hp off = off hp
\end{code}
@initHeapUsage@ applies a function to the amount of heap that it uses.
It initialises the heap usage to zeros, and passes on an unchanged
heap usage.
It is usually a prelude to performing a GC check, so everything must
be in a tidy and consistent state.
rje: Note the slightly suble fixed point behaviour needed here
\begin{code}
initHeapUsage :: (VirtualHpOffset -> Code) -> Code
initHeapUsage fcode
= do { orig_hp_usage <- getHpUsage
; setHpUsage initHpUsage
; fixC_(\heap_usage2 -> do
{ fcode (heapHWM heap_usage2)
; getHpUsage })
; setHpUsage orig_hp_usage }
setVirtHp :: VirtualHpOffset -> Code
setVirtHp new_virtHp
= do { hp_usage <- getHpUsage
; setHpUsage (hp_usage {virtHp = new_virtHp}) }
getVirtHp :: FCode VirtualHpOffset
getVirtHp
= do { hp_usage <- getHpUsage
; return (virtHp hp_usage) }
setRealHp :: VirtualHpOffset -> Code
setRealHp new_realHp
= do { hp_usage <- getHpUsage
; setHpUsage (hp_usage {realHp = new_realHp}) }
getHpRelOffset :: VirtualHpOffset -> FCode CmmExpr
getHpRelOffset virtual_offset
= do { hp_usg <- getHpUsage
; return (cmmRegOffW hpReg (hpRel (realHp hp_usg) virtual_offset)) }
\end{code}
%************************************************************************
%* *
Layout of heap objects
%* *
%************************************************************************
\begin{code}
layOutDynConstr, layOutStaticConstr
:: DataCon
-> [(CgRep,a)]
-> (ClosureInfo,
[(a,VirtualHpOffset)])
layOutDynConstr = layOutConstr False
layOutStaticConstr = layOutConstr True
layOutConstr :: Bool -> DataCon -> [(CgRep, a)]
-> (ClosureInfo, [(a, VirtualHpOffset)])
layOutConstr is_static data_con args
= (mkConInfo is_static data_con tot_wds ptr_wds,
things_w_offsets)
where
(tot_wds,
ptr_wds,
things_w_offsets) = mkVirtHeapOffsets False args
\end{code}
@mkVirtHeapOffsets@ always returns boxed things with smaller offsets
than the unboxed things, and furthermore, the offsets in the result
list
\begin{code}
mkVirtHeapOffsets
:: Bool
-> [(CgRep,a)]
-> (WordOff,
WordOff,
[(a, VirtualHpOffset)])
mkVirtHeapOffsets is_thunk things
= let non_void_things = filterOut (isVoidArg . fst) things
(ptrs, non_ptrs) = separateByPtrFollowness non_void_things
(wds_of_ptrs, ptrs_w_offsets) = mapAccumL computeOffset 0 ptrs
(tot_wds, non_ptrs_w_offsets) = mapAccumL computeOffset wds_of_ptrs non_ptrs
in
(tot_wds, wds_of_ptrs, ptrs_w_offsets ++ non_ptrs_w_offsets)
where
hdr_size | is_thunk = thunkHdrSize
| otherwise = fixedHdrSize
computeOffset wds_so_far (rep, thing)
= (wds_so_far + cgRepSizeW rep, (thing, hdr_size + wds_so_far))
\end{code}
%************************************************************************
%* *
Lay out a static closure
%* *
%************************************************************************
Make a static closure, adding on any extra padding needed for CAFs,
and adding a static link field if necessary.
\begin{code}
mkStaticClosureFields
:: ClosureInfo
-> CostCentreStack
-> Bool
-> [CmmLit]
-> [CmmLit]
mkStaticClosureFields cl_info ccs caf_refs payload
= mkStaticClosure info_lbl ccs payload padding_wds
static_link_field saved_info_field
where
info_lbl = infoTableLabelFromCI cl_info $ clHasCafRefs cl_info
is_caf = closureNeedsUpdSpace cl_info
padding_wds
| not is_caf = []
| otherwise = ASSERT(null payload) [mkIntCLit 0]
static_link_field
| is_caf || staticClosureNeedsLink cl_info = [static_link_value]
| otherwise = []
saved_info_field
| is_caf = [mkIntCLit 0]
| otherwise = []
static_link_value
| caf_refs = mkIntCLit 0
| otherwise = mkIntCLit 1
mkStaticClosure :: CLabel -> CostCentreStack -> [CmmLit]
-> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
mkStaticClosure info_lbl ccs payload padding_wds static_link_field saved_info_field
= [CmmLabel info_lbl]
++ variable_header_words
++ concatMap padLitToWord payload
++ padding_wds
++ static_link_field
++ saved_info_field
where
variable_header_words
= staticGranHdr
++ staticParHdr
++ staticProfHdr ccs
++ staticTickyHdr
padLitToWord :: CmmLit -> [CmmLit]
padLitToWord lit = lit : padding pad_length
where width = typeWidth (cmmLitType lit)
pad_length = wORD_SIZE widthInBytes width :: Int
padding n | n <= 0 = []
| n `rem` 2 /= 0 = CmmInt 0 W8 : padding (n1)
| n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n2)
| n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n4)
| otherwise = CmmInt 0 W64 : padding (n8)
\end{code}
%************************************************************************
%* *
\subsection[CgHeaperyheapoverflow]{Heap overflow checking}
%* *
%************************************************************************
The new code for heapChecks. For GrAnSim the code for doing a heap check
and doing a context switch has been separated. Especially, the HEAP_CHK
macro only performs a heap check. THREAD_CONTEXT_SWITCH should be used for
doing a context switch. GRAN_FETCH_AND_RESCHEDULE must be put at the
beginning of every slow entry code in order to simulate the fetching of
closures. If fetching is necessary (i.e. current closure is not local) then
an automatic context switch is done.
A heap/stack check at a function or thunk entry point.
\begin{code}
funEntryChecks :: ClosureInfo -> CmmStmts -> Code -> Code
funEntryChecks cl_info reg_save_code code
= hpStkCheck cl_info True reg_save_code code
thunkEntryChecks :: ClosureInfo -> Code -> Code
thunkEntryChecks cl_info code
= hpStkCheck cl_info False noStmts code
hpStkCheck :: ClosureInfo
-> Bool
-> CmmStmts
-> Code
-> Code
hpStkCheck cl_info is_fun reg_save_code code
= getFinalStackHW $ \ spHw -> do
{ sp <- getRealSp
; let stk_words = spHw sp
; initHeapUsage $ \ hpHw -> do
{
codeOnly $ do
{ do_checks stk_words hpHw full_save_code rts_label
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
}
where
node_asst
| nodeMustPointToIt (closureLFInfo cl_info)
= noStmts
| otherwise
= oneStmt (CmmAssign nodeReg (CmmLit (CmmLabel closure_lbl)))
closure_lbl = closureLabelFromCI cl_info (clHasCafRefs cl_info)
full_save_code = node_asst `plusStmts` reg_save_code
rts_label | is_fun = CmmReg (CmmGlobal GCFun)
| otherwise = CmmReg (CmmGlobal GCEnter1)
\end{code}
Heap checks in a case alternative are nice and easy, provided this is
a bogstandard algebraic case. We have in our hand:
* one return address, on the stack,
* one return value, in Node.
the canned code for this heap check failure just pushes Node on the
stack, saying 'EnterGHC' to return. The scheduler will return by
entering the top value on the stack, which in turn will return through
the return address, getting us back to where we were. This is
therefore only valid if the return value is *lifted* (just being
boxed isn't good enough).
For primitive returns, we have an unlifted value in some register
(either R1 or FloatReg1 or DblReg1). This means using specialised
heapcheck code for these cases.
\begin{code}
altHeapCheck
:: AltType
-> Code
-> Code
altHeapCheck alt_type code
= initHeapUsage $ \ hpHw -> do
{ codeOnly $ do
{ do_checks 0 hpHw
noStmts
(rts_label alt_type)
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
where
rts_label PolyAlt = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_unpt_r1")))
rts_label (AlgAlt _) = stg_gc_enter1
rts_label (PrimAlt tc)
= CmmLit $ CmmLabel $
case primRepToCgRep (tyConPrimRep tc) of
VoidArg -> mkRtsCodeLabel (sLit "stg_gc_noregs")
FloatArg -> mkRtsCodeLabel (sLit "stg_gc_f1")
DoubleArg -> mkRtsCodeLabel (sLit "stg_gc_d1")
LongArg -> mkRtsCodeLabel (sLit "stg_gc_l1")
PtrArg -> mkRtsCodeLabel (sLit "stg_gc_unpt_r1")
NonPtrArg -> mkRtsCodeLabel (sLit "stg_gc_unbx_r1")
rts_label (UbxTupAlt _) = panic "altHeapCheck"
\end{code}
Unboxed tuple alternatives and letnoescapes (the two most annoying
constructs to generate code for!) For unboxed tuple returns, there
are an arbitrary number of possibly unboxed return values, some of
which will be in registers, and the others will be on the stack. We
always organise the stackresident fields into pointers &
nonpointers, and pass the number of each to the heap check code.
\begin{code}
unbxTupleHeapCheck
:: [(Id, GlobalReg)]
-> WordOff
-> WordOff
-> CmmStmts
-> Code
-> Code
unbxTupleHeapCheck regs ptrs nptrs fail_code code
| ptrs > 255 || nptrs > 255 = panic "altHeapCheck"
| otherwise
= initHeapUsage $ \ hpHw -> do
{ codeOnly $ do { do_checks 0 hpHw
full_fail_code rts_label
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
where
full_fail_code = fail_code `plusStmts` oneStmt assign_liveness
assign_liveness = CmmAssign (CmmGlobal (VanillaReg 9 VNonGcPtr))
(CmmLit (mkWordCLit liveness))
liveness = mkRegLiveness regs ptrs nptrs
rts_label = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_ut")))
\end{code}
%************************************************************************
%* *
Heap/Stack Checks.
%* *
%************************************************************************
When failing a check, we save a return address on the stack and
jump to a precompiled code fragment that saves the live registers
and returns to the scheduler.
The return address in most cases will be the beginning of the basic
block in which the check resides, since we need to perform the check
again on reentry because someone else might have stolen the resource
in the meantime.
\begin{code}
do_checks :: WordOff
-> WordOff
-> CmmStmts
-> CmmExpr
-> Code
do_checks 0 0 _ _ = nopC
do_checks stk hp reg_save_code rts_lbl
= do_checks' (CmmLit (mkIntCLit (stk*wORD_SIZE)))
(CmmLit (mkIntCLit (hp*wORD_SIZE)))
(stk /= 0) (hp /= 0) reg_save_code rts_lbl
do_checks' :: CmmExpr -> CmmExpr -> Bool -> Bool -> CmmStmts -> CmmExpr -> Code
do_checks' stk_expr hp_expr stk_nonzero hp_nonzero reg_save_code rts_lbl
= do { doGranAllocate hp_expr
; blk_id <- forkLabelledCode $ do
{ whenC hp_nonzero $
stmtC (CmmAssign (CmmGlobal HpAlloc) hp_expr)
; emitStmts reg_save_code
; stmtC (CmmJump rts_lbl []) }
; whenC stk_nonzero
(stmtC (CmmCondBranch stk_oflo blk_id))
; whenC hp_nonzero
(stmtsC [CmmAssign hpReg
(cmmOffsetExprB (CmmReg hpReg) hp_expr),
CmmCondBranch hp_oflo blk_id])
}
where
stk_oflo = CmmMachOp mo_wordULt
[CmmMachOp mo_wordSub [CmmReg spReg, stk_expr],
CmmReg (CmmGlobal SpLim)]
hp_oflo = CmmMachOp mo_wordUGt
[CmmReg hpReg, CmmReg (CmmGlobal HpLim)]
\end{code}
%************************************************************************
%* *
Generic Heap/Stack Checks used in the RTS
%* *
%************************************************************************
\begin{code}
hpChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> Code
hpChkGen bytes liveness reentry
= do_checks' (CmmLit (mkIntCLit 0)) bytes False True assigns stg_gc_gen
where
assigns = mkStmts [ mk_vanilla_assignment 9 liveness,
mk_vanilla_assignment 10 reentry ]
hpChkNodePointsAssignSp0 :: CmmExpr -> CmmExpr -> Code
hpChkNodePointsAssignSp0 bytes sp0
= do_checks' (CmmLit (mkIntCLit 0)) bytes False True assign stg_gc_enter1
where assign = oneStmt (CmmStore (CmmReg spReg) sp0)
stkChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> Code
stkChkGen bytes liveness reentry
= do_checks' bytes (CmmLit (mkIntCLit 0)) True False assigns stg_gc_gen
where
assigns = mkStmts [ mk_vanilla_assignment 9 liveness,
mk_vanilla_assignment 10 reentry ]
mk_vanilla_assignment :: Int -> CmmExpr -> CmmStmt
mk_vanilla_assignment n e
= CmmAssign (CmmGlobal (VanillaReg n (vgcFlag (cmmExprType e)))) e
stkChkNodePoints :: CmmExpr -> Code
stkChkNodePoints bytes
= do_checks' bytes (CmmLit (mkIntCLit 0)) True False noStmts stg_gc_enter1
stg_gc_gen :: CmmExpr
stg_gc_gen = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_gen")))
stg_gc_enter1 :: CmmExpr
stg_gc_enter1 = CmmReg (CmmGlobal GCEnter1)
\end{code}
%************************************************************************
%* *
\subsection[initClosure]{Initialise a dynamic closure}
%* *
%************************************************************************
@allocDynClosure@ puts the thing in the heap, and modifies the virtual Hp
to account for this.
\begin{code}
allocDynClosure
:: ClosureInfo
-> CmmExpr
-> CmmExpr
-> [(CmmExpr, VirtualHpOffset)]
-> FCode VirtualHpOffset
allocDynClosure cl_info use_cc _blame_cc amodes_with_offsets
= do { virt_hp <- getVirtHp
; let info_offset = virt_hp + 1
info_ptr = CmmLit (CmmLabel (infoTableLabelFromCI cl_info
(clHasCafRefs cl_info)))
hdr_w_offsets = initDynHdr info_ptr use_cc `zip` [0..]
; profDynAlloc cl_info use_cc
; tickyDynAlloc cl_info
; base <- getHpRelOffset info_offset
; hpStore base (hdr_w_offsets ++ amodes_with_offsets)
; setVirtHp (virt_hp + closureSize cl_info)
; returnFC info_offset }
initDynHdr :: CmmExpr
-> CmmExpr
-> [CmmExpr]
initDynHdr info_ptr cc
= [info_ptr]
++ dynProfHdr cc
hpStore :: CmmExpr -> [(CmmExpr, VirtualHpOffset)] -> Code
hpStore base es
= stmtsC [ CmmStore (cmmOffsetW base off) val
| (val, off) <- es ]
emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> Code
emitSetDynHdr base info_ptr ccs
= hpStore base (zip (initDynHdr info_ptr ccs) [0..])
\end{code}