%
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
\section[SpecConstr]{Specialise over constructors}
\begin{code}
module SpecConstr(
specConstrProgram
) where
#include "HsVersions.h"
import CoreSyn
import CoreSubst
import CoreUtils
import CoreUnfold ( couldBeSmallEnoughToInline )
import CoreFVs ( exprsFreeVars )
import WwLib ( mkWorkerArgs )
import DataCon ( dataConRepArity, dataConUnivTyVars )
import Coercion
import Rules
import Type hiding( substTy )
import Id
import MkId ( mkImpossibleExpr )
import Var
import VarEnv
import VarSet
import Name
import DynFlags ( DynFlags(..) )
import StaticFlags ( opt_PprStyle_Debug )
import StaticFlags ( opt_SpecInlineJoinPoints )
import BasicTypes ( Activation(..) )
import Maybes ( orElse, catMaybes, isJust, isNothing )
import NewDemand
import DmdAnal ( both )
import Util
import UniqSupply
import Outputable
import FastString
import UniqFM
import MonadUtils
import Control.Monad ( zipWithM )
import Data.List
\end{code}
Game plan
Consider
drop n [] = []
drop 0 xs = []
drop n (x:xs) = drop (n1) xs
After the first time round, we could pass n unboxed. This happens in
numerical code too. Here's what it looks like in Core:
drop n xs = case xs of
[] -> []
(y:ys) -> case n of
I# n# -> case n# of
0 -> []
_ -> drop (I# (n# -# 1#)) xs
Notice that the recursive call has an explicit constructor as argument.
Noticing this, we can make a specialised version of drop
RULE: drop (I# n#) xs ==> drop' n# xs
drop' n# xs = let n = I# n# in ...orig RHS...
Now the simplifier will apply the specialisation in the rhs of drop', giving
drop' n# xs = case xs of
[] -> []
(y:ys) -> case n# of
0 -> []
_ -> drop (n# -# 1#) xs
Much better!
We'd also like to catch cases where a parameter is carried along unchanged,
but evaluated each time round the loop:
f i n = if i>0 || i>n then i else f (i*2) n
Here f isn't strict in n, but we'd like to avoid evaluating it each iteration.
In Core, by the time we've w/wd (f is strict in i) we get
f i# n = case i# ># 0 of
False -> I# i#
True -> case n of n' { I# n# ->
case i# ># n# of
False -> I# i#
True -> f (i# *# 2#) n'
At the call to f, we see that the argument, n is know to be (I# n#),
and n is evaluated elsewhere in the body of f, so we can play the same
trick as above.
Note [Reboxing]
~~~~~~~~~~~~~~~
We must be careful not to allocate the same constructor twice. Consider
f p = (...(case p of (a,b) -> e)...p...,
...let t = (r,s) in ...t...(f t)...)
At the recursive call to f, we can see that t is a pair. But we do NOT want
to make a specialised copy:
f' a b = let p = (a,b) in (..., ...)
because now t is allocated by the caller, then r and s are passed to the
recursive call, which allocates the (r,s) pair again.
This happens if
(a) the argument p is used in other than a casescrutinsation way.
(b) the argument to the call is not a 'fresh' tuple; you have to
look into its unfolding to see that it's a tuple
Hence the "OR" part of Note [Good arguments] below.
ALTERNATIVE 2: pass both boxed and unboxed versions. This no longer saves
allocation, but does perhaps save evals. In the RULE we'd have
something like
f (I# x#) = f' (I# x#) x#
If at the call site the (I# x) was an unfolding, then we'd have to
rely on CSE to eliminate the duplicate allocation.... This alternative
doesn't look attractive enough to pursue.
ALTERNATIVE 3: ignore the reboxing problem. The trouble is that
the conservative reboxing story prevents many useful functions from being
specialised. Example:
foo :: Maybe Int -> Int -> Int
foo (Just m) 0 = 0
foo x@(Just m) n = foo x (nm)
Here the use of 'x' will clearly not require boxing in the specialised function.
The strictness analyser has the same problem, in fact. Example:
f p@(a,b) = ...
If we pass just 'a' and 'b' to the worker, it might need to rebox the
pair to create (a,b). A more sophisticated analysis might figure out
precisely the cases in which this could happen, but the strictness
analyser does no such analysis; it just passes 'a' and 'b', and hopes
for the best.
So my current choice is to make SpecConstr similarly aggressive, and
ignore the bad potential of reboxing.
Note [Good arguments]
~~~~~~~~~~~~~~~~~~~~~
So we look for
* A selfrecursive function. Ignore mutual recursion for now,
because it's less common, and the code is simpler for selfrecursion.
* EITHER
a) At a recursive call, one or more parameters is an explicit
constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
OR
b) At a recursive call, one or more parameters has an unfolding
that is an explicit constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
AND
Those are the only uses of the parameter (see Note [Reboxing])
What to abstract over
~~~~~~~~~~~~~~~~~~~~~
There's a bit of a complication with type arguments. If the call
site looks like
f p = ...f ((:) [a] x xs)...
then our specialised function look like
f_spec x xs = let p = (:) [a] x xs in ....as before....
This only makes sense if either
a) the type variable 'a' is in scope at the top of f, or
b) the type variable 'a' is an argument to f (and hence fs)
Actually, (a) may hold for value arguments too, in which case
we may not want to pass them. Supose 'x' is in scope at f's
defn, but xs is not. Then we'd like
f_spec xs = let p = (:) [a] x xs in ....as before....
Similarly (b) may hold too. If x is already an argument at the
call, no need to pass it again.
Finally, if 'a' is not in scope at the call site, we could abstract
it as we do the term variables:
f_spec a x xs = let p = (:) [a] x xs in ...as before...
So the grand plan is:
* abstract the call site to a constructoronly pattern
e.g. C x (D (f p) (g q)) ==> C s1 (D s2 s3)
* Find the free variables of the abstracted pattern
* Pass these variables, less any that are in scope at
the fn defn. But see Note [Shadowing] below.
NOTICE that we only abstract over variables that are not in scope,
so we're in no danger of shadowing variables used in "higher up"
in f_spec's RHS.
Note [Shadowing]
~~~~~~~~~~~~~~~~
In this pass we gather up usage information that may mention variables
that are bound between the usage site and the definition site; or (more
seriously) may be bound to something different at the definition site.
For example:
f x = letrec g y v = let x = ...
in ...(g (a,b) x)...
Since 'x' is in scope at the call site, we may make a rewrite rule that
looks like
RULE forall a,b. g (a,b) x = ...
But this rule will never match, because it's really a different 'x' at
the call site
simplifier gets to it. [A worry: the simplifier doesn't *guarantee*
noshadowing, so perhaps it may not be distinct?]
Anyway, the rule isn't actually wrong, it's just not useful. One possibility
is to run deShadowBinds before running SpecConstr, but instead we run the
simplifier. That gives the simplest possible program for SpecConstr to
chew on; and it virtually guarantees no shadowing.
Note [Specialising for constant parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This one is about specialising on a *constant* (but not necessarily
constructor) argument
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (+1)
It produces
lvl_rmV :: GHC.Base.Int -> GHC.Base.Int
lvl_rmV =
\ (ds_dlk :: GHC.Base.Int) ->
case ds_dlk of wild_alH { GHC.Base.I# x_alG ->
GHC.Base.I# (GHC.Prim.+# x_alG 1)
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sme :: GHC.Prim.Int#) (w_smg :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sme of ds_Xlw {
__DEFAULT ->
case w_smg (GHC.Base.I# ds_Xlw) of w1_Xmo { GHC.Base.I# ww1_Xmz ->
T.$wfoo ww1_Xmz lvl_rmV
};
0 -> 0
}
The recursive call has lvl_rmV as its argument, so we could create a specialised copy
with that argument baked in; that is, not passed at all. Now it can perhaps be inlined.
When is this worth it? Call the constant 'lvl'
If 'lvl' has an unfolding that is a constructor, see if the corresponding
parameter is scrutinised anywhere in the body.
If 'lvl' has an unfolding that is a inlinable function, see if the corresponding
parameter is applied (...to enough arguments...?)
Also do this is if the function has RULES?
Also
Note [Specialising for lambda parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (\n -> nm)
This is subtly different from the previous one in that we get an
explicit lambda as the argument:
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sm8 :: GHC.Prim.Int#) (w_sma :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sm8 of ds_Xlr {
__DEFAULT ->
case w_sma (GHC.Base.I# ds_Xlr) of w1_Xmf { GHC.Base.I# ww1_Xmq ->
T.$wfoo
ww1_Xmq
(\ (n_ad3 :: GHC.Base.Int) ->
case n_ad3 of wild_alB { GHC.Base.I# x_alA ->
GHC.Base.I# (GHC.Prim.-# x_alA ds_Xlr)
})
};
0 -> 0
}
I wonder if SpecConstr couldn't be extended to handle this? After all,
lambda is a sort of constructor for functions and perhaps it already
has most of the necessary machinery?
Furthermore, there's an immediate win, because you don't need to allocate the lamda
at the call site; and if perchance it's called in the recursive call, then you
may avoid allocating it altogether. Just like for constructors.
Looks cool, but probably rare...but it might be easy to implement.
Note [SpecConstr for casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data family T a :: *
data instance T Int = T Int
foo n = ...
where
go (T 0) = 0
go (T n) = go (T (n1))
The recursive call ends up looking like
go (T (I# ...) `cast` g)
So we want to spot the construtor application inside the cast.
That's why we have the Cast case in argToPat
Note [Local recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a *local* recursive group, we can see all the calls to the
function, so we seed the specialisation loop from the calls in the
body, not from the calls in the RHS. Consider:
bar m n = foo n (n,n) (n,n) (n,n) (n,n)
where
foo n p q r s
| n == 0 = m
| n > 3000 = case p of { (p1,p2) -> foo (n1) (p2,p1) q r s }
| n > 2000 = case q of { (q1,q2) -> foo (n1) p (q2,q1) r s }
| n > 1000 = case r of { (r1,r2) -> foo (n1) p q (r2,r1) s }
| otherwise = case s of { (s1,s2) -> foo (n1) p q r (s2,s1) }
If we start with the RHSs of 'foo', we get lots and lots of specialisations,
most of which are not needed. But if we start with the (single) call
in the rhs of 'bar' we get exactly one fullyspecialised copy, and all
the recursive calls go to this fullyspecialised copy. Indeed, the original
function is later collected as dead code. This is very important in
specialising the loops arising from stream fusion, for example in NDP where
we were getting literally hundreds of (mostly unused) specialisations of
a local function.
Note [Do not specialise diverging functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Specialising a function that just diverges is a waste of code.
Furthermore, it broke GHC (simpl014) thus:
f = \x. case x of (a,b) -> f x
If we specialise f we get
f = \x. case x of (a,b) -> fspec a b
But fspec doesn't have decent strictnes info. As it happened,
(f x) :: IO t, so the state hack applied and we eta expanded fspec,
and hence f. But now f's strictness is less than its arity, which
breaks an invariant.
Stuff not yet handled
Here are notes arising from Roman's work that I don't want to lose.
Example 1
~~~~~~~~~
data T a = T !a
foo :: Int -> T Int -> Int
foo 0 t = 0
foo x t | even x = case t of { T n -> foo (xn) t }
| otherwise = foo (x1) t
SpecConstr does no specialisation, because the second recursive call
looks like a boxed use of the argument. A pity.
$wfoo_sFw :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sFw =
\ (ww_sFo [Just L] :: GHC.Prim.Int#) (w_sFq [Just L] :: T.T GHC.Base.Int) ->
case ww_sFo of ds_Xw6 [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xw6 2 of wild1_aEF [Dead Just A] {
__DEFAULT -> $wfoo_sFw (GHC.Prim.-# ds_Xw6 1) w_sFq;
0 ->
case w_sFq of wild_Xy [Just L] { T.T n_ad5 [Just U(L)] ->
case n_ad5 of wild1_aET [Just A] { GHC.Base.I# y_aES [Just L] ->
$wfoo_sFw (GHC.Prim.-# ds_Xw6 y_aES) wild_Xy
} } };
0 -> 0
Example 2
~~~~~~~~~
data a :*: b = !a :*: !b
data T a = T !a
foo :: (Int :*: T Int) -> Int
foo (0 :*: t) = 0
foo (x :*: t) | even x = case t of { T n -> foo ((xn) :*: t) }
| otherwise = foo ((x1) :*: t)
Very similar to the previous one, except that the parameters are now in
a strict tuple. Before SpecConstr, we have
$wfoo_sG3 :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sG3 =
\ (ww_sFU [Just L] :: GHC.Prim.Int#) (ww_sFW [Just L] :: T.T
GHC.Base.Int) ->
case ww_sFU of ds_Xws [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xws 2 of wild1_aEZ [Dead Just A] {
__DEFAULT ->
case ww_sFW of tpl_B2 [Just L] { T.T a_sFo [Just A] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws 1) tpl_B2
};
0 ->
case ww_sFW of wild_XB [Just A] { T.T n_ad7 [Just S(L)] ->
case n_ad7 of wild1_aFd [Just L] { GHC.Base.I# y_aFc [Just L] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws y_aFc) wild_XB
} } };
0 -> 0 }
We get two specialisations:
"SC:$wfoo1" [0] __forall {a_sFB :: GHC.Base.Int sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int a_sFB)
= Foo.$s$wfoo1 a_sFB sc_sGC ;
"SC:$wfoo2" [0] __forall {y_aFp :: GHC.Prim.Int# sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int (GHC.Base.I# y_aFp))
= Foo.$s$wfoo y_aFp sc_sGC ;
But perhaps the first one isn't good. After all, we know that tpl_B2 is
a T (I# x) really, because T is strict and Int has one constructor. (We can't
unbox the strict fields, becuase T is polymorphic!)
%************************************************************************
%* *
\subsection{Top level wrapper stuff}
%* *
%************************************************************************
\begin{code}
specConstrProgram :: DynFlags -> UniqSupply -> [CoreBind] -> [CoreBind]
specConstrProgram dflags us binds = fst $ initUs us (go (initScEnv dflags) binds)
where
go _ [] = return []
go env (bind:binds) = do (env', bind') <- scTopBind env bind
binds' <- go env' binds
return (bind' : binds')
\end{code}
%************************************************************************
%* *
\subsection{Environment: goes downwards}
%* *
%************************************************************************
\begin{code}
data ScEnv = SCE { sc_size :: Maybe Int,
sc_count :: Maybe Int,
sc_subst :: Subst,
sc_how_bound :: HowBoundEnv,
sc_vals :: ValueEnv
}
type InExpr = CoreExpr
type OutExpr = CoreExpr
type OutId = Id
type OutVar = Var
type HowBoundEnv = VarEnv HowBound
type ValueEnv = IdEnv Value
data Value = ConVal AltCon [CoreArg]
| LambdaVal
instance Outputable Value where
ppr (ConVal con args) = ppr con <+> interpp'SP args
ppr LambdaVal = ptext (sLit "<Lambda>")
initScEnv :: DynFlags -> ScEnv
initScEnv dflags
= SCE { sc_size = specConstrThreshold dflags,
sc_count = specConstrCount dflags,
sc_subst = emptySubst,
sc_how_bound = emptyVarEnv,
sc_vals = emptyVarEnv }
data HowBound = RecFun
| RecArg
instance Outputable HowBound where
ppr RecFun = text "RecFun"
ppr RecArg = text "RecArg"
lookupHowBound :: ScEnv -> Id -> Maybe HowBound
lookupHowBound env id = lookupVarEnv (sc_how_bound env) id
scSubstId :: ScEnv -> Id -> CoreExpr
scSubstId env v = lookupIdSubst (sc_subst env) v
scSubstTy :: ScEnv -> Type -> Type
scSubstTy env ty = substTy (sc_subst env) ty
zapScSubst :: ScEnv -> ScEnv
zapScSubst env = env { sc_subst = zapSubstEnv (sc_subst env) }
extendScInScope :: ScEnv -> [Var] -> ScEnv
extendScInScope env qvars = env { sc_subst = extendInScopeList (sc_subst env) qvars }
extendScSubst :: ScEnv -> Var -> OutExpr -> ScEnv
extendScSubst env var expr = env { sc_subst = extendSubst (sc_subst env) var expr }
extendScSubstList :: ScEnv -> [(Var,OutExpr)] -> ScEnv
extendScSubstList env prs = env { sc_subst = extendSubstList (sc_subst env) prs }
extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv
extendHowBound env bndrs how_bound
= env { sc_how_bound = extendVarEnvList (sc_how_bound env)
[(bndr,how_bound) | bndr <- bndrs] }
extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var])
extendBndrsWith how_bound env bndrs
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs')
where
(subst', bndrs') = substBndrs (sc_subst env) bndrs
hb_env' = sc_how_bound env `extendVarEnvList`
[(bndr,how_bound) | bndr <- bndrs']
extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var)
extendBndrWith how_bound env bndr
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound
extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var])
extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs')
where
(subst', bndrs') = substRecBndrs (sc_subst env) bndrs
extendBndr :: ScEnv -> Var -> (ScEnv, Var)
extendBndr env bndr = (env { sc_subst = subst' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
extendValEnv :: ScEnv -> Id -> Maybe Value -> ScEnv
extendValEnv env _ Nothing = env
extendValEnv env id (Just cv) = env { sc_vals = extendVarEnv (sc_vals env) id cv }
extendCaseBndrs :: ScEnv -> Id -> AltCon -> [Var] -> (ScEnv, [Var])
extendCaseBndrs env case_bndr con alt_bndrs
| isDeadBinder case_bndr
= (env, alt_bndrs)
| otherwise
= (env1, map zap alt_bndrs)
where
zap v | isTyVar v = v
| otherwise = zapIdOccInfo v
env1 = extendValEnv env case_bndr cval
cval = case con of
DEFAULT -> Nothing
LitAlt {} -> Just (ConVal con [])
DataAlt {} -> Just (ConVal con vanilla_args)
where
vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++
varsToCoreExprs alt_bndrs
\end{code}
%************************************************************************
%* *
\subsection{Usage information: flows upwards}
%* *
%************************************************************************
\begin{code}
data ScUsage
= SCU {
scu_calls :: CallEnv,
scu_occs :: !(IdEnv ArgOcc)
}
type CallEnv = IdEnv [Call]
type Call = (ValueEnv, [CoreArg])
nullUsage :: ScUsage
nullUsage = SCU { scu_calls = emptyVarEnv, scu_occs = emptyVarEnv }
combineCalls :: CallEnv -> CallEnv -> CallEnv
combineCalls = plusVarEnv_C (++)
combineUsage :: ScUsage -> ScUsage -> ScUsage
combineUsage u1 u2 = SCU { scu_calls = combineCalls (scu_calls u1) (scu_calls u2),
scu_occs = plusVarEnv_C combineOcc (scu_occs u1) (scu_occs u2) }
combineUsages :: [ScUsage] -> ScUsage
combineUsages [] = nullUsage
combineUsages us = foldr1 combineUsage us
lookupOcc :: ScUsage -> OutVar -> (ScUsage, ArgOcc)
lookupOcc (SCU { scu_calls = sc_calls, scu_occs = sc_occs }) bndr
= (SCU {scu_calls = sc_calls, scu_occs = delVarEnv sc_occs bndr},
lookupVarEnv sc_occs bndr `orElse` NoOcc)
lookupOccs :: ScUsage -> [OutVar] -> (ScUsage, [ArgOcc])
lookupOccs (SCU { scu_calls = sc_calls, scu_occs = sc_occs }) bndrs
= (SCU {scu_calls = sc_calls, scu_occs = delVarEnvList sc_occs bndrs},
[lookupVarEnv sc_occs b `orElse` NoOcc | b <- bndrs])
data ArgOcc = NoOcc
| UnkOcc
| ScrutOcc (UniqFM [ArgOcc])
| BothOcc
instance Outputable ArgOcc where
ppr (ScrutOcc xs) = ptext (sLit "scrut-occ") <> ppr xs
ppr UnkOcc = ptext (sLit "unk-occ")
ppr BothOcc = ptext (sLit "both-occ")
ppr NoOcc = ptext (sLit "no-occ")
combineOcc :: ArgOcc -> ArgOcc -> ArgOcc
combineOcc NoOcc occ = occ
combineOcc occ NoOcc = occ
combineOcc (ScrutOcc xs) (ScrutOcc ys) = ScrutOcc (plusUFM_C combineOccs xs ys)
combineOcc _occ (ScrutOcc ys) = ScrutOcc ys
combineOcc (ScrutOcc xs) _occ = ScrutOcc xs
combineOcc UnkOcc UnkOcc = UnkOcc
combineOcc _ _ = BothOcc
combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc]
combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys
setScrutOcc :: ScEnv -> ScUsage -> OutExpr -> ArgOcc -> ScUsage
setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Note _ e) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Var v) occ
| Just RecArg <- lookupHowBound env v = usg { scu_occs = extendVarEnv (scu_occs usg) v occ }
| otherwise = usg
setScrutOcc _env usg _other _occ
= usg
conArgOccs :: ArgOcc -> AltCon -> [ArgOcc]
conArgOccs (ScrutOcc fm) (DataAlt dc)
| Just pat_arg_occs <- lookupUFM fm dc
= [UnkOcc | _ <- dataConUnivTyVars dc] ++ pat_arg_occs
conArgOccs _other _con = repeat UnkOcc
\end{code}
%************************************************************************
%* *
\subsection{The main recursive function}
%* *
%************************************************************************
The main recursive function gathers up usage information, and
creates specialised versions of functions.
\begin{code}
scExpr, scExpr' :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr)
scExpr env e = scExpr' env e
scExpr' env (Var v) = case scSubstId env v of
Var v' -> return (varUsage env v' UnkOcc, Var v')
e' -> scExpr (zapScSubst env) e'
scExpr' env (Type t) = return (nullUsage, Type (scSubstTy env t))
scExpr' _ e@(Lit {}) = return (nullUsage, e)
scExpr' env (Note n e) = do (usg,e') <- scExpr env e
return (usg, Note n e')
scExpr' env (Cast e co) = do (usg, e') <- scExpr env e
return (usg, Cast e' (scSubstTy env co))
scExpr' env e@(App _ _) = scApp env (collectArgs e)
scExpr' env (Lam b e) = do let (env', b') = extendBndr env b
(usg, e') <- scExpr env' e
return (usg, Lam b' e')
scExpr' env (Case scrut b ty alts)
= do { (scrut_usg, scrut') <- scExpr env scrut
; case isValue (sc_vals env) scrut' of
Just (ConVal con args) -> sc_con_app con args scrut'
_other -> sc_vanilla scrut_usg scrut'
}
where
sc_con_app con args scrut'
= do { let (_, bs, rhs) = findAlt con alts
`orElse` (DEFAULT, [], mkImpossibleExpr (coreAltsType alts))
alt_env' = extendScSubstList env ((b,scrut') : bs `zip` trimConArgs con args)
; scExpr alt_env' rhs }
sc_vanilla scrut_usg scrut'
= do { let (alt_env,b') = extendBndrWith RecArg env b
; (alt_usgs, alt_occs, alts')
<- mapAndUnzip3M (sc_alt alt_env scrut' b') alts
; let (alt_usg, b_occ) = lookupOcc (combineUsages alt_usgs) b'
scrut_occ = foldr combineOcc b_occ alt_occs
scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ
; return (alt_usg `combineUsage` scrut_usg',
Case scrut' b' (scSubstTy env ty) alts') }
sc_alt env _scrut' b' (con,bs,rhs)
= do { let (env1, bs1) = extendBndrsWith RecArg env bs
(env2, bs2) = extendCaseBndrs env1 b' con bs1
; (usg,rhs') <- scExpr env2 rhs
; let (usg', arg_occs) = lookupOccs usg bs2
scrut_occ = case con of
DataAlt dc -> ScrutOcc (unitUFM dc arg_occs)
_ -> ScrutOcc emptyUFM
; return (usg', scrut_occ, (con, bs2, rhs')) }
scExpr' env (Let (NonRec bndr rhs) body)
| isTyVar bndr
= scExpr' (extendScSubst env bndr rhs) body
| otherwise
= do { let (body_env, bndr') = extendBndr env bndr
; (rhs_usg, (_, args', rhs_body', _)) <- scRecRhs env (bndr',rhs)
; let rhs' = mkLams args' rhs_body'
; if not opt_SpecInlineJoinPoints || null args' || isEmptyVarEnv (scu_calls rhs_usg) then do
do {
let body_env2 = extendValEnv body_env bndr' (isValue (sc_vals env) rhs')
; (body_usg, body') <- scExpr body_env2 body
; return (body_usg `combineUsage` rhs_usg, Let (NonRec bndr' rhs') body') }
else
do { let body_env2 = extendScSubst env bndr rhs'
; scExpr body_env2 body } }
scExpr' env (Let (Rec prs) body)
= do { let (bndrs,rhss) = unzip prs
(rhs_env1,bndrs') = extendRecBndrs env bndrs
rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
; (rhs_usgs, rhs_infos) <- mapAndUnzipM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
; (body_usg, body') <- scExpr rhs_env2 body
; (spec_usg, specs) <- specLoop rhs_env2 (scu_calls body_usg) rhs_infos nullUsage
[SI [] 0 (Just usg) | usg <- rhs_usgs]
; let all_usg = spec_usg `combineUsage` body_usg
bind' = Rec (concat (zipWith specInfoBinds rhs_infos specs))
; return (all_usg { scu_calls = scu_calls all_usg `delVarEnvList` bndrs' },
Let bind' body') }
scApp :: ScEnv -> (InExpr, [InExpr]) -> UniqSM (ScUsage, CoreExpr)
scApp env (Var fn, args)
= ASSERT( not (null args) )
do { args_w_usgs <- mapM (scExpr env) args
; let (arg_usgs, args') = unzip args_w_usgs
arg_usg = combineUsages arg_usgs
; case scSubstId env fn of
fn'@(Lam {}) -> scExpr (zapScSubst env) (doBeta fn' args')
Var fn' -> return (arg_usg `combineUsage` fn_usg, mkApps (Var fn') args')
where
fn_usg = case lookupHowBound env fn' of
Just RecFun -> SCU { scu_calls = unitVarEnv fn' [(sc_vals env, args')],
scu_occs = emptyVarEnv }
Just RecArg -> SCU { scu_calls = emptyVarEnv,
scu_occs = unitVarEnv fn' (ScrutOcc emptyUFM) }
Nothing -> nullUsage
other_fn' -> return (arg_usg, mkApps other_fn' args') }
where
doBeta :: OutExpr -> [OutExpr] -> OutExpr
doBeta (Lam bndr body) (arg : args) = Let (NonRec bndr arg) (doBeta body args)
doBeta fn args = mkApps fn args
scApp env (other_fn, args)
= do { (fn_usg, fn') <- scExpr env other_fn
; (arg_usgs, args') <- mapAndUnzipM (scExpr env) args
; return (combineUsages arg_usgs `combineUsage` fn_usg, mkApps fn' args') }
scTopBind :: ScEnv -> CoreBind -> UniqSM (ScEnv, CoreBind)
scTopBind env (Rec prs)
| Just threshold <- sc_size env
, not (all (couldBeSmallEnoughToInline threshold) rhss)
= do { let (rhs_env,bndrs') = extendRecBndrs env bndrs
; (_, rhss') <- mapAndUnzipM (scExpr rhs_env) rhss
; return (rhs_env, Rec (bndrs' `zip` rhss')) }
| otherwise
= do { let (rhs_env1,bndrs') = extendRecBndrs env bndrs
rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
; (rhs_usgs, rhs_infos) <- mapAndUnzipM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
; let rhs_usg = combineUsages rhs_usgs
; (_, specs) <- specLoop rhs_env2 (scu_calls rhs_usg) rhs_infos nullUsage
[SI [] 0 Nothing | _ <- bndrs]
; return (rhs_env1,
Rec (concat (zipWith specInfoBinds rhs_infos specs))) }
where
(bndrs,rhss) = unzip prs
scTopBind env (NonRec bndr rhs)
= do { (_, rhs') <- scExpr env rhs
; let (env1, bndr') = extendBndr env bndr
env2 = extendValEnv env1 bndr' (isValue (sc_vals env) rhs')
; return (env2, NonRec bndr' rhs') }
scRecRhs :: ScEnv -> (OutId, InExpr) -> UniqSM (ScUsage, RhsInfo)
scRecRhs env (bndr,rhs)
= do { let (arg_bndrs,body) = collectBinders rhs
(body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs
; (body_usg, body') <- scExpr body_env body
; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs'
; return (rhs_usg, (bndr, arg_bndrs', body', arg_occs)) }
specInfoBinds :: RhsInfo -> SpecInfo -> [(Id,CoreExpr)]
specInfoBinds (fn, args, body, _) (SI specs _ _)
= [(id,rhs) | OS _ _ id rhs <- specs] ++
[(fn `addIdSpecialisations` rules, mkLams args body)]
where
rules = [r | OS _ r _ _ <- specs]
varUsage :: ScEnv -> OutVar -> ArgOcc -> ScUsage
varUsage env v use
| Just RecArg <- lookupHowBound env v = SCU { scu_calls = emptyVarEnv
, scu_occs = unitVarEnv v use }
| otherwise = nullUsage
\end{code}
%************************************************************************
%* *
The specialiser itself
%* *
%************************************************************************
\begin{code}
type RhsInfo = (OutId, [OutVar], OutExpr, [ArgOcc])
data SpecInfo = SI [OneSpec]
Int
(Maybe ScUsage)
data OneSpec = OS CallPat
CoreRule
OutId OutExpr
specLoop :: ScEnv
-> CallEnv
-> [RhsInfo]
-> ScUsage -> [SpecInfo]
-> UniqSM (ScUsage, [SpecInfo])
specLoop env all_calls rhs_infos usg_so_far specs_so_far
= do { specs_w_usg <- zipWithM (specialise env all_calls) rhs_infos specs_so_far
; let (new_usg_s, all_specs) = unzip specs_w_usg
new_usg = combineUsages new_usg_s
new_calls = scu_calls new_usg
all_usg = usg_so_far `combineUsage` new_usg
; if isEmptyVarEnv new_calls then
return (all_usg, all_specs)
else
specLoop env new_calls rhs_infos all_usg all_specs }
specialise
:: ScEnv
-> CallEnv
-> RhsInfo
-> SpecInfo
-> UniqSM (ScUsage, SpecInfo)
specialise env bind_calls (fn, arg_bndrs, body, arg_occs)
spec_info@(SI specs spec_count mb_unspec)
| not (isBottomingId fn)
, notNull arg_bndrs
, Just all_calls <- lookupVarEnv bind_calls fn
= do { (boring_call, pats) <- callsToPats env specs arg_occs all_calls
; let spec_count' = length pats + spec_count
; case sc_count env of
Just max | spec_count' > max
-> WARN( True, msg ) return (nullUsage, spec_info)
where
msg = vcat [ sep [ ptext (sLit "SpecConstr: specialisation of") <+> quotes (ppr fn)
, nest 2 (ptext (sLit "limited by bound of")) <+> int max ]
, ptext (sLit "Use -fspec-constr-count=n to set the bound")
, extra ]
extra | not opt_PprStyle_Debug = ptext (sLit "Use -dppr-debug to see specialisations")
| otherwise = ptext (sLit "Specialisations:") <+> ppr (pats ++ [p | OS p _ _ _ <- specs])
_normal_case -> do {
(spec_usgs, new_specs) <- mapAndUnzipM (spec_one env fn arg_bndrs body)
(pats `zip` [spec_count..])
; let spec_usg = combineUsages spec_usgs
(new_usg, mb_unspec')
= case mb_unspec of
Just rhs_usg | boring_call -> (spec_usg `combineUsage` rhs_usg, Nothing)
_ -> (spec_usg, mb_unspec)
; return (new_usg, SI (new_specs ++ specs) spec_count' mb_unspec') } }
| otherwise
= return (nullUsage, spec_info)
spec_one :: ScEnv
-> OutId
-> [Var]
-> CoreExpr
-> (CallPat, Int)
-> UniqSM (ScUsage, OneSpec)
spec_one env fn arg_bndrs body (call_pat@(qvars, pats), rule_number)
= do {
let spec_env = extendScSubstList (extendScInScope env qvars)
(arg_bndrs `zip` pats)
; (spec_usg, spec_body) <- scExpr spec_env body
; spec_uniq <- getUniqueUs
; let (spec_lam_args, spec_call_args) = mkWorkerArgs qvars body_ty
fn_name = idName fn
fn_loc = nameSrcSpan fn_name
spec_occ = mkSpecOcc (nameOccName fn_name)
rule_name = mkFastString ("SC:" ++ showSDoc (ppr fn <> int rule_number))
spec_rhs = mkLams spec_lam_args spec_body
spec_str = calcSpecStrictness fn spec_lam_args pats
spec_id = mkUserLocal spec_occ spec_uniq (mkPiTypes spec_lam_args body_ty) fn_loc
`setIdNewStrictness` spec_str
`setIdArity` count isId spec_lam_args
body_ty = exprType spec_body
rule_rhs = mkVarApps (Var spec_id) spec_call_args
rule = mkLocalRule rule_name specConstrActivation fn_name qvars pats rule_rhs
; return (spec_usg, OS call_pat rule spec_id spec_rhs) }
calcSpecStrictness :: Id
-> [Var] -> [CoreExpr]
-> StrictSig
calcSpecStrictness fn qvars pats
= StrictSig (mkTopDmdType spec_dmds TopRes)
where
spec_dmds = [ lookupVarEnv dmd_env qv `orElse` lazyDmd | qv <- qvars, isId qv ]
StrictSig (DmdType _ dmds _) = idNewStrictness fn
dmd_env = go emptyVarEnv dmds pats
go env ds (Type {} : pats) = go env ds pats
go env (d:ds) (pat : pats) = go (go_one env d pat) ds pats
go env _ _ = env
go_one env d (Var v) = extendVarEnv_C both env v d
go_one env (Box d) e = go_one env d e
go_one env (Eval (Prod ds)) e
| (Var _, args) <- collectArgs e = go env ds args
go_one env _ _ = env
specConstrActivation :: Activation
specConstrActivation = ActiveAfter 0
\end{code}
Note [Transfer strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We must transfer strictness information from the original function to
the specialised one. Suppose, for example
f has strictness SS
and a RULE f (a:as) b = f_spec a as b
Now we want f_spec to have strictess LLS, otherwise we'll use callbyneed
when calling f_spec instead of callbyvalue. And that can result in
unbounded worsening in space (cf the classic foldl vs foldl')
See Trac #3437 for a good example.
The function calcSpecStrictness performs the calculation.
%************************************************************************
%* *
\subsection{Argument analysis}
%* *
%************************************************************************
This code deals with analysing callsite arguments to see whether
they are constructor applications.
\begin{code}
type CallPat = ([Var], [CoreExpr])
callsToPats :: ScEnv -> [OneSpec] -> [ArgOcc] -> [Call] -> UniqSM (Bool, [CallPat])
callsToPats env done_specs bndr_occs calls
= do { mb_pats <- mapM (callToPats env bndr_occs) calls
; let good_pats :: [([Var], [CoreArg])]
good_pats = catMaybes mb_pats
done_pats = [p | OS p _ _ _ <- done_specs]
is_done p = any (samePat p) done_pats
; return (any isNothing mb_pats,
filterOut is_done (nubBy samePat good_pats)) }
callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat)
callToPats env bndr_occs (con_env, args)
| length args < length bndr_occs
= return Nothing
| otherwise
= do { let in_scope = substInScope (sc_subst env)
; prs <- argsToPats in_scope con_env (args `zip` bndr_occs)
; let (interesting_s, pats) = unzip prs
pat_fvs = varSetElems (exprsFreeVars pats)
qvars = filterOut (`elemInScopeSet` in_scope) pat_fvs
(tvs, ids) = partition isTyVar qvars
qvars' = tvs ++ ids
;
if or interesting_s
then return (Just (qvars', pats))
else return Nothing }
argToPat :: InScopeSet
-> ValueEnv
-> CoreArg
-> ArgOcc
-> UniqSM (Bool, CoreArg)
argToPat _in_scope _val_env arg@(Type {}) _arg_occ
= return (False, arg)
argToPat in_scope val_env (Note _ arg) arg_occ
= argToPat in_scope val_env arg arg_occ
argToPat in_scope val_env (Let _ arg) arg_occ
= argToPat in_scope val_env arg arg_occ
argToPat in_scope val_env (Cast arg co) arg_occ
= do { (interesting, arg') <- argToPat in_scope val_env arg arg_occ
; let (ty1,ty2) = coercionKind co
; if not interesting then
wildCardPat ty2
else do
{
uniq <- getUniqueUs
; let co_name = mkSysTvName uniq (fsLit "sg")
co_var = mkCoVar co_name (mkCoKind ty1 ty2)
; return (interesting, Cast arg' (mkTyVarTy co_var)) } }
argToPat in_scope val_env arg arg_occ
| Just (ConVal dc args) <- isValue val_env arg
, case arg_occ of
ScrutOcc _ -> True
BothOcc -> case arg of
App {} -> True
_other -> False
_other -> False
= do { args' <- argsToPats in_scope val_env (args `zip` conArgOccs arg_occ dc)
; return (True, mk_con_app dc (map snd args')) }
argToPat in_scope val_env (Var v) arg_occ
| case arg_occ of { UnkOcc -> False; _other -> True },
is_value
= return (True, Var v)
where
is_value
| isLocalId v = v `elemInScopeSet` in_scope
&& isJust (lookupVarEnv val_env v)
| otherwise = isValueUnfolding (idUnfolding v)
argToPat _in_scope _val_env arg _arg_occ
= wildCardPat (exprType arg)
wildCardPat :: Type -> UniqSM (Bool, CoreArg)
wildCardPat ty = do { uniq <- getUniqueUs
; let id = mkSysLocal (fsLit "sc") uniq ty
; return (False, Var id) }
argsToPats :: InScopeSet -> ValueEnv
-> [(CoreArg, ArgOcc)]
-> UniqSM [(Bool, CoreArg)]
argsToPats in_scope val_env args
= mapM do_one args
where
do_one (arg,occ) = argToPat in_scope val_env arg occ
\end{code}
\begin{code}
isValue :: ValueEnv -> CoreExpr -> Maybe Value
isValue _env (Lit lit)
= Just (ConVal (LitAlt lit) [])
isValue env (Var v)
| Just stuff <- lookupVarEnv env v
= Just stuff
| not (isLocalId v) && isCheapUnfolding unf
= isValue env (unfoldingTemplate unf)
where
unf = idUnfolding v
isValue env (Lam b e)
| isTyVar b = case isValue env e of
Just _ -> Just LambdaVal
Nothing -> Nothing
| otherwise = Just LambdaVal
isValue _env expr
| (Var fun, args) <- collectArgs expr
= case isDataConWorkId_maybe fun of
Just con | args `lengthAtLeast` dataConRepArity con
-> Just (ConVal (DataAlt con) args)
_other | valArgCount args < idArity fun
-> Just LambdaVal
_other -> Nothing
isValue _env _expr = Nothing
mk_con_app :: AltCon -> [CoreArg] -> CoreExpr
mk_con_app (LitAlt lit) [] = Lit lit
mk_con_app (DataAlt con) args = mkConApp con args
mk_con_app _other _args = panic "SpecConstr.mk_con_app"
samePat :: CallPat -> CallPat -> Bool
samePat (vs1, as1) (vs2, as2)
= all2 same as1 as2
where
same (Var v1) (Var v2)
| v1 `elem` vs1 = v2 `elem` vs2
| v2 `elem` vs2 = False
| otherwise = v1 == v2
same (Lit l1) (Lit l2) = l1==l2
same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2
same (Type {}) (Type {}) = True
same (Note _ e1) e2 = same e1 e2
same (Cast e1 _) e2 = same e1 e2
same e1 (Note _ e2) = same e1 e2
same e1 (Cast e2 _) = same e1 e2
same e1 e2 = WARN( bad e1 || bad e2, ppr e1 $$ ppr e2)
False
bad (Case {}) = True
bad (Let {}) = True
bad (Lam {}) = True
bad _other = False
\end{code}
Note [Ignore type differences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not want to generate specialisations where the call patterns
differ only in their type arguments! Not only is it utterly useless,
but it also means that (with polymorphic recursion) we can generate
an infinite number of specialisations. Example is Data.Sequence.adjustTree,
I think.