-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------

#include "HsVersions.h"
#include "nativeGen/NCG.h"

module X86.Instr
where

import X86.Cond
import X86.Regs
import Instruction
import Size
import RegClass
import Reg
import TargetReg

import BlockId
import Cmm
import FastString
import FastBool
import Outputable
import Constants	(rESERVED_C_STACK_BYTES)

import CLabel

-- Size of a PPC memory address, in bytes.
--
archWordSize :: Size
#if i386_TARGET_ARCH
archWordSize	= II32
#elif x86_64_TARGET_ARCH
archWordSize	= II64
#else
archWordSize	= panic "X86.Instr.archWordSize: not defined"
#endif

-- | Instruction instance for x86 instruction set.
instance Instruction Instr where
	regUsageOfInstr		= x86_regUsageOfInstr
	patchRegsOfInstr	= x86_patchRegsOfInstr
	isJumpishInstr		= x86_isJumpishInstr
	jumpDestsOfInstr	= x86_jumpDestsOfInstr
	patchJumpInstr		= x86_patchJumpInstr
	mkSpillInstr		= x86_mkSpillInstr
	mkLoadInstr		= x86_mkLoadInstr
	takeDeltaInstr		= x86_takeDeltaInstr
	isMetaInstr		= x86_isMetaInstr
	mkRegRegMoveInstr	= x86_mkRegRegMoveInstr
	takeRegRegMoveInstr	= x86_takeRegRegMoveInstr
	mkJumpInstr		= x86_mkJumpInstr


-- -----------------------------------------------------------------------------
-- Intel x86 instructions

{-
Intel, in their infinite wisdom, selected a stack model for floating
point registers on x86.  That might have made sense back in 1979 --
nowadays we can see it for the nonsense it really is.  A stack model
fits poorly with the existing nativeGen infrastructure, which assumes
flat integer and FP register sets.  Prior to this commit, nativeGen
could not generate correct x86 FP code -- to do so would have meant
somehow working the register-stack paradigm into the register
allocator and spiller, which sounds very difficult.
  
We have decided to cheat, and go for a simple fix which requires no
infrastructure modifications, at the expense of generating ropey but
correct FP code.  All notions of the x86 FP stack and its insns have
been removed.  Instead, we pretend (to the instruction selector and
register allocator) that x86 has six floating point registers, %fake0
.. %fake5, which can be used in the usual flat manner.  We further
claim that x86 has floating point instructions very similar to SPARC
and Alpha, that is, a simple 3-operand register-register arrangement.
Code generation and register allocation proceed on this basis.
  
When we come to print out the final assembly, our convenient fiction
is converted to dismal reality.  Each fake instruction is
independently converted to a series of real x86 instructions.
%fake0 .. %fake5 are mapped to %st(0) .. %st(5).  To do reg-reg
arithmetic operations, the two operands are pushed onto the top of the
FP stack, the operation done, and the result copied back into the
relevant register.  There are only six %fake registers because 2 are
needed for the translation, and x86 has 8 in total.

The translation is inefficient but is simple and it works.  A cleverer
translation would handle a sequence of insns, simulating the FP stack
contents, would not impose a fixed mapping from %fake to %st regs, and
hopefully could avoid most of the redundant reg-reg moves of the
current translation.

We might as well make use of whatever unique FP facilities Intel have
chosen to bless us with (let's not be churlish, after all).
Hence GLDZ and GLD1.  Bwahahahahahahaha!
-}

{-
MORE FLOATING POINT MUSINGS...

Intel's internal floating point registers are by default 80 bit
extended precision.  This means that all operations done on values in
registers are done at 80 bits, and unless the intermediate values are
truncated to the appropriate size (32 or 64 bits) by storing in
memory, calculations in registers will give different results from
calculations which pass intermediate values in memory (eg. via
function calls).

One solution is to set the FPU into 64 bit precision mode.  Some OSs
do this (eg. FreeBSD) and some don't (eg. Linux).  The problem here is
that this will only affect 64-bit precision arithmetic; 32-bit
calculations will still be done at 64-bit precision in registers.  So
it doesn't solve the whole problem.  

There's also the issue of what the C library is expecting in terms of
precision.  It seems to be the case that glibc on Linux expects the
FPU to be set to 80 bit precision, so setting it to 64 bit could have
unexpected effects.  Changing the default could have undesirable
effects on other 3rd-party library code too, so the right thing would
be to save/restore the FPU control word across Haskell code if we were
to do this.

gcc's -ffloat-store gives consistent results by always storing the
results of floating-point calculations in memory, which works for both
32 and 64-bit precision.  However, it only affects the values of
user-declared floating point variables in C, not intermediate results.
GHC in -fvia-C mode uses -ffloat-store (see the -fexcess-precision
flag).

Another problem is how to spill floating point registers in the
register allocator.  Should we spill the whole 80 bits, or just 64?
On an OS which is set to 64 bit precision, spilling 64 is fine.  On
Linux, spilling 64 bits will round the results of some operations.
This is what gcc does.  Spilling at 80 bits requires taking up a full
128 bit slot (so we get alignment).  We spill at 80-bits and ignore
the alignment problems.

In the future, we'll use the SSE registers for floating point.  This
requires a CPU that supports SSE2 (ordinary SSE only supports 32 bit
precision float ops), which means P4 or Xeon and above.  Using SSE
will solve all these problems, because the SSE registers use fixed 32
bit or 64 bit precision.

--SDM 1/2003
-}


data Instr
	-- comment pseudo-op
	= COMMENT FastString		

	-- some static data spat out during code
	-- generation.  Will be extracted before
	-- pretty-printing.
	| LDATA   Section [CmmStatic]	

	-- start a new basic block.  Useful during
	-- codegen, removed later.  Preceding 
	-- instruction should be a jump, as per the
	-- invariants for a BasicBlock (see Cmm).
	| NEWBLOCK BlockId		

	-- specify current stack offset for
        -- benefit of subsequent passes
	| DELTA   Int

	-- Moves.
	| MOV	      Size Operand Operand
	| MOVZxL      Size Operand Operand -- size is the size of operand 1
	| MOVSxL      Size Operand Operand -- size is the size of operand 1
	-- x86_64 note: plain mov into a 32-bit register always zero-extends
	-- into the 64-bit reg, in contrast to the 8 and 16-bit movs which
	-- don't affect the high bits of the register.

	-- Load effective address (also a very useful three-operand add instruction :-)
	| LEA         Size Operand Operand

	-- Int Arithmetic.
	| ADD	      Size Operand Operand
	| ADC	      Size Operand Operand
	| SUB	      Size Operand Operand

	| MUL	      Size Operand Operand
	| IMUL	      Size Operand Operand	-- signed int mul
        | IMUL2       Size Operand 		-- %edx:%eax = operand * %eax

	| DIV	      Size Operand		-- eax := eax:edx/op, edx := eax:edx%op
	| IDIV	      Size Operand		-- ditto, but signed

	-- Simple bit-twiddling.
	| AND	      Size Operand Operand
	| OR	      Size Operand Operand
	| XOR	      Size Operand Operand
	| NOT	      Size Operand
	| NEGI	      Size Operand 		-- NEG instruction (name clash with Cond)

	-- Shifts (amount may be immediate or %cl only)
	| SHL	      Size Operand{-amount-} Operand
	| SAR	      Size Operand{-amount-} Operand
	| SHR	      Size Operand{-amount-} Operand

        | BT          Size Imm Operand
	| NOP

	-- x86 Float Arithmetic.
	-- Note that we cheat by treating G{ABS,MOV,NEG} of doubles 
	-- as single instructions right up until we spit them out.
        -- all the 3-operand fake fp insns are src1 src2 dst
        -- and furthermore are constrained to be fp regs only.
        -- IMPORTANT: keep is_G_insn up to date with any changes here
    	| GMOV	      Reg Reg -- src(fpreg), dst(fpreg)
        | GLD         Size AddrMode Reg -- src, dst(fpreg)
        | GST         Size Reg AddrMode -- src(fpreg), dst
		      
        | GLDZ        Reg -- dst(fpreg)
        | GLD1        Reg -- dst(fpreg)
		      
        | GFTOI       Reg Reg -- src(fpreg), dst(intreg)
        | GDTOI       Reg Reg -- src(fpreg), dst(intreg)
		      
        | GITOF       Reg Reg -- src(intreg), dst(fpreg)
        | GITOD       Reg Reg -- src(intreg), dst(fpreg)
	
	| GADD	      Size Reg Reg Reg -- src1, src2, dst
	| GDIV	      Size Reg Reg Reg -- src1, src2, dst
	| GSUB	      Size Reg Reg Reg -- src1, src2, dst
	| GMUL	      Size Reg Reg Reg -- src1, src2, dst
	
		-- FP compare.  Cond must be `elem` [EQQ, NE, LE, LTT, GE, GTT]
		-- Compare src1 with src2; set the Zero flag iff the numbers are
		-- comparable and the comparison is True.  Subsequent code must
		-- test the %eflags zero flag regardless of the supplied Cond.
    	| GCMP	      Cond Reg Reg -- src1, src2
	
     	| GABS	      Size Reg Reg -- src, dst
    	| GNEG	      Size Reg Reg -- src, dst
    	| GSQRT	      Size Reg Reg -- src, dst
    	| GSIN	      Size CLabel CLabel Reg Reg -- src, dst
    	| GCOS	      Size CLabel CLabel Reg Reg -- src, dst
    	| GTAN	      Size CLabel CLabel Reg Reg -- src, dst
	
        | GFREE         -- do ffree on all x86 regs; an ugly hack


	-- SSE2 floating point: we use a restricted set of the available SSE2
	-- instructions for floating-point.
	-- use MOV for moving (either movss or movsd (movlpd better?))
	| CVTSS2SD	Reg Reg		-- F32 to F64
	| CVTSD2SS	Reg Reg		-- F64 to F32
	| CVTTSS2SIQ	Operand Reg	-- F32 to I32/I64 (with truncation)
	| CVTTSD2SIQ	Operand	Reg	-- F64 to I32/I64 (with truncation)
	| CVTSI2SS	Operand Reg	-- I32/I64 to F32
	| CVTSI2SD	Operand Reg	-- I32/I64 to F64

	-- use ADD & SUB for arithmetic.  In both cases, operands
	-- are  Operand Reg.

 	-- SSE2 floating-point division:
	| FDIV		Size Operand Operand   -- divisor, dividend(dst)

	-- use CMP for comparisons.  ucomiss and ucomisd instructions
	-- compare single/double prec floating point respectively.

	| SQRT		Size Operand Reg	-- src, dst


	-- Comparison
	| TEST          Size Operand Operand
	| CMP           Size Operand Operand
	| SETCC         Cond Operand

	-- Stack Operations.
	| PUSH          Size Operand
	| POP           Size Operand
	-- both unused (SDM):
	--  | PUSHA
	--  | POPA

	-- Jumping around.
	| JMP	      Operand
	| JXX	      Cond BlockId  -- includes unconditional branches
	| JXX_GBL     Cond Imm      -- non-local version of JXX
	| JMP_TBL     Operand [BlockId]  -- table jump
	| CALL	      (Either Imm Reg) [Reg]

	-- Other things.
	| CLTD Size		 -- sign extend %eax into %edx:%eax

	| FETCHGOT    Reg 	 -- pseudo-insn for ELF position-independent code
                          	 -- pretty-prints as
                          	 --       call 1f
                          	 -- 1:    popl %reg
                          	 --       addl __GLOBAL_OFFSET_TABLE__+.-1b, %reg
	| FETCHPC     Reg 	 -- pseudo-insn for Darwin position-independent code
                          	 -- pretty-prints as
                          	 --       call 1f
                          	 -- 1:    popl %reg
	

data Operand
	= OpReg  Reg	        -- register
	| OpImm  Imm	        -- immediate value
	| OpAddr AddrMode	-- memory reference



x86_regUsageOfInstr :: Instr -> RegUsage
x86_regUsageOfInstr instr 
 = case instr of
    MOV    _ src dst	-> usageRW src dst
    MOVZxL _ src dst	-> usageRW src dst
    MOVSxL _ src dst	-> usageRW src dst
    LEA    _ src dst	-> usageRW src dst
    ADD    _ src dst	-> usageRM src dst
    ADC    _ src dst	-> usageRM src dst
    SUB    _ src dst	-> usageRM src dst
    IMUL   _ src dst	-> usageRM src dst
    IMUL2  _ src       -> mkRU (eax:use_R src) [eax,edx]
    MUL    _ src dst	-> usageRM src dst
    DIV    _ op	-> mkRU (eax:edx:use_R op) [eax,edx]
    IDIV   _ op	-> mkRU (eax:edx:use_R op) [eax,edx]
    AND    _ src dst	-> usageRM src dst
    OR     _ src dst	-> usageRM src dst

    XOR    _ (OpReg src) (OpReg dst)
        | src == dst    -> mkRU [] [dst]

    XOR    _ src dst	-> usageRM src dst
    NOT    _ op		-> usageM op
    NEGI   _ op		-> usageM op
    SHL    _ imm dst	-> usageRM imm dst
    SAR    _ imm dst	-> usageRM imm dst
    SHR    _ imm dst	-> usageRM imm dst
    BT     _ _   src	-> mkRUR (use_R src)

    PUSH   _ op		-> mkRUR (use_R op)
    POP    _ op		-> mkRU [] (def_W op)
    TEST   _ src dst	-> mkRUR (use_R src ++ use_R dst)
    CMP    _ src dst	-> mkRUR (use_R src ++ use_R dst)
    SETCC  _ op		-> mkRU [] (def_W op)
    JXX    _ _		-> mkRU [] []
    JXX_GBL _ _		-> mkRU [] []
    JMP     op		-> mkRUR (use_R op)
    JMP_TBL op _        -> mkRUR (use_R op)
    CALL (Left _)  params   -> mkRU params callClobberedRegs
    CALL (Right reg) params -> mkRU (reg:params) callClobberedRegs
    CLTD   _		-> mkRU [eax] [edx]
    NOP			-> mkRU [] []

#if i386_TARGET_ARCH
    GMOV   src dst	-> mkRU [src] [dst]
    GLD    _ src dst	-> mkRU (use_EA src) [dst]
    GST    _ src dst	-> mkRUR (src : use_EA dst)

    GLDZ   dst		-> mkRU [] [dst]
    GLD1   dst		-> mkRU [] [dst]

    GFTOI  src dst	-> mkRU [src] [dst]
    GDTOI  src dst	-> mkRU [src] [dst]

    GITOF  src dst	-> mkRU [src] [dst]
    GITOD  src dst	-> mkRU [src] [dst]

    GADD   _ s1 s2 dst	-> mkRU [s1,s2] [dst]
    GSUB   _ s1 s2 dst	-> mkRU [s1,s2] [dst]
    GMUL   _ s1 s2 dst	-> mkRU [s1,s2] [dst]
    GDIV   _ s1 s2 dst	-> mkRU [s1,s2] [dst]

    GCMP   _ src1 src2   -> mkRUR [src1,src2]
    GABS   _ src dst     -> mkRU [src] [dst]
    GNEG   _ src dst     -> mkRU [src] [dst]
    GSQRT  _ src dst     -> mkRU [src] [dst]
    GSIN   _ _ _ src dst -> mkRU [src] [dst]
    GCOS   _ _ _ src dst -> mkRU [src] [dst]
    GTAN   _ _ _ src dst -> mkRU [src] [dst]
#endif

#if x86_64_TARGET_ARCH
    CVTSS2SD   src dst	-> mkRU [src] [dst]
    CVTSD2SS   src dst	-> mkRU [src] [dst]
    CVTTSS2SIQ src dst	-> mkRU (use_R src) [dst]
    CVTTSD2SIQ src dst	-> mkRU (use_R src) [dst]
    CVTSI2SS   src dst	-> mkRU (use_R src) [dst]
    CVTSI2SD   src dst	-> mkRU (use_R src) [dst]
    FDIV _     src dst	-> usageRM src dst
#endif    

    FETCHGOT reg        -> mkRU [] [reg]
    FETCHPC  reg        -> mkRU [] [reg]

    COMMENT _		-> noUsage
    DELTA   _           -> noUsage

    _other		-> panic "regUsage: unrecognised instr"

 where
    -- 2 operand form; first operand Read; second Written
    usageRW :: Operand -> Operand -> RegUsage
    usageRW op (OpReg reg)	= mkRU (use_R op) [reg]
    usageRW op (OpAddr ea)	= mkRUR (use_R op ++ use_EA ea)
    usageRW _ _			= panic "X86.RegInfo.usageRW: no match"

    -- 2 operand form; first operand Read; second Modified
    usageRM :: Operand -> Operand -> RegUsage
    usageRM op (OpReg reg)	= mkRU (use_R op ++ [reg]) [reg]
    usageRM op (OpAddr ea)	= mkRUR (use_R op ++ use_EA ea)
    usageRM _ _			= panic "X86.RegInfo.usageRM: no match"

    -- 1 operand form; operand Modified
    usageM :: Operand -> RegUsage
    usageM (OpReg reg)		= mkRU [reg] [reg]
    usageM (OpAddr ea)		= mkRUR (use_EA ea)
    usageM _			= panic "X86.RegInfo.usageM: no match"

    -- Registers defd when an operand is written.
    def_W (OpReg reg)		= [reg]
    def_W (OpAddr _ )		= []
    def_W _			= panic "X86.RegInfo.def_W: no match"

    -- Registers used when an operand is read.
    use_R (OpReg reg)  = [reg]
    use_R (OpImm _)    = []
    use_R (OpAddr ea)  = use_EA ea

    -- Registers used to compute an effective address.
    use_EA (ImmAddr _ _) = []
    use_EA (AddrBaseIndex base index _) = 
	use_base base $! use_index index
	where use_base (EABaseReg r) x = r : x
	      use_base _ x             = x
	      use_index EAIndexNone   = []
	      use_index (EAIndex i _) = [i]

    mkRUR src = src' `seq` RU src' []
	where src' = filter interesting src

    mkRU src dst = src' `seq` dst' `seq` RU src' dst'
	where src' = filter interesting src
	      dst' = filter interesting dst

interesting :: Reg -> Bool
interesting (RegVirtual _) 		= True
interesting (RegReal (RealRegSingle i))	= isFastTrue (freeReg i)
interesting (RegReal (RealRegPair{}))	= panic "X86.interesting: no reg pairs on this arch"



x86_patchRegsOfInstr :: Instr -> (Reg -> Reg) -> Instr
x86_patchRegsOfInstr instr env 
 = case instr of
    MOV  sz src dst	-> patch2 (MOV  sz) src dst
    MOVZxL sz src dst	-> patch2 (MOVZxL sz) src dst
    MOVSxL sz src dst	-> patch2 (MOVSxL sz) src dst
    LEA  sz src dst	-> patch2 (LEA  sz) src dst
    ADD  sz src dst	-> patch2 (ADD  sz) src dst
    ADC  sz src dst	-> patch2 (ADC  sz) src dst
    SUB  sz src dst	-> patch2 (SUB  sz) src dst
    IMUL sz src dst 	-> patch2 (IMUL sz) src dst
    IMUL2 sz src        -> patch1 (IMUL2 sz) src
    MUL sz src dst 	-> patch2 (MUL sz) src dst
    IDIV sz op		-> patch1 (IDIV sz) op
    DIV sz op		-> patch1 (DIV sz) op
    AND  sz src dst	-> patch2 (AND  sz) src dst
    OR   sz src dst	-> patch2 (OR   sz) src dst
    XOR  sz src dst	-> patch2 (XOR  sz) src dst
    NOT  sz op 		-> patch1 (NOT  sz) op
    NEGI sz op		-> patch1 (NEGI sz) op
    SHL  sz imm dst 	-> patch1 (SHL sz imm) dst
    SAR  sz imm dst 	-> patch1 (SAR sz imm) dst
    SHR  sz imm dst 	-> patch1 (SHR sz imm) dst
    BT   sz imm src     -> patch1 (BT  sz imm) src
    TEST sz src dst	-> patch2 (TEST sz) src dst
    CMP  sz src dst	-> patch2 (CMP  sz) src dst
    PUSH sz op		-> patch1 (PUSH sz) op
    POP  sz op		-> patch1 (POP  sz) op
    SETCC cond op	-> patch1 (SETCC cond) op
    JMP op		-> patch1 JMP op
    JMP_TBL op ids      -> patch1 JMP_TBL op $ ids

#if i386_TARGET_ARCH
    GMOV src dst	-> GMOV (env src) (env dst)
    GLD  sz src dst	-> GLD sz (lookupAddr src) (env dst)
    GST  sz src dst	-> GST sz (env src) (lookupAddr dst)

    GLDZ dst		-> GLDZ (env dst)
    GLD1 dst		-> GLD1 (env dst)

    GFTOI src dst	-> GFTOI (env src) (env dst)
    GDTOI src dst	-> GDTOI (env src) (env dst)

    GITOF src dst	-> GITOF (env src) (env dst)
    GITOD src dst	-> GITOD (env src) (env dst)

    GADD sz s1 s2 dst	-> GADD sz (env s1) (env s2) (env dst)
    GSUB sz s1 s2 dst	-> GSUB sz (env s1) (env s2) (env dst)
    GMUL sz s1 s2 dst	-> GMUL sz (env s1) (env s2) (env dst)
    GDIV sz s1 s2 dst	-> GDIV sz (env s1) (env s2) (env dst)

    GCMP sz src1 src2	-> GCMP sz (env src1) (env src2)
    GABS sz src dst	-> GABS sz (env src) (env dst)
    GNEG sz src dst	-> GNEG sz (env src) (env dst)
    GSQRT sz src dst	-> GSQRT sz (env src) (env dst)
    GSIN sz l1 l2 src dst	-> GSIN sz l1 l2 (env src) (env dst)
    GCOS sz l1 l2 src dst	-> GCOS sz l1 l2 (env src) (env dst)
    GTAN sz l1 l2 src dst	-> GTAN sz l1 l2 (env src) (env dst)
#endif

#if x86_64_TARGET_ARCH
    CVTSS2SD src dst	-> CVTSS2SD (env src) (env dst)
    CVTSD2SS src dst	-> CVTSD2SS (env src) (env dst)
    CVTTSS2SIQ src dst	-> CVTTSS2SIQ (patchOp src) (env dst)
    CVTTSD2SIQ src dst	-> CVTTSD2SIQ (patchOp src) (env dst)
    CVTSI2SS src dst	-> CVTSI2SS (patchOp src) (env dst)
    CVTSI2SD src dst	-> CVTSI2SD (patchOp src) (env dst)
    FDIV sz src dst	-> FDIV sz (patchOp src) (patchOp dst)
#endif    

    CALL (Left _)  _	-> instr
    CALL (Right reg) p	-> CALL (Right (env reg)) p
    
    FETCHGOT reg        -> FETCHGOT (env reg)
    FETCHPC  reg        -> FETCHPC  (env reg)
   
    NOP			-> instr
    COMMENT _		-> instr
    DELTA _ 		-> instr

    JXX _ _		-> instr
    JXX_GBL _ _		-> instr
    CLTD _		-> instr

    _other		-> panic "patchRegs: unrecognised instr"

  where
    patch1 insn op      = insn $! patchOp op
    patch2 insn src dst = (insn $! patchOp src) $! patchOp dst

    patchOp (OpReg  reg) = OpReg $! env reg
    patchOp (OpImm  imm) = OpImm imm
    patchOp (OpAddr ea)  = OpAddr $! lookupAddr ea

    lookupAddr (ImmAddr imm off) = ImmAddr imm off
    lookupAddr (AddrBaseIndex base index disp)
      = ((AddrBaseIndex $! lookupBase base) $! lookupIndex index) disp
      where
	lookupBase EABaseNone       = EABaseNone
	lookupBase EABaseRip        = EABaseRip
	lookupBase (EABaseReg r)    = EABaseReg (env r)
				 
	lookupIndex EAIndexNone     = EAIndexNone
	lookupIndex (EAIndex r i)   = EAIndex (env r) i


--------------------------------------------------------------------------------
x86_isJumpishInstr 
	:: Instr -> Bool

x86_isJumpishInstr instr
 = case instr of
	JMP{}		-> True
	JXX{}		-> True
	JXX_GBL{}	-> True
	JMP_TBL{}	-> True
	CALL{}		-> True
	_		-> False


x86_jumpDestsOfInstr
	:: Instr 
	-> [BlockId]

x86_jumpDestsOfInstr insn 
  = case insn of
	JXX _ id	-> [id]
	JMP_TBL _ ids	-> ids
	_		-> []


x86_patchJumpInstr 
	:: Instr -> (BlockId -> BlockId) -> Instr

x86_patchJumpInstr insn patchF
  = case insn of
	JXX cc id 	-> JXX cc (patchF id)
	JMP_TBL _ _     -> error "Cannot patch JMP_TBL"
	_		-> insn




-- -----------------------------------------------------------------------------
-- | Make a spill instruction.
x86_mkSpillInstr
	:: Reg		-- register to spill
	-> Int		-- current stack delta
	-> Int		-- spill slot to use
	-> Instr

#if   i386_TARGET_ARCH
x86_mkSpillInstr reg delta slot
  = let	off     = spillSlotToOffset slot
    in
    let off_w = (off-delta) `div` 4
    in case targetClassOfReg reg of
	   RcInteger -> MOV II32 (OpReg reg) (OpAddr (spRel off_w))
	   _         -> GST FF80 reg (spRel off_w) {- RcFloat/RcDouble -}

#elif x86_64_TARGET_ARCH
x86_mkSpillInstr reg delta slot
  = let	off     = spillSlotToOffset slot
    in
    let off_w = (off-delta) `div` 8
    in case targetClassOfReg reg of
	   RcInteger -> MOV II64 (OpReg reg) (OpAddr (spRel off_w))
	   RcDouble  -> MOV FF64 (OpReg reg) (OpAddr (spRel off_w))
           _         -> panic "X86.mkSpillInstr: no match"
		-- ToDo: will it work to always spill as a double?
		-- does that cause a stall if the data was a float?
#else
x86_mkSpillInstr _ _ _
    =   panic "X86.RegInfo.mkSpillInstr: not defined for this architecture."
#endif


-- | Make a spill reload instruction.
x86_mkLoadInstr
	:: Reg		-- register to load
	-> Int		-- current stack delta
	-> Int		-- spill slot to use
	-> Instr

#if   i386_TARGET_ARCH
x86_mkLoadInstr reg delta slot
  = let off     = spillSlotToOffset slot
    in
	let off_w = (off-delta) `div` 4
        in case targetClassOfReg reg of {
              RcInteger -> MOV II32 (OpAddr (spRel off_w)) (OpReg reg);
              _         -> GLD FF80 (spRel off_w) reg} {- RcFloat/RcDouble -}
#elif x86_64_TARGET_ARCH
x86_mkLoadInstr reg delta slot
  = let off     = spillSlotToOffset slot
    in
	let off_w = (off-delta) `div` 8
        in case targetClassOfReg reg of
              RcInteger -> MOV II64 (OpAddr (spRel off_w)) (OpReg reg)
              _         -> MOV FF64 (OpAddr (spRel off_w)) (OpReg reg)
#else
x86_mkLoadInstr _ _ _
 	= panic "X86.RegInfo.mkLoadInstr: not defined for this architecture."
#endif

spillSlotSize :: Int
spillSlotSize = IF_ARCH_i386(12, 8)

maxSpillSlots :: Int
maxSpillSlots = ((rESERVED_C_STACK_BYTES - 64) `div` spillSlotSize) - 1

-- convert a spill slot number to a *byte* offset, with no sign:
-- decide on a per arch basis whether you are spilling above or below
-- the C stack pointer.
spillSlotToOffset :: Int -> Int
spillSlotToOffset slot
   | slot >= 0 && slot < maxSpillSlots
   = 64 + spillSlotSize * slot
   | otherwise
   = pprPanic "spillSlotToOffset:" 
              (   text "invalid spill location: " <> int slot
	      $$  text "maxSpillSlots:          " <> int maxSpillSlots)

--------------------------------------------------------------------------------

-- | See if this instruction is telling us the current C stack delta
x86_takeDeltaInstr
	:: Instr
	-> Maybe Int
	
x86_takeDeltaInstr instr
 = case instr of
 	DELTA i		-> Just i
	_		-> Nothing


x86_isMetaInstr
	:: Instr
	-> Bool
	
x86_isMetaInstr instr
 = case instr of
 	COMMENT{}	-> True
	LDATA{}		-> True
	NEWBLOCK{}	-> True
	DELTA{}		-> True
	_		-> False



-- | Make a reg-reg move instruction.
--	On SPARC v8 there are no instructions to move directly between
--	floating point and integer regs. If we need to do that then we
--	have to go via memory.
--
x86_mkRegRegMoveInstr
	:: Reg
	-> Reg
	-> Instr

x86_mkRegRegMoveInstr src dst
 = case targetClassOfReg src of
#if   i386_TARGET_ARCH
        RcInteger -> MOV II32 (OpReg src) (OpReg dst)
        RcDouble  -> GMOV src dst
	RcFloat   -> panic "X86.RegInfo.mkRegRegMoveInstr: no match"
#else
        RcInteger -> MOV II64 (OpReg src) (OpReg dst)
        RcDouble  -> MOV FF64 (OpReg src) (OpReg dst)
	RcFloat   -> panic "X86.RegInfo.mkRegRegMoveInstr: no match"
#endif


-- | Check whether an instruction represents a reg-reg move.
-- 	The register allocator attempts to eliminate reg->reg moves whenever it can,
-- 	by assigning the src and dest temporaries to the same real register.
--
x86_takeRegRegMoveInstr
	:: Instr 
	-> Maybe (Reg,Reg)

x86_takeRegRegMoveInstr (MOV _ (OpReg r1) (OpReg r2)) 
	= Just (r1,r2)

x86_takeRegRegMoveInstr _  = Nothing


-- | Make an unconditional branch instruction.
x86_mkJumpInstr
	:: BlockId
	-> [Instr]

x86_mkJumpInstr id 
	= [JXX ALWAYS id]





i386_insert_ffrees 
	:: [GenBasicBlock Instr] 
	-> [GenBasicBlock Instr]

i386_insert_ffrees blocks
   | or (map (any is_G_instr) [ instrs | BasicBlock _ instrs <- blocks ])
   = map ffree_before_nonlocal_transfers blocks

   | otherwise
   = blocks
  where
   ffree_before_nonlocal_transfers (BasicBlock id insns) 
     = BasicBlock id (foldr p [] insns)
     where p insn r = case insn of
                        CALL _ _ -> GFREE : insn : r
                        JMP _    -> GFREE : insn : r
                        _        -> insn : r

-- if you ever add a new FP insn to the fake x86 FP insn set,
-- you must update this too
is_G_instr :: Instr -> Bool
is_G_instr instr
   = case instr of
        GMOV{} 		-> True
	GLD{}	 	-> True
	GST{}	 	-> True
        GLDZ{}		-> True
	GLD1{}		-> True
        GFTOI{}		-> True
	GDTOI{}	 	-> True
        GITOF{} 	-> True
	GITOD{} 	-> True
	GADD{}	 	-> True
	GDIV{}	 	-> True
	GSUB{} 		-> True
	GMUL{} 		-> True
    	GCMP{} 		-> True
	GABS{} 		-> True
    	GNEG{} 		-> True
	GSQRT{} 	-> True
        GSIN{} 		-> True
	GCOS{}	 	-> True
	GTAN{}	 	-> True
        GFREE 		-> panic "is_G_instr: GFREE (!)"
        _     		-> False


data JumpDest = DestBlockId BlockId | DestImm Imm


canShortcut :: Instr -> Maybe JumpDest
canShortcut (JXX ALWAYS id) 	= Just (DestBlockId id)
canShortcut (JMP (OpImm imm)) 	= Just (DestImm imm)
canShortcut _ 			= Nothing


-- The helper ensures that we don't follow cycles.
shortcutJump :: (BlockId -> Maybe JumpDest) -> Instr -> Instr
shortcutJump fn insn = shortcutJump' fn emptyBlockSet insn
  where shortcutJump' fn seen insn@(JXX cc id) =
          if elemBlockSet id seen then insn
          else case fn id of
                 Nothing                -> insn
                 Just (DestBlockId id') -> shortcutJump' fn seen' (JXX cc id')
                 Just (DestImm imm)     -> shortcutJump' fn seen' (JXX_GBL cc imm)
               where seen' = extendBlockSet seen id
        shortcutJump' _ _ other = other

-- Here because it knows about JumpDest
shortcutStatic :: (BlockId -> Maybe JumpDest) -> CmmStatic -> CmmStatic
shortcutStatic fn (CmmStaticLit (CmmLabel lab))
  | Just uq <- maybeAsmTemp lab 
  = CmmStaticLit (CmmLabel (shortBlockId fn (BlockId uq)))
shortcutStatic fn (CmmStaticLit (CmmLabelDiffOff lbl1 lbl2 off))
  | Just uq <- maybeAsmTemp lbl1
  = CmmStaticLit (CmmLabelDiffOff (shortBlockId fn (BlockId uq)) lbl2 off)
        -- slightly dodgy, we're ignoring the second label, but this
        -- works with the way we use CmmLabelDiffOff for jump tables now.

shortcutStatic _ other_static
        = other_static

shortBlockId 
	:: (BlockId -> Maybe JumpDest)
	-> BlockId
	-> CLabel

shortBlockId fn blockid@(BlockId uq) =
   case fn blockid of
      Nothing -> mkAsmTempLabel uq
      Just (DestBlockId blockid')  -> shortBlockId fn blockid'
      Just (DestImm (ImmCLbl lbl)) -> lbl
      _other -> panic "shortBlockId"