{-# OPTIONS -w #-}

-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------

-- This is a big module, but, if you pay attention to
-- (a) the sectioning, (b) the type signatures, and
-- (c) the #if blah_TARGET_ARCH} things, the
-- structure should not be too overwhelming.

module PPC.CodeGen ( 
	cmmTopCodeGen, 
	InstrBlock 
) 

where

#include "HsVersions.h"
#include "nativeGen/NCG.h"
#include "../includes/MachDeps.h"

-- NCG stuff:
import PPC.Instr
import PPC.Cond
import PPC.Regs
import PPC.RegInfo
import NCGMonad
import Instruction
import PIC
import Size
import RegClass
import Reg
import TargetReg
import Platform

-- Our intermediate code:
import BlockId
import PprCmm		( pprExpr )
import Cmm
import CLabel

-- The rest:
import StaticFlags	( opt_PIC )
import OrdList
import qualified Outputable as O
import Outputable
import DynFlags

import Control.Monad	( mapAndUnzipM )
import Data.Bits
import Data.Int
import Data.Word

#if darwin_TARGET_OS || linux_TARGET_OS
import BasicTypes
import FastString
#endif

-- -----------------------------------------------------------------------------
-- Top-level of the instruction selector

-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal (pre-order?) yields the insns in the correct
-- order.

cmmTopCodeGen 
	:: DynFlags 
	-> RawCmmTop 
	-> NatM [NatCmmTop Instr]

cmmTopCodeGen dflags (CmmProc info lab params (ListGraph blocks)) = do
  (nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
  picBaseMb <- getPicBaseMaybeNat
  let proc = CmmProc info lab params (ListGraph $ concat nat_blocks)
      tops = proc : concat statics
      os   = platformOS $ targetPlatform dflags
  case picBaseMb of
      Just picBase -> initializePicBase_ppc ArchPPC os picBase tops
      Nothing -> return tops
  
cmmTopCodeGen dflags (CmmData sec dat) = do
  return [CmmData sec dat]  -- no translation, we just use CmmStatic

basicBlockCodeGen 
	:: CmmBasicBlock 
	-> NatM ( [NatBasicBlock Instr]
		, [NatCmmTop Instr])

basicBlockCodeGen (BasicBlock id stmts) = do
  instrs <- stmtsToInstrs stmts
  -- code generation may introduce new basic block boundaries, which
  -- are indicated by the NEWBLOCK instruction.  We must split up the
  -- instruction stream into basic blocks again.  Also, we extract
  -- LDATAs here too.
  let
	(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs
	
	mkBlocks (NEWBLOCK id) (instrs,blocks,statics) 
	  = ([], BasicBlock id instrs : blocks, statics)
	mkBlocks (LDATA sec dat) (instrs,blocks,statics) 
	  = (instrs, blocks, CmmData sec dat:statics)
	mkBlocks instr (instrs,blocks,statics)
	  = (instr:instrs, blocks, statics)
  -- in
  return (BasicBlock id top : other_blocks, statics)

stmtsToInstrs :: [CmmStmt] -> NatM InstrBlock
stmtsToInstrs stmts
   = do instrss <- mapM stmtToInstrs stmts
        return (concatOL instrss)

stmtToInstrs :: CmmStmt -> NatM InstrBlock
stmtToInstrs stmt = case stmt of
    CmmNop	   -> return nilOL
    CmmComment s   -> return (unitOL (COMMENT s))

    CmmAssign reg src
      | isFloatType ty -> assignReg_FltCode size reg src
#if WORD_SIZE_IN_BITS==32
      | isWord64 ty    -> assignReg_I64Code      reg src
#endif
      | otherwise	 -> assignReg_IntCode size reg src
	where ty = cmmRegType reg
	      size = cmmTypeSize ty

    CmmStore addr src
      | isFloatType ty -> assignMem_FltCode size addr src
#if WORD_SIZE_IN_BITS==32
      | isWord64 ty 	 -> assignMem_I64Code      addr src
#endif
      | otherwise	 -> assignMem_IntCode size addr src
	where ty = cmmExprType src
	      size = cmmTypeSize ty

    CmmCall target result_regs args _ _
       -> genCCall target result_regs args

    CmmBranch id	  -> genBranch id
    CmmCondBranch arg id  -> genCondJump id arg
    CmmSwitch arg ids     -> genSwitch arg ids
    CmmJump arg params	  -> genJump arg
    CmmReturn params	  ->
      panic "stmtToInstrs: return statement should have been cps'd away"


--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- 	They are really trees of insns to facilitate fast appending, where a
-- 	left-to-right traversal yields the insns in the correct	order.
--
type InstrBlock 
	= OrdList Instr


-- | Register's passed up the tree.  If the stix code forces the register
-- 	to live in a pre-decided machine register, it comes out as @Fixed@;
-- 	otherwise, it comes out as @Any@, and the parent can decide which
-- 	register to put it in.
--
data Register
	= Fixed	Size Reg InstrBlock
	| Any	Size (Reg -> InstrBlock)


swizzleRegisterRep :: Register -> Size -> Register
swizzleRegisterRep (Fixed _ reg code) size = Fixed size reg code
swizzleRegisterRep (Any _ codefn)     size = Any   size codefn


-- | Grab the Reg for a CmmReg
getRegisterReg :: CmmReg -> Reg

getRegisterReg (CmmLocal (LocalReg u pk))
  = RegVirtual $ mkVirtualReg u (cmmTypeSize pk)

getRegisterReg (CmmGlobal mid)
  = case get_GlobalReg_reg_or_addr mid of
       Left reg -> reg
       _other -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
          -- By this stage, the only MagicIds remaining should be the
          -- ones which map to a real machine register on this
          -- platform.  Hence ...


{-
Now, given a tree (the argument to an CmmLoad) that references memory,
produce a suitable addressing mode.

A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to.  So you can't put
anything in between, lest it overwrite some of those registers.  If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:

    code
    LEA amode, tmp
    ... other computation ...
    ... (tmp) ...
-}


-- | Check whether an integer will fit in 32 bits.
--	A CmmInt is intended to be truncated to the appropriate 
-- 	number of bits, so here we truncate it to Int64.  This is
-- 	important because e.g. -1 as a CmmInt might be either
-- 	-1 or 18446744073709551615.
--
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
  where i64 = fromIntegral i :: Int64


-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: Maybe BlockId -> CmmStatic
jumpTableEntry Nothing = CmmStaticLit (CmmInt 0 wordWidth)
jumpTableEntry (Just (BlockId id)) = CmmStaticLit (CmmLabel blockLabel)
    where blockLabel = mkAsmTempLabel id



-- -----------------------------------------------------------------------------
-- General things for putting together code sequences

-- Expand CmmRegOff.  ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: CmmExpr -> CmmExpr
mangleIndexTree (CmmRegOff reg off)
  = CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
  where width = typeWidth (cmmRegType reg)

mangleIndexTree _
	= panic "PPC.CodeGen.mangleIndexTree: no match"

-- -----------------------------------------------------------------------------
--  Code gen for 64-bit arithmetic on 32-bit platforms

{-
Simple support for generating 64-bit code (ie, 64 bit values and 64
bit assignments) on 32-bit platforms.  Unlike the main code generator
we merely shoot for generating working code as simply as possible, and
pay little attention to code quality.  Specifically, there is no
attempt to deal cleverly with the fixed-vs-floating register
distinction; all values are generated into (pairs of) floating
registers, even if this would mean some redundant reg-reg moves as a
result.  Only one of the VRegUniques is returned, since it will be
of the VRegUniqueLo form, and the upper-half VReg can be determined
by applying getHiVRegFromLo to it.
-}

data ChildCode64 	-- a.k.a "Register64"
      = ChildCode64 
     	   InstrBlock 	-- code
	   Reg	 	-- the lower 32-bit temporary which contains the
			-- result; use getHiVRegFromLo to find the other
			-- VRegUnique.  Rules of this simplified insn
			-- selection game are therefore that the returned
			-- Reg may be modified


-- | The dual to getAnyReg: compute an expression into a register, but
-- 	we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
  r <- getRegister expr
  case r of
    Any rep code -> do
	tmp <- getNewRegNat rep
	return (tmp, code tmp)
    Fixed _ reg code -> 
	return (reg, code)

getI64Amodes :: CmmExpr -> NatM (AddrMode, AddrMode, InstrBlock)
getI64Amodes addrTree = do
    Amode hi_addr addr_code <- getAmode addrTree
    case addrOffset hi_addr 4 of
        Just lo_addr -> return (hi_addr, lo_addr, addr_code)
        Nothing      -> do (hi_ptr, code) <- getSomeReg addrTree
                           return (AddrRegImm hi_ptr (ImmInt 0),
                                   AddrRegImm hi_ptr (ImmInt 4),
                                   code)


assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
        (hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
	ChildCode64 vcode rlo <- iselExpr64 valueTree
	let 
		rhi = getHiVRegFromLo rlo

		-- Big-endian store
		mov_hi = ST II32 rhi hi_addr
		mov_lo = ST II32 rlo lo_addr
	-- in
	return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)


assignReg_I64Code :: CmmReg  -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst pk)) valueTree = do
   ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
   let 
         r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
         r_dst_hi = getHiVRegFromLo r_dst_lo
         r_src_hi = getHiVRegFromLo r_src_lo
         mov_lo = MR r_dst_lo r_src_lo
         mov_hi = MR r_dst_hi r_src_hi
   -- in
   return (
        vcode `snocOL` mov_lo `snocOL` mov_hi
     )

assignReg_I64Code lvalue valueTree
   = panic "assignReg_I64Code(powerpc): invalid lvalue"


iselExpr64        :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
    (hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
    (rlo, rhi) <- getNewRegPairNat II32
    let mov_hi = LD II32 rhi hi_addr
        mov_lo = LD II32 rlo lo_addr
    return $ ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi) 
                         rlo

iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
   = return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))

iselExpr64 (CmmLit (CmmInt i _)) = do
  (rlo,rhi) <- getNewRegPairNat II32
  let
	half0 = fromIntegral (fromIntegral i :: Word16)
	half1 = fromIntegral ((fromIntegral i `shiftR` 16) :: Word16)
	half2 = fromIntegral ((fromIntegral i `shiftR` 32) :: Word16)
	half3 = fromIntegral ((fromIntegral i `shiftR` 48) :: Word16)
	
	code = toOL [
		LIS rlo (ImmInt half1),
		OR rlo rlo (RIImm $ ImmInt half0),
		LIS rhi (ImmInt half3),
		OR rlo rlo (RIImm $ ImmInt half2)
		]
  -- in
  return (ChildCode64 code rlo)

iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
   ChildCode64 code1 r1lo <- iselExpr64 e1
   ChildCode64 code2 r2lo <- iselExpr64 e2
   (rlo,rhi) <- getNewRegPairNat II32
   let
	r1hi = getHiVRegFromLo r1lo
	r2hi = getHiVRegFromLo r2lo
	code =  code1 `appOL`
		code2 `appOL`
		toOL [ ADDC rlo r1lo r2lo,
		       ADDE rhi r1hi r2hi ]
   -- in
   return (ChildCode64 code rlo)

iselExpr64 (CmmMachOp (MO_UU_Conv W32 W64) [expr]) = do
    (expr_reg,expr_code) <- getSomeReg expr
    (rlo, rhi) <- getNewRegPairNat II32
    let mov_hi = LI rhi (ImmInt 0)
        mov_lo = MR rlo expr_reg
    return $ ChildCode64 (expr_code `snocOL` mov_lo `snocOL` mov_hi)
                         rlo
iselExpr64 expr
   = pprPanic "iselExpr64(powerpc)" (ppr expr)



getRegister :: CmmExpr -> NatM Register

getRegister (CmmReg reg) 
  = return (Fixed (cmmTypeSize (cmmRegType reg)) 
		  (getRegisterReg reg) nilOL)

getRegister tree@(CmmRegOff _ _) 
  = getRegister (mangleIndexTree tree)


#if WORD_SIZE_IN_BITS==32
    -- for 32-bit architectuers, support some 64 -> 32 bit conversions:
    -- TO_W_(x), TO_W_(x >> 32)

getRegister (CmmMachOp (MO_UU_Conv W64 W32)
             [CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 (getHiVRegFromLo rlo) code

getRegister (CmmMachOp (MO_SS_Conv W64 W32)
             [CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 (getHiVRegFromLo rlo) code

getRegister (CmmMachOp (MO_UU_Conv W64 W32) [x]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 rlo code

getRegister (CmmMachOp (MO_SS_Conv W64 W32) [x]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 rlo code       

#endif


getRegister (CmmLoad mem pk)
  | not (isWord64 pk)
  = do
        Amode addr addr_code <- getAmode mem
        let code dst = ASSERT((targetClassOfReg dst == RcDouble) == isFloatType pk)
                       addr_code `snocOL` LD size dst addr
        return (Any size code)
          where size = cmmTypeSize pk

-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad mem _]) = do
    Amode addr addr_code <- getAmode mem
    return (Any II32 (\dst -> addr_code `snocOL` LD II8 dst addr))

-- Note: there is no Load Byte Arithmetic instruction, so no signed case here

getRegister (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad mem _]) = do
    Amode addr addr_code <- getAmode mem
    return (Any II32 (\dst -> addr_code `snocOL` LD II16 dst addr))

getRegister (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad mem _]) = do
    Amode addr addr_code <- getAmode mem
    return (Any II32 (\dst -> addr_code `snocOL` LA II16 dst addr))

getRegister (CmmMachOp mop [x]) -- unary MachOps
  = case mop of
      MO_Not rep   -> triv_ucode_int rep NOT

      MO_F_Neg w   -> triv_ucode_float w FNEG
      MO_S_Neg w   -> triv_ucode_int   w NEG

      MO_FF_Conv W64 W32 -> trivialUCode  FF32 FRSP x
      MO_FF_Conv W32 W64 -> conversionNop FF64 x

      MO_FS_Conv from to -> coerceFP2Int from to x
      MO_SF_Conv from to -> coerceInt2FP from to x

      MO_SS_Conv from to
        | from == to    -> conversionNop (intSize to) x

        -- narrowing is a nop: we treat the high bits as undefined
      MO_SS_Conv W32 to -> conversionNop (intSize to) x
      MO_SS_Conv W16 W8 -> conversionNop II8 x
      MO_SS_Conv W8  to -> triv_ucode_int to (EXTS II8)
      MO_SS_Conv W16 to -> triv_ucode_int to (EXTS II16)

      MO_UU_Conv from to
        | from == to -> conversionNop (intSize to) x
        -- narrowing is a nop: we treat the high bits as undefined
      MO_UU_Conv W32 to -> conversionNop (intSize to) x
      MO_UU_Conv W16 W8 -> conversionNop II8 x
      MO_UU_Conv W8 to  -> trivialCode to False AND x (CmmLit (CmmInt 255 W32))
      MO_UU_Conv W16 to -> trivialCode to False AND x (CmmLit (CmmInt 65535 W32)) 
      _	-> panic "PPC.CodeGen.getRegister: no match"

    where
	triv_ucode_int   width instr = trivialUCode (intSize   width) instr x
	triv_ucode_float width instr = trivialUCode (floatSize width) instr x

        conversionNop new_size expr
            = do e_code <- getRegister expr
                 return (swizzleRegisterRep e_code new_size)

getRegister (CmmMachOp mop [x, y]) -- dyadic PrimOps
  = case mop of
      MO_F_Eq w -> condFltReg EQQ x y
      MO_F_Ne w -> condFltReg NE  x y
      MO_F_Gt w -> condFltReg GTT x y
      MO_F_Ge w -> condFltReg GE  x y
      MO_F_Lt w -> condFltReg LTT x y
      MO_F_Le w -> condFltReg LE  x y

      MO_Eq rep -> condIntReg EQQ  (extendUExpr rep x) (extendUExpr rep y)
      MO_Ne rep -> condIntReg NE   (extendUExpr rep x) (extendUExpr rep y)

      MO_S_Gt rep -> condIntReg GTT  (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Ge rep -> condIntReg GE   (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Lt rep -> condIntReg LTT  (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Le rep -> condIntReg LE   (extendSExpr rep x) (extendSExpr rep y)

      MO_U_Gt rep -> condIntReg GU   (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Ge rep -> condIntReg GEU  (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Lt rep -> condIntReg LU   (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Le rep -> condIntReg LEU  (extendUExpr rep x) (extendUExpr rep y)

      MO_F_Add w  -> triv_float w FADD
      MO_F_Sub w  -> triv_float w FSUB
      MO_F_Mul w  -> triv_float w FMUL
      MO_F_Quot w -> triv_float w FDIV
      
         -- optimize addition with 32-bit immediate
         -- (needed for PIC)
      MO_Add W32 ->
        case y of
          CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate W32 True (-imm)
            -> trivialCode W32 True ADD x (CmmLit $ CmmInt imm immrep)
          CmmLit lit
            -> do
                (src, srcCode) <- getSomeReg x
                let imm = litToImm lit
                    code dst = srcCode `appOL` toOL [
                                    ADDIS dst src (HA imm),
                                    ADD dst dst (RIImm (LO imm))
                                ]
                return (Any II32 code)
          _ -> trivialCode W32 True ADD x y

      MO_Add rep -> trivialCode rep True ADD x y
      MO_Sub rep ->
        case y of    -- subfi ('substract from' with immediate) doesn't exist
          CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate rep True (-imm)
            -> trivialCode rep True ADD x (CmmLit $ CmmInt (-imm) immrep)
          _ -> trivialCodeNoImm' (intSize rep) SUBF y x

      MO_Mul rep -> trivialCode rep True MULLW x y

      MO_S_MulMayOflo W32 -> trivialCodeNoImm' II32 MULLW_MayOflo x y
      
      MO_S_MulMayOflo rep -> panic "S_MulMayOflo (rep /= II32): not implemented"
      MO_U_MulMayOflo rep -> panic "U_MulMayOflo: not implemented"

      MO_S_Quot rep -> trivialCodeNoImm' (intSize rep) DIVW (extendSExpr rep x) (extendSExpr rep y)
      MO_U_Quot rep -> trivialCodeNoImm' (intSize rep) DIVWU (extendUExpr rep x) (extendUExpr rep y)
      
      MO_S_Rem rep -> remainderCode rep DIVW (extendSExpr rep x) (extendSExpr rep y)
      MO_U_Rem rep -> remainderCode rep DIVWU (extendUExpr rep x) (extendUExpr rep y)
      
      MO_And rep   -> trivialCode rep False AND x y
      MO_Or rep    -> trivialCode rep False OR x y
      MO_Xor rep   -> trivialCode rep False XOR x y

      MO_Shl rep   -> trivialCode rep False SLW x y
      MO_S_Shr rep -> trivialCode rep False SRAW (extendSExpr rep x) y
      MO_U_Shr rep -> trivialCode rep False SRW (extendUExpr rep x) y
      _		-> panic "PPC.CodeGen.getRegister: no match"

  where
    triv_float :: Width -> (Size -> Reg -> Reg -> Reg -> Instr) -> NatM Register
    triv_float width instr = trivialCodeNoImm (floatSize width) instr x y

getRegister (CmmLit (CmmInt i rep))
  | Just imm <- makeImmediate rep True i
  = let
    	code dst = unitOL (LI dst imm)
    in
    	return (Any (intSize rep) code)

getRegister (CmmLit (CmmFloat f frep)) = do
    lbl <- getNewLabelNat
    dflags <- getDynFlagsNat
    dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
    Amode addr addr_code <- getAmode dynRef
    let size = floatSize frep
        code dst = 
	    LDATA ReadOnlyData  [CmmDataLabel lbl,
				 CmmStaticLit (CmmFloat f frep)]
            `consOL` (addr_code `snocOL` LD size dst addr)
    return (Any size code)

getRegister (CmmLit lit)
  = let rep = cmmLitType lit
        imm = litToImm lit
        code dst = toOL [
              LIS dst (HA imm),
              ADD dst dst (RIImm (LO imm))
          ]
    in return (Any (cmmTypeSize rep) code)

getRegister other = pprPanic "getRegister(ppc)" (pprExpr other)
    
    -- extend?Rep: wrap integer expression of type rep
    -- in a conversion to II32
extendSExpr W32 x = x
extendSExpr rep x = CmmMachOp (MO_SS_Conv rep W32) [x]
extendUExpr W32 x = x
extendUExpr rep x = CmmMachOp (MO_UU_Conv rep W32) [x]

-- -----------------------------------------------------------------------------
--  The 'Amode' type: Memory addressing modes passed up the tree.

data Amode 
	= Amode AddrMode InstrBlock

{-
Now, given a tree (the argument to an CmmLoad) that references memory,
produce a suitable addressing mode.

A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to.  So you can't put
anything in between, lest it overwrite some of those registers.  If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:

    code
    LEA amode, tmp
    ... other computation ...
    ... (tmp) ...
-}

getAmode :: CmmExpr -> NatM Amode
getAmode tree@(CmmRegOff _ _) = getAmode (mangleIndexTree tree)

getAmode (CmmMachOp (MO_Sub W32) [x, CmmLit (CmmInt i _)])
  | Just off <- makeImmediate W32 True (-i)
  = do
        (reg, code) <- getSomeReg x
        return (Amode (AddrRegImm reg off) code)


getAmode (CmmMachOp (MO_Add W32) [x, CmmLit (CmmInt i _)])
  | Just off <- makeImmediate W32 True i
  = do
        (reg, code) <- getSomeReg x
        return (Amode (AddrRegImm reg off) code)

   -- optimize addition with 32-bit immediate
   -- (needed for PIC)
getAmode (CmmMachOp (MO_Add W32) [x, CmmLit lit])
  = do
        tmp <- getNewRegNat II32
        (src, srcCode) <- getSomeReg x
        let imm = litToImm lit
            code = srcCode `snocOL` ADDIS tmp src (HA imm)
        return (Amode (AddrRegImm tmp (LO imm)) code)

getAmode (CmmLit lit)
  = do
        tmp <- getNewRegNat II32
        let imm = litToImm lit
            code = unitOL (LIS tmp (HA imm))
        return (Amode (AddrRegImm tmp (LO imm)) code)
    
getAmode (CmmMachOp (MO_Add W32) [x, y])
  = do
        (regX, codeX) <- getSomeReg x
        (regY, codeY) <- getSomeReg y
        return (Amode (AddrRegReg regX regY) (codeX `appOL` codeY))
    
getAmode other
  = do
        (reg, code) <- getSomeReg other
        let
            off  = ImmInt 0
        return (Amode (AddrRegImm reg off) code)



--  The 'CondCode' type:  Condition codes passed up the tree.
data CondCode 	
	= CondCode Bool Cond InstrBlock

-- Set up a condition code for a conditional branch.

getCondCode :: CmmExpr -> NatM CondCode

-- almost the same as everywhere else - but we need to
-- extend small integers to 32 bit first

getCondCode (CmmMachOp mop [x, y])
  = case mop of
      MO_F_Eq W32 -> condFltCode EQQ x y
      MO_F_Ne W32 -> condFltCode NE  x y
      MO_F_Gt W32 -> condFltCode GTT x y
      MO_F_Ge W32 -> condFltCode GE  x y
      MO_F_Lt W32 -> condFltCode LTT x y
      MO_F_Le W32 -> condFltCode LE  x y

      MO_F_Eq W64 -> condFltCode EQQ x y
      MO_F_Ne W64 -> condFltCode NE  x y
      MO_F_Gt W64 -> condFltCode GTT x y
      MO_F_Ge W64 -> condFltCode GE  x y
      MO_F_Lt W64 -> condFltCode LTT x y
      MO_F_Le W64 -> condFltCode LE  x y

      MO_Eq rep -> condIntCode EQQ  (extendUExpr rep x) (extendUExpr rep y)
      MO_Ne rep -> condIntCode NE   (extendUExpr rep x) (extendUExpr rep y)

      MO_S_Gt rep -> condIntCode GTT  (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Ge rep -> condIntCode GE   (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Lt rep -> condIntCode LTT  (extendSExpr rep x) (extendSExpr rep y)
      MO_S_Le rep -> condIntCode LE   (extendSExpr rep x) (extendSExpr rep y)

      MO_U_Gt rep -> condIntCode GU   (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Ge rep -> condIntCode GEU  (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Lt rep -> condIntCode LU   (extendUExpr rep x) (extendUExpr rep y)
      MO_U_Le rep -> condIntCode LEU  (extendUExpr rep x) (extendUExpr rep y)

      other -> pprPanic "getCondCode(powerpc)" (pprMachOp mop)

getCondCode other =  panic "getCondCode(2)(powerpc)"



-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.

condIntCode, condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode

--  ###FIXME: I16 and I8!
condIntCode cond x (CmmLit (CmmInt y rep))
  | Just src2 <- makeImmediate rep (not $ condUnsigned cond) y
  = do
        (src1, code) <- getSomeReg x
        let
            code' = code `snocOL` 
                (if condUnsigned cond then CMPL else CMP) II32 src1 (RIImm src2)
        return (CondCode False cond code')

condIntCode cond x y = do
    (src1, code1) <- getSomeReg x
    (src2, code2) <- getSomeReg y
    let
	code' = code1 `appOL` code2 `snocOL`
    	    	  (if condUnsigned cond then CMPL else CMP) II32 src1 (RIReg src2)
    return (CondCode False cond code')

condFltCode cond x y = do
    (src1, code1) <- getSomeReg x
    (src2, code2) <- getSomeReg y
    let
	code'  = code1 `appOL` code2 `snocOL` FCMP src1 src2
	code'' = case cond of -- twiddle CR to handle unordered case
                    GE -> code' `snocOL` CRNOR ltbit eqbit gtbit
	            LE -> code' `snocOL` CRNOR gtbit eqbit ltbit
	            _ -> code'
                 where
                    ltbit = 0 ; eqbit = 2 ; gtbit = 1
    return (CondCode True cond code'')



-- -----------------------------------------------------------------------------
-- Generating assignments

-- Assignments are really at the heart of the whole code generation
-- business.  Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers.  If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side.  This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).

assignMem_IntCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Size -> CmmReg  -> CmmExpr -> NatM InstrBlock

assignMem_FltCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Size -> CmmReg  -> CmmExpr -> NatM InstrBlock

assignMem_IntCode pk addr src = do
    (srcReg, code) <- getSomeReg src
    Amode dstAddr addr_code <- getAmode addr
    return $ code `appOL` addr_code `snocOL` ST pk srcReg dstAddr

-- dst is a reg, but src could be anything
assignReg_IntCode _ reg src
    = do
        r <- getRegister src
        return $ case r of
            Any _ code         -> code dst
            Fixed _ freg fcode -> fcode `snocOL` MR dst freg
    where
        dst = getRegisterReg reg



-- Easy, isn't it?
assignMem_FltCode = assignMem_IntCode
assignReg_FltCode = assignReg_IntCode



genJump :: CmmExpr{-the branch target-} -> NatM InstrBlock

genJump (CmmLit (CmmLabel lbl))
  = return (unitOL $ JMP lbl)

genJump tree
  = do
        (target,code) <- getSomeReg tree
        return (code `snocOL` MTCTR target `snocOL` BCTR [])


-- -----------------------------------------------------------------------------
--  Unconditional branches
genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkJumpInstr


-- -----------------------------------------------------------------------------
--  Conditional jumps

{-
Conditional jumps are always to local labels, so we can use branch
instructions.  We peek at the arguments to decide what kind of
comparison to do.

SPARC: First, we have to ensure that the condition codes are set
according to the supplied comparison operation.  We generate slightly
different code for floating point comparisons, because a floating
point operation cannot directly precede a @BF@.  We assume the worst
and fill that slot with a @NOP@.

SPARC: Do not fill the delay slots here; you will confuse the register
allocator.
-}


genCondJump
    :: BlockId	    -- the branch target
    -> CmmExpr      -- the condition on which to branch
    -> NatM InstrBlock

genCondJump id bool = do
  CondCode _ cond code <- getCondCode bool
  return (code `snocOL` BCC cond id)



-- -----------------------------------------------------------------------------
--  Generating C calls

-- Now the biggest nightmare---calls.  Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations.  Apart from that, the code is easy.
-- 
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.

genCCall
    :: CmmCallTarget		-- function to call
    -> HintedCmmFormals		-- where to put the result
    -> HintedCmmActuals		-- arguments (of mixed type)
    -> NatM InstrBlock


#if darwin_TARGET_OS || linux_TARGET_OS
{-
    The PowerPC calling convention for Darwin/Mac OS X
    is described in Apple's document
    "Inside Mac OS X - Mach-O Runtime Architecture".
    
    PowerPC Linux uses the System V Release 4 Calling Convention
    for PowerPC. It is described in the
    "System V Application Binary Interface PowerPC Processor Supplement".

    Both conventions are similar:
    Parameters may be passed in general-purpose registers starting at r3, in
    floating point registers starting at f1, or on the stack. 
    
    But there are substantial differences:
    * The number of registers used for parameter passing and the exact set of
      nonvolatile registers differs (see MachRegs.lhs).
    * On Darwin, stack space is always reserved for parameters, even if they are
      passed in registers. The called routine may choose to save parameters from
      registers to the corresponding space on the stack.
    * On Darwin, a corresponding amount of GPRs is skipped when a floating point
      parameter is passed in an FPR.
    * SysV insists on either passing I64 arguments on the stack, or in two GPRs,
      starting with an odd-numbered GPR. It may skip a GPR to achieve this.
      Darwin just treats an I64 like two separate II32s (high word first).
    * I64 and FF64 arguments are 8-byte aligned on the stack for SysV, but only
      4-byte aligned like everything else on Darwin.
    * The SysV spec claims that FF32 is represented as FF64 on the stack. GCC on
      PowerPC Linux does not agree, so neither do we.
      
    According to both conventions, The parameter area should be part of the
    caller's stack frame, allocated in the caller's prologue code (large enough
    to hold the parameter lists for all called routines). The NCG already
    uses the stack for register spilling, leaving 64 bytes free at the top.
    If we need a larger parameter area than that, we just allocate a new stack
    frame just before ccalling.
-}


genCCall (CmmPrim MO_WriteBarrier) _ _ 
 = return $ unitOL LWSYNC

genCCall target dest_regs argsAndHints
  = ASSERT (not $ any (`elem` [II8,II16]) $ map cmmTypeSize argReps)
        -- we rely on argument promotion in the codeGen
    do
        (finalStack,passArgumentsCode,usedRegs) <- passArguments
                                                        (zip args argReps)
                                                        allArgRegs allFPArgRegs
                                                        initialStackOffset
                                                        (toOL []) []
                                                
        (labelOrExpr, reduceToFF32) <- case target of
            CmmCallee (CmmLit (CmmLabel lbl)) conv -> return (Left lbl, False)
            CmmCallee expr conv -> return  (Right expr, False)
            CmmPrim mop -> outOfLineFloatOp mop
                                                        
        let codeBefore = move_sp_down finalStack `appOL` passArgumentsCode
            codeAfter = move_sp_up finalStack `appOL` moveResult reduceToFF32

        case labelOrExpr of
            Left lbl -> do
		return (         codeBefore
                        `snocOL` BL lbl usedRegs
                        `appOL`	 codeAfter)
            Right dyn -> do
		(dynReg, dynCode) <- getSomeReg dyn
		return (         dynCode
			`snocOL` MTCTR dynReg
                        `appOL`	 codeBefore
                        `snocOL` BCTRL usedRegs
                        `appOL`	 codeAfter)
    where
#if darwin_TARGET_OS
        initialStackOffset = 24
	    -- size of linkage area + size of arguments, in bytes	
	stackDelta _finalStack = roundTo 16 $ (24 +) $ max 32 $ sum $
	                         map (widthInBytes . typeWidth) argReps
#elif linux_TARGET_OS
        initialStackOffset = 8
        stackDelta finalStack = roundTo 16 finalStack
#endif
	args = map hintlessCmm argsAndHints
	argReps = map cmmExprType args

	roundTo a x | x `mod` a == 0 = x
		    | otherwise = x + a - (x `mod` a)

        move_sp_down finalStack
               | delta > 64 =
                        toOL [STU II32 sp (AddrRegImm sp (ImmInt (-delta))),
	                      DELTA (-delta)]
	       | otherwise = nilOL
	       where delta = stackDelta finalStack
	move_sp_up finalStack
	       | delta > 64 =
                        toOL [ADD sp sp (RIImm (ImmInt delta)),
                              DELTA 0]
	       | otherwise = nilOL
	       where delta = stackDelta finalStack
	       

        passArguments [] _ _ stackOffset accumCode accumUsed = return (stackOffset, accumCode, accumUsed)
        passArguments ((arg,arg_ty):args) gprs fprs stackOffset
               accumCode accumUsed | isWord64 arg_ty =
            do
                ChildCode64 code vr_lo <- iselExpr64 arg
                let vr_hi = getHiVRegFromLo vr_lo

#if darwin_TARGET_OS                
                passArguments args
                              (drop 2 gprs)
                              fprs
                              (stackOffset+8)
                              (accumCode `appOL` code
                                    `snocOL` storeWord vr_hi gprs stackOffset
                                    `snocOL` storeWord vr_lo (drop 1 gprs) (stackOffset+4))
                              ((take 2 gprs) ++ accumUsed)
            where
                storeWord vr (gpr:_) offset = MR gpr vr
                storeWord vr [] offset = ST II32 vr (AddrRegImm sp (ImmInt offset))
                
#elif linux_TARGET_OS
                let stackOffset' = roundTo 8 stackOffset
                    stackCode = accumCode `appOL` code
                        `snocOL` ST II32 vr_hi (AddrRegImm sp (ImmInt stackOffset'))
                        `snocOL` ST II32 vr_lo (AddrRegImm sp (ImmInt (stackOffset'+4)))
                    regCode hireg loreg =
                        accumCode `appOL` code
                            `snocOL` MR hireg vr_hi
                            `snocOL` MR loreg vr_lo
                                        
                case gprs of
                    hireg : loreg : regs | even (length gprs) ->
                        passArguments args regs fprs stackOffset
                                      (regCode hireg loreg) (hireg : loreg : accumUsed)
                    _skipped : hireg : loreg : regs ->
                        passArguments args regs fprs stackOffset
                                      (regCode hireg loreg) (hireg : loreg : accumUsed)
                    _ -> -- only one or no regs left
                        passArguments args [] fprs (stackOffset'+8)
                                      stackCode accumUsed
#endif
        
        passArguments ((arg,rep):args) gprs fprs stackOffset accumCode accumUsed
            | reg : _ <- regs = do
                register <- getRegister arg
                let code = case register of
                            Fixed _ freg fcode -> fcode `snocOL` MR reg freg
                            Any _ acode -> acode reg
                passArguments args
                              (drop nGprs gprs)
                              (drop nFprs fprs)
#if darwin_TARGET_OS
        -- The Darwin ABI requires that we reserve stack slots for register parameters
                              (stackOffset + stackBytes)
#elif linux_TARGET_OS
        -- ... the SysV ABI doesn't.
                              stackOffset
#endif
                              (accumCode `appOL` code)
                              (reg : accumUsed)
            | otherwise = do
                (vr, code) <- getSomeReg arg
                passArguments args
                              (drop nGprs gprs)
                              (drop nFprs fprs)
                              (stackOffset' + stackBytes)
                              (accumCode `appOL` code `snocOL` ST (cmmTypeSize rep) vr stackSlot)
                              accumUsed
            where
#if darwin_TARGET_OS
        -- stackOffset is at least 4-byte aligned
        -- The Darwin ABI is happy with that.
                stackOffset' = stackOffset
#else
        -- ... the SysV ABI requires 8-byte alignment for doubles.
                stackOffset' | isFloatType rep && typeWidth rep == W64 =
		                 roundTo 8 stackOffset
                             | otherwise  =           stackOffset
#endif
                stackSlot = AddrRegImm sp (ImmInt stackOffset')
                (nGprs, nFprs, stackBytes, regs) = case cmmTypeSize rep of
                    II32 -> (1, 0, 4, gprs)
#if darwin_TARGET_OS
        -- The Darwin ABI requires that we skip a corresponding number of GPRs when
        -- we use the FPRs.
                    FF32 -> (1, 1, 4, fprs)
                    FF64 -> (2, 1, 8, fprs)
#elif linux_TARGET_OS
        -- ... the SysV ABI doesn't.
                    FF32 -> (0, 1, 4, fprs)
                    FF64 -> (0, 1, 8, fprs)
#endif
        
        moveResult reduceToFF32 =
            case dest_regs of
                [] -> nilOL
                [CmmHinted dest _hint]
                    | reduceToFF32 && isFloat32 rep   -> unitOL (FRSP r_dest f1)
                    | isFloat32 rep || isFloat64 rep -> unitOL (MR r_dest f1)
                    | isWord64 rep -> toOL [MR (getHiVRegFromLo r_dest) r3,
                                          MR r_dest r4]
                    | otherwise -> unitOL (MR r_dest r3)
                    where rep = cmmRegType (CmmLocal dest)
                          r_dest = getRegisterReg (CmmLocal dest)
                          
        outOfLineFloatOp mop =
            do
                dflags <- getDynFlagsNat
                mopExpr <- cmmMakeDynamicReference dflags addImportNat CallReference $
                              mkForeignLabel functionName Nothing True IsFunction
                let mopLabelOrExpr = case mopExpr of
                        CmmLit (CmmLabel lbl) -> Left lbl
                        _ -> Right mopExpr
                return (mopLabelOrExpr, reduce)
            where
                (functionName, reduce) = case mop of
                    MO_F32_Exp   -> (fsLit "exp", True)
                    MO_F32_Log   -> (fsLit "log", True)
                    MO_F32_Sqrt  -> (fsLit "sqrt", True)
                        
                    MO_F32_Sin   -> (fsLit "sin", True)
                    MO_F32_Cos   -> (fsLit "cos", True)
                    MO_F32_Tan   -> (fsLit "tan", True)
                    
                    MO_F32_Asin  -> (fsLit "asin", True)
                    MO_F32_Acos  -> (fsLit "acos", True)
                    MO_F32_Atan  -> (fsLit "atan", True)
                    
                    MO_F32_Sinh  -> (fsLit "sinh", True)
                    MO_F32_Cosh  -> (fsLit "cosh", True)
                    MO_F32_Tanh  -> (fsLit "tanh", True)
                    MO_F32_Pwr   -> (fsLit "pow", True)
                        
                    MO_F64_Exp   -> (fsLit "exp", False)
                    MO_F64_Log   -> (fsLit "log", False)
                    MO_F64_Sqrt  -> (fsLit "sqrt", False)
                        
                    MO_F64_Sin   -> (fsLit "sin", False)
                    MO_F64_Cos   -> (fsLit "cos", False)
                    MO_F64_Tan   -> (fsLit "tan", False)
                     
                    MO_F64_Asin  -> (fsLit "asin", False)
                    MO_F64_Acos  -> (fsLit "acos", False)
                    MO_F64_Atan  -> (fsLit "atan", False)
                    
                    MO_F64_Sinh  -> (fsLit "sinh", False)
                    MO_F64_Cosh  -> (fsLit "cosh", False)
                    MO_F64_Tanh  -> (fsLit "tanh", False)
                    MO_F64_Pwr   -> (fsLit "pow", False)
                    other -> pprPanic "genCCall(ppc): unknown callish op"
                                    (pprCallishMachOp other)

#else /* darwin_TARGET_OS || linux_TARGET_OS */
genCCall = panic "PPC.CodeGen.genCCall: not defined for this os"
#endif           


-- -----------------------------------------------------------------------------
-- Generating a table-branch

genSwitch :: CmmExpr -> [Maybe BlockId] -> NatM InstrBlock
genSwitch expr ids 
  | opt_PIC
  = do
        (reg,e_code) <- getSomeReg expr
        tmp <- getNewRegNat II32
        lbl <- getNewLabelNat
        dflags <- getDynFlagsNat
        dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
        (tableReg,t_code) <- getSomeReg $ dynRef
        let
            jumpTable = map jumpTableEntryRel ids
            
            jumpTableEntryRel Nothing
                = CmmStaticLit (CmmInt 0 wordWidth)
            jumpTableEntryRel (Just (BlockId id))
                = CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0)
                where blockLabel = mkAsmTempLabel id

            code = e_code `appOL` t_code `appOL` toOL [
                            LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
                            SLW tmp reg (RIImm (ImmInt 2)),
                            LD II32 tmp (AddrRegReg tableReg tmp),
                            ADD tmp tmp (RIReg tableReg),
                            MTCTR tmp,
                            BCTR [ id | Just id <- ids ]
                    ]
        return code
  | otherwise
  = do
        (reg,e_code) <- getSomeReg expr
        tmp <- getNewRegNat II32
        lbl <- getNewLabelNat
        let
            jumpTable = map jumpTableEntry ids
        
            code = e_code `appOL` toOL [
                            LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
                            SLW tmp reg (RIImm (ImmInt 2)),
                            ADDIS tmp tmp (HA (ImmCLbl lbl)),
                            LD II32 tmp (AddrRegImm tmp (LO (ImmCLbl lbl))),
                            MTCTR tmp,
                            BCTR [ id | Just id <- ids ]
                    ]
        return code


-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers

-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
-- 
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.

condIntReg, condFltReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register

condReg :: NatM CondCode -> NatM Register
condReg getCond = do
    CondCode _ cond cond_code <- getCond
    let
{-        code dst = cond_code `appOL` toOL [
                BCC cond lbl1,
                LI dst (ImmInt 0),
                BCC ALWAYS lbl2,
                NEWBLOCK lbl1,
                LI dst (ImmInt 1),
                BCC ALWAYS lbl2,
                NEWBLOCK lbl2
            ]-}
        code dst = cond_code
            `appOL` negate_code
            `appOL` toOL [
                MFCR dst,
                RLWINM dst dst (bit + 1) 31 31
            ]
        
        negate_code | do_negate = unitOL (CRNOR bit bit bit)
                    | otherwise = nilOL
                    
        (bit, do_negate) = case cond of
            LTT -> (0, False)
            LE  -> (1, True)
            EQQ -> (2, False)
            GE  -> (0, True)
            GTT -> (1, False)
            
            NE  -> (2, True)
            
            LU  -> (0, False)
            LEU -> (1, True)
            GEU -> (0, True)
            GU  -> (1, False)
	    _	-> panic "PPC.CodeGen.codeReg: no match"
                
    return (Any II32 code)
    
condIntReg cond x y = condReg (condIntCode cond x y)
condFltReg cond x y = condReg (condFltCode cond x y)



-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions

-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.

-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.



{-
Wolfgang's PowerPC version of The Rules:

A slightly modified version of The Rules to take advantage of the fact
that PowerPC instructions work on all registers and don't implicitly
clobber any fixed registers.

* The only expression for which getRegister returns Fixed is (CmmReg reg).

* If getRegister returns Any, then the code it generates may modify only:
	(a) fresh temporaries
	(b) the destination register
  It may *not* modify global registers, unless the global
  register happens to be the destination register.
  It may not clobber any other registers. In fact, only ccalls clobber any
  fixed registers.
  Also, it may not modify the counter register (used by genCCall).
  
  Corollary: If a getRegister for a subexpression returns Fixed, you need
  not move it to a fresh temporary before evaluating the next subexpression.
  The Fixed register won't be modified.
  Therefore, we don't need a counterpart for the x86's getStableReg on PPC.
  
* SDM's First Rule is valid for PowerPC, too: subexpressions can depend on
  the value of the destination register.
-}

trivialCode 
	:: Width
	-> Bool
	-> (Reg -> Reg -> RI -> Instr)
	-> CmmExpr
	-> CmmExpr
	-> NatM Register

trivialCode rep signed instr x (CmmLit (CmmInt y _))
    | Just imm <- makeImmediate rep signed y 
    = do
        (src1, code1) <- getSomeReg x
        let code dst = code1 `snocOL` instr dst src1 (RIImm imm)
        return (Any (intSize rep) code)
  
trivialCode rep _ instr x y = do
    (src1, code1) <- getSomeReg x
    (src2, code2) <- getSomeReg y
    let code dst = code1 `appOL` code2 `snocOL` instr dst src1 (RIReg src2)
    return (Any (intSize rep) code)

trivialCodeNoImm' :: Size -> (Reg -> Reg -> Reg -> Instr)
		 -> CmmExpr -> CmmExpr -> NatM Register
trivialCodeNoImm' size instr x y = do
    (src1, code1) <- getSomeReg x
    (src2, code2) <- getSomeReg y
    let code dst = code1 `appOL` code2 `snocOL` instr dst src1 src2
    return (Any size code)
    
trivialCodeNoImm :: Size -> (Size -> Reg -> Reg -> Reg -> Instr)
		 -> CmmExpr -> CmmExpr -> NatM Register
trivialCodeNoImm size instr x y = trivialCodeNoImm' size (instr size) x y
    
    
trivialUCode 
	:: Size
	-> (Reg -> Reg -> Instr)
	-> CmmExpr
	-> NatM Register
trivialUCode rep instr x = do
    (src, code) <- getSomeReg x
    let code' dst = code `snocOL` instr dst src
    return (Any rep code')
    
-- There is no "remainder" instruction on the PPC, so we have to do
-- it the hard way.
-- The "div" parameter is the division instruction to use (DIVW or DIVWU)

remainderCode :: Width -> (Reg -> Reg -> Reg -> Instr)
    -> CmmExpr -> CmmExpr -> NatM Register
remainderCode rep div x y = do
    (src1, code1) <- getSomeReg x
    (src2, code2) <- getSomeReg y
    let code dst = code1 `appOL` code2 `appOL` toOL [
                div dst src1 src2,
                MULLW dst dst (RIReg src2),
                SUBF dst dst src1
            ]
    return (Any (intSize rep) code)


coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP fromRep toRep x = do
    (src, code) <- getSomeReg x
    lbl <- getNewLabelNat
    itmp <- getNewRegNat II32
    ftmp <- getNewRegNat FF64
    dflags <- getDynFlagsNat
    dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
    Amode addr addr_code <- getAmode dynRef
    let
    	code' dst = code `appOL` maybe_exts `appOL` toOL [
		LDATA ReadOnlyData
				[CmmDataLabel lbl,
				 CmmStaticLit (CmmInt 0x43300000 W32),
				 CmmStaticLit (CmmInt 0x80000000 W32)],
		XORIS itmp src (ImmInt 0x8000),
		ST II32 itmp (spRel 3),
		LIS itmp (ImmInt 0x4330),
		ST II32 itmp (spRel 2),
		LD FF64 ftmp (spRel 2)
            ] `appOL` addr_code `appOL` toOL [
		LD FF64 dst addr,
		FSUB FF64 dst ftmp dst
	    ] `appOL` maybe_frsp dst
            
        maybe_exts = case fromRep of
                        W8 ->  unitOL $ EXTS II8 src src
                        W16 -> unitOL $ EXTS II16 src src
                        W32 -> nilOL
			_	-> panic "PPC.CodeGen.coerceInt2FP: no match"

        maybe_frsp dst 
		= case toRep of
                        W32 -> unitOL $ FRSP dst dst
                        W64 -> nilOL
			_	-> panic "PPC.CodeGen.coerceInt2FP: no match"

    return (Any (floatSize toRep) code')

coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int _ toRep x = do
    -- the reps don't really matter: F*->FF64 and II32->I* are no-ops
    (src, code) <- getSomeReg x
    tmp <- getNewRegNat FF64
    let
    	code' dst = code `appOL` toOL [
		-- convert to int in FP reg
    	    FCTIWZ tmp src,
		-- store value (64bit) from FP to stack
    	    ST FF64 tmp (spRel 2),
		-- read low word of value (high word is undefined)
    	    LD II32 dst (spRel 3)]	
    return (Any (intSize toRep) code')