{-# OPTIONS_GHC -fno-implicit-prelude #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.ForeignPtr -- Copyright : (c) The University of Glasgow, 1992-2003 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC extensions) -- -- GHC's implementation of the 'ForeignPtr' data type. -- ----------------------------------------------------------------------------- -- #hide module GHC.ForeignPtr ( ForeignPtr(..), FinalizerPtr, newForeignPtr_, mallocForeignPtr, mallocPlainForeignPtr, mallocForeignPtrBytes, mallocPlainForeignPtrBytes, addForeignPtrFinalizer, touchForeignPtr, unsafeForeignPtrToPtr, castForeignPtr, newConcForeignPtr, addForeignPtrConcFinalizer, finalizeForeignPtr ) where import Control.Monad ( sequence_ ) import Foreign.Storable import GHC.Show import GHC.List ( null ) import GHC.Base import GHC.IOBase import GHC.STRef ( STRef(..) ) import GHC.Ptr ( Ptr(..), FunPtr ) import GHC.Err -- |The type 'ForeignPtr' represents references to objects that are -- maintained in a foreign language, i.e., that are not part of the -- data structures usually managed by the Haskell storage manager. -- The essential difference between 'ForeignPtr's and vanilla memory -- references of type @Ptr a@ is that the former may be associated -- with /finalizers/. A finalizer is a routine that is invoked when -- the Haskell storage manager detects that - within the Haskell heap -- and stack - there are no more references left that are pointing to -- the 'ForeignPtr'. Typically, the finalizer will, then, invoke -- routines in the foreign language that free the resources bound by -- the foreign object. -- -- The 'ForeignPtr' is parameterised in the same way as 'Ptr'. The -- type argument of 'ForeignPtr' should normally be an instance of -- class 'Storable'. -- data ForeignPtr a = ForeignPtr Addr# ForeignPtrContents -- we cache the Addr# in the ForeignPtr object, but attach -- the finalizer to the IORef (or the MutableByteArray# in -- the case of a MallocPtr). The aim of the representation -- is to make withForeignPtr efficient; in fact, withForeignPtr -- should be just as efficient as unpacking a Ptr, and multiple -- withForeignPtrs can share an unpacked ForeignPtr. Note -- that touchForeignPtr only has to touch the ForeignPtrContents -- object, because that ensures that whatever the finalizer is -- attached to is kept alive. data ForeignPtrContents = PlainForeignPtr !(IORef [IO ()]) | MallocPtr (MutableByteArray# RealWorld) !(IORef [IO ()]) | PlainPtr (MutableByteArray# RealWorld) instance Eq (ForeignPtr a) where p == q = unsafeForeignPtrToPtr p == unsafeForeignPtrToPtr q instance Ord (ForeignPtr a) where compare p q = compare (unsafeForeignPtrToPtr p) (unsafeForeignPtrToPtr q) instance Show (ForeignPtr a) where showsPrec p f = showsPrec p (unsafeForeignPtrToPtr f) -- |A Finalizer is represented as a pointer to a foreign function that, at -- finalisation time, gets as an argument a plain pointer variant of the -- foreign pointer that the finalizer is associated with. -- type FinalizerPtr a = FunPtr (Ptr a -> IO ()) newConcForeignPtr :: Ptr a -> IO () -> IO (ForeignPtr a) -- -- ^Turns a plain memory reference into a foreign object by -- associating a finalizer - given by the monadic operation - with the -- reference. The storage manager will start the finalizer, in a -- separate thread, some time after the last reference to the -- @ForeignPtr@ is dropped. There is no guarantee of promptness, and -- in fact there is no guarantee that the finalizer will eventually -- run at all. -- -- Note that references from a finalizer do not necessarily prevent -- another object from being finalized. If A's finalizer refers to B -- (perhaps using 'touchForeignPtr', then the only guarantee is that -- B's finalizer will never be started before A's. If both A and B -- are unreachable, then both finalizers will start together. See -- 'touchForeignPtr' for more on finalizer ordering. -- newConcForeignPtr p finalizer = do fObj <- newForeignPtr_ p addForeignPtrConcFinalizer fObj finalizer return fObj mallocForeignPtr :: Storable a => IO (ForeignPtr a) -- ^ Allocate some memory and return a 'ForeignPtr' to it. The memory -- will be released automatically when the 'ForeignPtr' is discarded. -- -- 'mallocForeignPtr' is equivalent to -- -- > do { p <- malloc; newForeignPtr finalizerFree p } -- -- although it may be implemented differently internally: you may not -- assume that the memory returned by 'mallocForeignPtr' has been -- allocated with 'Foreign.Marshal.Alloc.malloc'. -- -- GHC notes: 'mallocForeignPtr' has a heavily optimised -- implementation in GHC. It uses pinned memory in the garbage -- collected heap, so the 'ForeignPtr' does not require a finalizer to -- free the memory. Use of 'mallocForeignPtr' and associated -- functions is strongly recommended in preference to 'newForeignPtr' -- with a finalizer. -- mallocForeignPtr = doMalloc undefined where doMalloc :: Storable b => b -> IO (ForeignPtr b) doMalloc a = do r <- newIORef [] IO $ \s -> case newPinnedByteArray# size s of { (# s, mbarr# #) -> (# s, ForeignPtr (byteArrayContents# (unsafeCoerce# mbarr#)) (MallocPtr mbarr# r) #) } where (I# size) = sizeOf a -- | This function is similar to 'mallocForeignPtr', except that the -- size of the memory required is given explicitly as a number of bytes. mallocForeignPtrBytes :: Int -> IO (ForeignPtr a) mallocForeignPtrBytes (I# size) = do r <- newIORef [] IO $ \s -> case newPinnedByteArray# size s of { (# s, mbarr# #) -> (# s, ForeignPtr (byteArrayContents# (unsafeCoerce# mbarr#)) (MallocPtr mbarr# r) #) } -- | Allocate some memory and return a 'ForeignPtr' to it. The memory -- will be released automatically when the 'ForeignPtr' is discarded. -- -- GHC notes: 'mallocPlainForeignPtr' has a heavily optimised -- implementation in GHC. It uses pinned memory in the garbage -- collected heap, as for mallocForeignPtr. Unlike mallocForeignPtr, a -- ForeignPtr created with mallocPlainForeignPtr carries no finalizers. -- It is not possible to add a finalizer to a ForeignPtr created with -- mallocPlainForeignPtr. This is useful for ForeignPtrs that will live -- only inside Haskell (such as those created for packed strings). -- Attempts to add a finalizer to a ForeignPtr created this way, or to -- finalize such a pointer, will throw an exception. -- mallocPlainForeignPtr :: Storable a => IO (ForeignPtr a) mallocPlainForeignPtr = doMalloc undefined where doMalloc :: Storable b => b -> IO (ForeignPtr b) doMalloc a = IO $ \s -> case newPinnedByteArray# size s of { (# s, mbarr# #) -> (# s, ForeignPtr (byteArrayContents# (unsafeCoerce# mbarr#)) (PlainPtr mbarr#) #) } where (I# size) = sizeOf a -- | This function is similar to 'mallocForeignPtrBytes', except that -- the internally an optimised ForeignPtr representation with no -- finalizer is used. Attempts to add a finalizer will cause an -- exception to be thrown. mallocPlainForeignPtrBytes :: Int -> IO (ForeignPtr a) mallocPlainForeignPtrBytes (I# size) = IO $ \s -> case newPinnedByteArray# size s of { (# s, mbarr# #) -> (# s, ForeignPtr (byteArrayContents# (unsafeCoerce# mbarr#)) (PlainPtr mbarr#) #) } addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO () -- ^This function adds a finalizer to the given foreign object. The -- finalizer will run /before/ all other finalizers for the same -- object which have already been registered. addForeignPtrFinalizer finalizer fptr = addForeignPtrConcFinalizer fptr (mkFinalizer finalizer (unsafeForeignPtrToPtr fptr)) addForeignPtrConcFinalizer :: ForeignPtr a -> IO () -> IO () -- ^This function adds a finalizer to the given @ForeignPtr@. The -- finalizer will run /before/ all other finalizers for the same -- object which have already been registered. -- -- This is a variant of @addForeignPtrFinalizer@, where the finalizer -- is an arbitrary @IO@ action. When it is invoked, the finalizer -- will run in a new thread. -- -- NB. Be very careful with these finalizers. One common trap is that -- if a finalizer references another finalized value, it does not -- prevent that value from being finalized. In particular, 'Handle's -- are finalized objects, so a finalizer should not refer to a 'Handle' -- (including @stdout@, @stdin@ or @stderr@). -- addForeignPtrConcFinalizer (ForeignPtr a c) finalizer = addForeignPtrConcFinalizer_ c finalizer addForeignPtrConcFinalizer_ f@(PlainForeignPtr r) finalizer = do fs <- readIORef r writeIORef r (finalizer : fs) if (null fs) then IO $ \s -> case r of { IORef (STRef r#) -> case mkWeak# r# () (foreignPtrFinalizer r) s of { (# s1, w #) -> (# s1, () #) }} else return () addForeignPtrConcFinalizer_ f@(MallocPtr fo r) finalizer = do fs <- readIORef r writeIORef r (finalizer : fs) if (null fs) then IO $ \s -> case mkWeak# fo () (do foreignPtrFinalizer r; touch f) s of (# s1, w #) -> (# s1, () #) else return () addForeignPtrConcFinalizer_ _ _ = error "GHC.ForeignPtr: attempt to add a finalizer to plain pointer" foreign import ccall "dynamic" mkFinalizer :: FinalizerPtr a -> Ptr a -> IO () foreignPtrFinalizer :: IORef [IO ()] -> IO () foreignPtrFinalizer r = do fs <- readIORef r; sequence_ fs newForeignPtr_ :: Ptr a -> IO (ForeignPtr a) -- ^Turns a plain memory reference into a foreign pointer that may be -- associated with finalizers by using 'addForeignPtrFinalizer'. newForeignPtr_ (Ptr obj) = do r <- newIORef [] return (ForeignPtr obj (PlainForeignPtr r)) touchForeignPtr :: ForeignPtr a -> IO () -- ^This function ensures that the foreign object in -- question is alive at the given place in the sequence of IO -- actions. In particular 'Foreign.ForeignPtr.withForeignPtr' -- does a 'touchForeignPtr' after it -- executes the user action. -- -- Note that this function should not be used to express dependencies -- between finalizers on 'ForeignPtr's. For example, if the finalizer -- for a 'ForeignPtr' @F1@ calls 'touchForeignPtr' on a second -- 'ForeignPtr' @F2@, then the only guarantee is that the finalizer -- for @F2@ is never started before the finalizer for @F1@. They -- might be started together if for example both @F1@ and @F2@ are -- otherwise unreachable, and in that case the scheduler might end up -- running the finalizer for @F2@ first. -- -- In general, it is not recommended to use finalizers on separate -- objects with ordering constraints between them. To express the -- ordering robustly requires explicit synchronisation using @MVar@s -- between the finalizers, but even then the runtime sometimes runs -- multiple finalizers sequentially in a single thread (for -- performance reasons), so synchronisation between finalizers could -- result in artificial deadlock. Another alternative is to use -- explicit reference counting. -- touchForeignPtr (ForeignPtr fo r) = touch r touch r = IO $ \s -> case touch# r s of s -> (# s, () #) unsafeForeignPtrToPtr :: ForeignPtr a -> Ptr a -- ^This function extracts the pointer component of a foreign -- pointer. This is a potentially dangerous operations, as if the -- argument to 'unsafeForeignPtrToPtr' is the last usage -- occurrence of the given foreign pointer, then its finalizer(s) will -- be run, which potentially invalidates the plain pointer just -- obtained. Hence, 'touchForeignPtr' must be used -- wherever it has to be guaranteed that the pointer lives on - i.e., -- has another usage occurrence. -- -- To avoid subtle coding errors, hand written marshalling code -- should preferably use 'Foreign.ForeignPtr.withForeignPtr' rather -- than combinations of 'unsafeForeignPtrToPtr' and -- 'touchForeignPtr'. However, the later routines -- are occasionally preferred in tool generated marshalling code. unsafeForeignPtrToPtr (ForeignPtr fo r) = Ptr fo castForeignPtr :: ForeignPtr a -> ForeignPtr b -- ^This function casts a 'ForeignPtr' -- parameterised by one type into another type. castForeignPtr f = unsafeCoerce# f -- | Causes the finalizers associated with a foreign pointer to be run -- immediately. finalizeForeignPtr :: ForeignPtr a -> IO () finalizeForeignPtr (ForeignPtr _ (PlainPtr _)) = return () -- no effect finalizeForeignPtr (ForeignPtr _ foreignPtr) = do finalizers <- readIORef refFinalizers sequence_ finalizers writeIORef refFinalizers [] where refFinalizers = case foreignPtr of (PlainForeignPtr ref) -> ref (MallocPtr _ ref) -> ref