module Data.Graph.Inductive.Internal.FiniteMap(
FiniteMap(..),
emptyFM,addToFM,delFromFM,
updFM,
accumFM,
splitFM,
isEmptyFM,sizeFM,lookupFM,elemFM,
rangeFM,
minFM,maxFM,predFM,succFM,
splitMinFM,
fmToList
) where
import Data.Maybe (isJust)
data Ord a => FiniteMap a b =
Empty | Node Int (FiniteMap a b) (a,b) (FiniteMap a b)
deriving (Eq)
showsMap :: (Show a,Show b,Ord a) => FiniteMap a b -> ShowS
showsMap Empty = id
showsMap (Node _ l (i,x) r) = showsMap l . (' ':) .
shows i . ("->"++) . shows x . showsMap r
instance (Show a,Show b,Ord a) => Show (FiniteMap a b) where
showsPrec _ m = showsMap m
splitMax :: Ord a => FiniteMap a b -> (FiniteMap a b,(a,b))
splitMax (Node _ l x Empty) = (l,x)
splitMax (Node _ l x r) = (avlBalance l x m,y) where (m,y) = splitMax r
splitMax Empty = error "splitMax on empty FiniteMap"
merge :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
merge l Empty = l
merge Empty r = r
merge l r = avlBalance l' x r where (l',x) = splitMax l
emptyFM :: Ord a => FiniteMap a b
emptyFM = Empty
addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b
addToFM Empty i x = node Empty (i,x) Empty
addToFM (Node h l (j,y) r) i x
| i<j = avlBalance (addToFM l i x) (j,y) r
| i>j = avlBalance l (j,y) (addToFM r i x)
| otherwise = Node h l (j,x) r
updFM :: Ord a => FiniteMap a b -> a -> (b -> b) -> FiniteMap a b
updFM Empty _ _ = Empty
updFM (Node h l (j,x) r) i f
| i<j = let l' = updFM l i f in l' `seq` Node h l' (j,x) r
| i>j = let r' = updFM r i f in r' `seq` Node h l (j,x) r'
| otherwise = Node h l (j,f x) r
accumFM :: Ord a => FiniteMap a b -> a -> (b -> b -> b) -> b -> FiniteMap a b
accumFM Empty i _ x = node Empty (i,x) Empty
accumFM (Node h l (j,y) r) i f x
| i<j = avlBalance (accumFM l i f x) (j,y) r
| i>j = avlBalance l (j,y) (accumFM r i f x)
| otherwise = Node h l (j,f x y) r
delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b
delFromFM Empty _ = Empty
delFromFM (Node _ l (j,x) r) i
| i<j = avlBalance (delFromFM l i) (j,x) r
| i>j = avlBalance l (j,x) (delFromFM r i)
| otherwise = merge l r
isEmptyFM :: FiniteMap a b -> Bool
isEmptyFM Empty = True
isEmptyFM _ = False
sizeFM :: Ord a => FiniteMap a b -> Int
sizeFM Empty = 0
sizeFM (Node _ l _ r) = sizeFM l + 1 + sizeFM r
lookupFM :: Ord a => FiniteMap a b -> a -> Maybe b
lookupFM Empty _ = Nothing
lookupFM (Node _ l (j,x) r) i | i<j = lookupFM l i
| i>j = lookupFM r i
| otherwise = Just x
rangeFM :: Ord a => FiniteMap a b -> a -> a -> [b]
rangeFM m i j = rangeFMa m i j []
rangeFMa Empty _ _ a = a
rangeFMa (Node _ l (k,x) r) i j a
| k<i = rangeFMa r i j a
| k>j = rangeFMa l i j a
| otherwise = rangeFMa l i j (x:rangeFMa r i j a)
minFM :: Ord a => FiniteMap a b -> Maybe (a,b)
minFM Empty = Nothing
minFM (Node _ Empty x _) = Just x
minFM (Node _ l _ _) = minFM l
maxFM :: Ord a => FiniteMap a b -> Maybe (a,b)
maxFM Empty = Nothing
maxFM (Node _ _ x Empty) = Just x
maxFM (Node _ _ _ r) = maxFM r
predFM :: Ord a => FiniteMap a b -> a -> Maybe (a,b)
predFM m i = predFM' m i Nothing
predFM' Empty _ p = p
predFM' (Node _ l (j,x) r) i p | i<j = predFM' l i p
| i>j = predFM' r i (Just (j,x))
| isJust ml = ml
| otherwise = p
where ml = maxFM l
succFM :: Ord a => FiniteMap a b -> a -> Maybe (a,b)
succFM m i = succFM' m i Nothing
succFM' Empty _ p = p
succFM' (Node _ l (j,x) r) i p | i<j = succFM' l i (Just (j,x))
| i>j = succFM' r i p
| isJust mr = mr
| otherwise = p
where mr = minFM r
elemFM :: Ord a => FiniteMap a b -> a -> Bool
elemFM m i = case lookupFM m i of {Nothing -> False; _ -> True}
splitFM :: Ord a => FiniteMap a b -> a -> Maybe (FiniteMap a b,(a,b))
splitFM Empty _ = Nothing
splitFM (Node _ l (j,x) r) i =
if i<j then
case splitFM l i of
Just (l',y) -> Just (avlBalance l' (j,x) r,y)
Nothing -> Nothing else
if i>j then
case splitFM r i of
Just (r',y) -> Just (avlBalance l (j,x) r',y)
Nothing -> Nothing
else Just (merge l r,(j,x))
splitMinFM :: Ord a => FiniteMap a b -> Maybe (FiniteMap a b,(a,b))
splitMinFM Empty = Nothing
splitMinFM (Node _ Empty x r) = Just (r,x)
splitMinFM (Node _ l x r) = Just (avlBalance l' x r,y)
where Just (l',y) = splitMinFM l
fmToList :: Ord a => FiniteMap a b -> [(a,b)]
fmToList m = scan m []
where scan Empty xs = xs
scan (Node _ l x r) xs = scan l (x:(scan r xs))
height :: Ord a => FiniteMap a b -> Int
height Empty = 0
height (Node h _ _ _) = h
node :: Ord a => FiniteMap a b -> (a,b) -> FiniteMap a b -> FiniteMap a b
node l val r = Node h l val r
where h=1+(height l `max` height r)
avlBalance :: Ord a => FiniteMap a b -> (a,b) -> FiniteMap a b -> FiniteMap a b
avlBalance l (i,x) r
| (hr + 1 < hl) && (bias l < 0) = rotr (node (rotl l) (i,x) r)
| (hr + 1 < hl) = rotr (node l (i,x) r)
| (hl + 1 < hr) && (0 < bias r) = rotl (node l (i,x) (rotr r))
| (hl + 1 < hr) = rotl (node l (i,x) r)
| otherwise = node l (i,x) r
where hl=height l; hr=height r
bias :: Ord a => FiniteMap a b -> Int
bias (Node _ l _ r) = height l height r
bias Empty = 0
rotr :: Ord a => FiniteMap a b -> FiniteMap a b
rotr Empty = Empty
rotr (Node _ (Node _ l1 v1 r1) v2 r2) = node l1 v1 (node r1 v2 r2)
rotr (Node _ Empty _ _) = error "rotr on invalid FiniteMap"
rotl :: Ord a => FiniteMap a b -> FiniteMap a b
rotl Empty = Empty
rotl (Node _ l1 v1 (Node _ l2 v2 r2)) = node (node l1 v1 l2) v2 r2
rotl (Node _ _ _ Empty) = error "rotl on invalid FiniteMap"