----------------------------------------------------------------------------- -- | -- Module : Data.Traversable -- Copyright : Conor McBride and Ross Paterson 2005 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : portable -- -- Class of data structures that can be traversed from left to right, -- performing an action on each element. -- -- See also -- -- * /Applicative Programming with Effects/, -- by Conor McBride and Ross Paterson, online at -- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>. -- -- * /The Essence of the Iterator Pattern/, -- by Jeremy Gibbons and Bruno Oliveira, -- in /Mathematically-Structured Functional Programming/, 2006, and online at -- <http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator>. -- -- Note that the functions 'mapM' and 'sequence' generalize "Prelude" -- functions of the same names from lists to any 'Traversable' functor. -- To avoid ambiguity, either import the "Prelude" hiding these names -- or qualify uses of these function names with an alias for this module. module Data.Traversable ( Traversable(..), for, forM, fmapDefault, foldMapDefault, ) where import Prelude hiding (mapM, sequence, foldr) import qualified Prelude (mapM, foldr) import Control.Applicative import Data.Foldable (Foldable()) import Data.Monoid (Monoid) -- | Functors representing data structures that can be traversed from -- left to right. -- -- Minimal complete definition: 'traverse' or 'sequenceA'. -- -- Instances are similar to 'Functor', e.g. given a data type -- -- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) -- -- a suitable instance would be -- -- > instance Traversable Tree -- > traverse f Empty = pure Empty -- > traverse f (Leaf x) = Leaf <$> f x -- > traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r -- -- This is suitable even for abstract types, as the laws for '<*>' -- imply a form of associativity. -- -- The superclass instances should satisfy the following: -- -- * In the 'Functor' instance, 'fmap' should be equivalent to traversal -- with the identity applicative functor ('fmapDefault'). -- -- * In the 'Foldable' instance, 'Data.Foldable.foldMap' should be -- equivalent to traversal with a constant applicative functor -- ('foldMapDefault'). -- class (Functor t, Foldable t) => Traversable t where -- | Map each element of a structure to an action, evaluate -- these actions from left to right, and collect the results. traverse :: Applicative f => (a -> f b) -> t a -> f (t b) traverse f = sequenceA . fmap f -- | Evaluate each action in the structure from left to right, -- and collect the results. sequenceA :: Applicative f => t (f a) -> f (t a) sequenceA = traverse id -- | Map each element of a structure to a monadic action, evaluate -- these actions from left to right, and collect the results. mapM :: Monad m => (a -> m b) -> t a -> m (t b) mapM f = unwrapMonad . traverse (WrapMonad . f) -- | Evaluate each monadic action in the structure from left to right, -- and collect the results. sequence :: Monad m => t (m a) -> m (t a) sequence = mapM id -- instances for Prelude types instance Traversable Maybe where traverse f Nothing = pure Nothing traverse f (Just x) = Just <$> f x instance Traversable [] where traverse f = Prelude.foldr cons_f (pure []) where cons_f x ys = (:) <$> f x <*> ys mapM = Prelude.mapM -- general functions -- | 'for' is 'traverse' with its arguments flipped. for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) {-# INLINE for #-} for = flip traverse -- | 'forM' is 'mapM' with its arguments flipped. forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) {-# INLINE forM #-} forM = flip mapM -- | This function may be used as a value for `fmap` in a `Functor` instance. fmapDefault :: Traversable t => (a -> b) -> t a -> t b fmapDefault f = getId . traverse (Id . f) -- | This function may be used as a value for `Data.Foldable.foldMap` -- in a `Foldable` instance. foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m foldMapDefault f = getConst . traverse (Const . f) -- local instances newtype Id a = Id { getId :: a } instance Functor Id where fmap f (Id x) = Id (f x) instance Applicative Id where pure = Id Id f <*> Id x = Id (f x)