module Data.Graph.Inductive.Query.BFS(
bfs,bfsn,bfsWith,bfsnWith,
level,leveln,
bfe,bfen,
bft,lbft,
esp,lesp
) where
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Internal.Queue
import Data.Graph.Inductive.Internal.RootPath
bfsnInternal :: Graph gr => (Context a b -> c) -> Queue Node -> gr a b -> [c]
bfsnInternal f q g | queueEmpty q || isEmpty g = []
| otherwise =
case match v g of
(Just c, g') -> f c:bfsnInternal f (queuePutList (suc' c) q') g'
(Nothing, g') -> bfsnInternal f q' g'
where (v,q') = queueGet q
bfsnWith :: Graph gr => (Context a b -> c) -> [Node] -> gr a b -> [c]
bfsnWith f vs = bfsnInternal f (queuePutList vs mkQueue)
bfsn :: Graph gr => [Node] -> gr a b -> [Node]
bfsn = bfsnWith node'
bfsWith :: Graph gr => (Context a b -> c) -> Node -> gr a b -> [c]
bfsWith f v = bfsnInternal f (queuePut v mkQueue)
bfs :: Graph gr => Node -> gr a b -> [Node]
bfs = bfsWith node'
level :: Graph gr => Node -> gr a b -> [(Node,Int)]
level v = leveln [(v,0)]
suci c i = zip (suc' c) (repeat i)
leveln :: Graph gr => [(Node,Int)] -> gr a b -> [(Node,Int)]
leveln [] _ = []
leveln _ g | isEmpty g = []
leveln ((v,j):vs) g = case match v g of
(Just c,g') -> (v,j):leveln (vs++suci c (j+1)) g'
(Nothing,g') -> leveln vs g'
bfenInternal :: Graph gr => Queue Edge -> gr a b -> [Edge]
bfenInternal q g | queueEmpty q || isEmpty g = []
| otherwise =
case match v g of
(Just c, g') -> (u,v):bfenInternal (queuePutList (outU c) q') g'
(Nothing, g') -> bfenInternal q' g'
where ((u,v),q') = queueGet q
bfen :: Graph gr => [Edge] -> gr a b -> [Edge]
bfen vs g = bfenInternal (queuePutList vs mkQueue) g
bfe :: Graph gr => Node -> gr a b -> [Edge]
bfe v = bfen [(v,v)]
outU c = map (\(v,w,_)->(v,w)) (out' c)
bft :: Graph gr => Node -> gr a b -> RTree
bft v = bf (queuePut [v] mkQueue)
bf :: Graph gr => Queue Path -> gr a b -> RTree
bf q g | queueEmpty q || isEmpty g = []
| otherwise =
case match v g of
(Just c, g') -> p:bf (queuePutList (map (:p) (suc' c)) q') g'
(Nothing, g') -> bf q' g'
where (p@(v:_),q') = queueGet q
esp :: Graph gr => Node -> Node -> gr a b -> Path
esp s t = getPath t . bft s
lbft :: Graph gr => Node -> gr a b -> LRTree b
lbft v g = case (out g v) of
[] -> [LP []]
(v',_,l):_ -> lbf (queuePut (LP [(v',l)]) mkQueue) g
lbf :: Graph gr => Queue (LPath b) -> gr a b -> LRTree b
lbf q g | queueEmpty q || isEmpty g = []
| otherwise =
case match v g of
(Just c, g') ->
LP p:lbf (queuePutList (map (\v' -> LP (v':p)) (lsuc' c)) q') g'
(Nothing, g') -> lbf q' g'
where ((LP (p@((v,_):_))),q') = queueGet q
lesp :: Graph gr => Node -> Node -> gr a b -> LPath b
lesp s t = getLPath t . lbft s