%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
Desugaring exporessions.
\begin{code}
module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where
#include "HsVersions.h"
import Match
import MatchLit
import DsBinds
import DsGRHSs
import DsListComp
import DsUtils
import DsArrows
import DsMonad
import Name
import NameEnv
#ifdef GHCI
import DsMeta
#endif
import HsSyn
import TcHsSyn
import TcType
import Type
import Coercion
import CoreSyn
import CoreUtils
import CoreFVs
import MkCore
import DynFlags
import StaticFlags
import CostCentre
import Id
import Var
import VarSet
import DataCon
import TysWiredIn
import BasicTypes
import PrelNames
import Maybes
import SrcLoc
import Util
import Bag
import Outputable
import FastString
import Control.Monad
\end{code}
%************************************************************************
%* *
dsLocalBinds, dsValBinds
%* *
%************************************************************************
\begin{code}
dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr
dsLocalBinds EmptyLocalBinds body = return body
dsLocalBinds (HsValBinds binds) body = dsValBinds binds body
dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body
dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr
dsValBinds (ValBindsOut binds _) body = foldrM ds_val_bind body binds
dsIPBinds :: HsIPBinds Id -> CoreExpr -> DsM CoreExpr
dsIPBinds (IPBinds ip_binds ev_binds) body
= do { ds_ev_binds <- dsTcEvBinds ev_binds
; let inner = wrapDsEvBinds ds_ev_binds body
; foldrM ds_ip_bind inner ip_binds }
where
ds_ip_bind (L _ (IPBind n e)) body
= do e' <- dsLExpr e
return (Let (NonRec (ipNameName n) e') body)
ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr
ds_val_bind (NonRecursive, hsbinds) body
| [L loc bind] <- bagToList hsbinds,
strictMatchOnly bind
= putSrcSpanDs loc (dsStrictBind bind body)
ds_val_bind (_is_rec, binds) body
= do { prs <- dsLHsBinds binds
; ASSERT2( not (any (isUnLiftedType . idType . fst) prs), ppr _is_rec $$ ppr binds )
case prs of
[] -> return body
_ -> return (Let (Rec prs) body) }
dsStrictBind :: HsBind Id -> CoreExpr -> DsM CoreExpr
dsStrictBind (AbsBinds { abs_tvs = [], abs_ev_vars = []
, abs_exports = exports
, abs_ev_binds = ev_binds
, abs_binds = binds }) body
= do { ds_ev_binds <- dsTcEvBinds ev_binds
; let body1 = foldr bind_export body exports
bind_export (_, g, l, _) b = bindNonRec g (Var l) b
; body2 <- foldlBagM (\body bind -> dsStrictBind (unLoc bind) body)
body1 binds
; return (wrapDsEvBinds ds_ev_binds body2) }
dsStrictBind (FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn
, fun_tick = tick, fun_infix = inf }) body
= do { (args, rhs) <- matchWrapper (FunRhs (idName fun ) inf) matches
; MASSERT( null args )
; MASSERT( isIdHsWrapper co_fn )
; rhs' <- mkOptTickBox tick rhs
; return (bindNonRec fun rhs' body) }
dsStrictBind (PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty }) body
=
do { rhs <- dsGuarded grhss ty
; let upat = unLoc pat
eqn = EqnInfo { eqn_pats = [upat],
eqn_rhs = cantFailMatchResult body }
; var <- selectMatchVar upat
; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
; return (scrungleMatch var rhs result) }
dsStrictBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body)
strictMatchOnly :: HsBind Id -> Bool
strictMatchOnly (AbsBinds { abs_binds = binds })
= anyBag (strictMatchOnly . unLoc) binds
strictMatchOnly (PatBind { pat_lhs = lpat, pat_rhs_ty = ty })
= isUnboxedTupleType ty
|| isBangLPat lpat
|| any (isUnLiftedType . idType) (collectPatBinders lpat)
strictMatchOnly (FunBind { fun_id = L _ id })
= isUnLiftedType (idType id)
strictMatchOnly _ = False
scrungleMatch :: Id -> CoreExpr -> CoreExpr -> CoreExpr
scrungleMatch var scrut body
| isUnboxedTupleType (idType var) = scrungle body
| otherwise = bindNonRec var scrut body
where
scrungle (Case (Var x) bndr ty alts)
| x == var = Case scrut bndr ty alts
scrungle (Let binds body) = Let binds (scrungle body)
scrungle other = panic ("scrungleMatch: tuple pattern:\n" ++ showSDoc (ppr other))
\end{code}
%************************************************************************
%* *
\subsection[DsExprvarsandcons]{Variables, constructors, literals}
%* *
%************************************************************************
\begin{code}
dsLExpr :: LHsExpr Id -> DsM CoreExpr
dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e
dsExpr :: HsExpr Id -> DsM CoreExpr
dsExpr (HsPar e) = dsLExpr e
dsExpr (ExprWithTySigOut e _) = dsLExpr e
dsExpr (HsVar var) = return (Var var)
dsExpr (HsIPVar ip) = return (Var (ipNameName ip))
dsExpr (HsLit lit) = dsLit lit
dsExpr (HsOverLit lit) = dsOverLit lit
dsExpr (HsWrap co_fn e) = do { co_fn' <- dsHsWrapper co_fn
; e' <- dsExpr e
; return (co_fn' e') }
dsExpr (NegApp expr neg_expr)
= App <$> dsExpr neg_expr <*> dsLExpr expr
dsExpr (HsLam a_Match)
= uncurry mkLams <$> matchWrapper LambdaExpr a_Match
dsExpr (HsApp fun arg)
= mkCoreAppDs <$> dsLExpr fun <*> dsLExpr arg
\end{code}
Operator sections. At first it looks as if we can convert
\begin{verbatim}
(expr op)
\end{verbatim}
to
\begin{verbatim}
\x -> op expr x
\end{verbatim}
But no! expr might be a redex, and we can lose laziness badly this
way. Consider
\begin{verbatim}
map (expr op) xs
\end{verbatim}
for example. So we convert instead to
\begin{verbatim}
let y = expr in \x -> op y x
\end{verbatim}
If \tr{expr} is actually just a variable, say, then the simplifier
will sort it out.
\begin{code}
dsExpr (OpApp e1 op _ e2)
=
mkCoreAppsDs <$> dsLExpr op <*> mapM dsLExpr [e1, e2]
dsExpr (SectionL expr op)
= mkCoreAppDs <$> dsLExpr op <*> dsLExpr expr
dsExpr (SectionR op expr) = do
core_op <- dsLExpr op
let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
y_core <- dsLExpr expr
x_id <- newSysLocalDs x_ty
y_id <- newSysLocalDs y_ty
return (bindNonRec y_id y_core $
Lam x_id (mkCoreAppsDs core_op [Var x_id, Var y_id]))
dsExpr (ExplicitTuple tup_args boxity)
= do { let go (lam_vars, args) (Missing ty)
= do { lam_var <- newSysLocalDs ty
; return (lam_var : lam_vars, Var lam_var : args) }
go (lam_vars, args) (Present expr)
= do { core_expr <- dsLExpr expr
; return (lam_vars, core_expr : args) }
; (lam_vars, args) <- foldM go ([], []) (reverse tup_args)
; return $ mkCoreLams lam_vars $
mkConApp (tupleCon boxity (length tup_args))
(map (Type . exprType) args ++ args) }
dsExpr (HsSCC cc expr) = do
mod_name <- getModuleDs
Note (SCC (mkUserCC cc mod_name)) <$> dsLExpr expr
dsExpr (HsCoreAnn fs expr)
= Note (CoreNote $ unpackFS fs) <$> dsLExpr expr
dsExpr (HsCase discrim matches@(MatchGroup _ rhs_ty))
| isEmptyMatchGroup matches
=
mkErrorAppDs pAT_ERROR_ID (funResultTy rhs_ty) (ptext (sLit "case"))
| otherwise
= do { core_discrim <- dsLExpr discrim
; ([discrim_var], matching_code) <- matchWrapper CaseAlt matches
; return (scrungleMatch discrim_var core_discrim matching_code) }
dsExpr (HsLet binds body) = do
body' <- dsLExpr body
dsLocalBinds binds body'
dsExpr (HsDo ListComp stmts body result_ty)
=
dsListComp stmts body elt_ty
where
[elt_ty] = tcTyConAppArgs result_ty
dsExpr (HsDo DoExpr stmts body result_ty)
= dsDo stmts body result_ty
dsExpr (HsDo GhciStmt stmts body result_ty)
= dsDo stmts body result_ty
dsExpr (HsDo ctxt@(MDoExpr tbl) stmts body result_ty)
= do { (meth_binds, tbl') <- dsSyntaxTable tbl
; core_expr <- dsMDo ctxt tbl' stmts body result_ty
; return (mkLets meth_binds core_expr) }
dsExpr (HsDo PArrComp stmts body result_ty)
=
dsPArrComp (map unLoc stmts) body elt_ty
where
[elt_ty] = tcTyConAppArgs result_ty
dsExpr (HsIf mb_fun guard_expr then_expr else_expr)
= do { pred <- dsLExpr guard_expr
; b1 <- dsLExpr then_expr
; b2 <- dsLExpr else_expr
; case mb_fun of
Just fun -> do { core_fun <- dsExpr fun
; return (mkCoreApps core_fun [pred,b1,b2]) }
Nothing -> return $ mkIfThenElse pred b1 b2 }
\end{code}
\noindent
\underline{\bf Various data construction things}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (ExplicitList elt_ty xs)
= dsExplicitList elt_ty xs
dsExpr (ExplicitPArr ty []) = do
emptyP <- dsLookupGlobalId emptyPName
return (Var emptyP `App` Type ty)
dsExpr (ExplicitPArr ty xs) = do
singletonP <- dsLookupGlobalId singletonPName
appP <- dsLookupGlobalId appPName
xs' <- mapM dsLExpr xs
return . foldr1 (binary appP) $ map (unary singletonP) xs'
where
unary fn x = mkApps (Var fn) [Type ty, x]
binary fn x y = mkApps (Var fn) [Type ty, x, y]
dsExpr (ArithSeq expr (From from))
= App <$> dsExpr expr <*> dsLExpr from
dsExpr (ArithSeq expr (FromTo from to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, to]
dsExpr (ArithSeq expr (FromThen from thn))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn]
dsExpr (ArithSeq expr (FromThenTo from thn to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn, to]
dsExpr (PArrSeq expr (FromTo from to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, to]
dsExpr (PArrSeq expr (FromThenTo from thn to))
= mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn, to]
dsExpr (PArrSeq _ _)
= panic "DsExpr.dsExpr: Infinite parallel array!"
\end{code}
\noindent
\underline{\bf Record construction and update}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
T { op2 = e }
==>
let err = /\a -> recConErr a
T (recConErr t1 "M.lhs/230/op1")
e
(recConErr t1 "M.lhs/230/op3")
\end{verbatim}
@recConErr@ then converts its arugment string into a proper message
before printing it as
\begin{verbatim}
M.lhs, line 230: missing field op1 was evaluated
\end{verbatim}
We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.
\begin{code}
dsExpr (RecordCon (L _ data_con_id) con_expr rbinds) = do
con_expr' <- dsExpr con_expr
let
(arg_tys, _) = tcSplitFunTys (exprType con_expr')
mk_arg (arg_ty, lbl)
= case findField (rec_flds rbinds) lbl of
(rhs:rhss) -> ASSERT( null rhss )
dsLExpr rhs
[] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr lbl)
unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty empty
labels = dataConFieldLabels (idDataCon data_con_id)
con_args <- if null labels
then mapM unlabelled_bottom arg_tys
else mapM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels)
return (mkApps con_expr' con_args)
\end{code}
Record update is a little harder. Suppose we have the decl:
\begin{verbatim}
data T = T1 {op1, op2, op3 :: Int}
| T2 {op4, op2 :: Int}
| T3
\end{verbatim}
Then we translate as follows:
\begin{verbatim}
r { op2 = e }
===>
let op2 = e in
case r of
T1 op1 _ op3 -> T1 op1 op2 op3
T2 op4 _ -> T2 op4 op2
other -> recUpdError "M.lhs/230"
\end{verbatim}
It's important that we use the constructor Ids for @T1@, @T2@ etc on the
RHSs, and do not generate a Core constructor application directly, because the constructor
might do some argumentevaluation first; and may have to throw away some
dictionaries.
Note [Update for GADTs]
~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a b where
T1 { f1 :: a } :: T a Int
Then the wrapper function for T1 has type
$WT1 :: a -> T a Int
But if x::T a b, then
x { f1 = v } :: T a b (not T a Int!)
So we need to cast (T a Int) to (T a b). Sigh.
\begin{code}
dsExpr expr@(RecordUpd record_expr (HsRecFields { rec_flds = fields })
cons_to_upd in_inst_tys out_inst_tys)
| null fields
= dsLExpr record_expr
| otherwise
= ASSERT2( notNull cons_to_upd, ppr expr )
do { record_expr' <- dsLExpr record_expr
; field_binds' <- mapM ds_field fields
; let upd_fld_env :: NameEnv Id
upd_fld_env = mkNameEnv [(f,l) | (f,l,_) <- field_binds']
; alts <- mapM (mk_alt upd_fld_env) cons_to_upd
; ([discrim_var], matching_code)
<- matchWrapper RecUpd (MatchGroup alts in_out_ty)
; return (add_field_binds field_binds' $
bindNonRec discrim_var record_expr' matching_code) }
where
ds_field :: HsRecField Id (LHsExpr Id) -> DsM (Name, Id, CoreExpr)
ds_field rec_field = do { rhs <- dsLExpr (hsRecFieldArg rec_field)
; let fld_id = unLoc (hsRecFieldId rec_field)
; lcl_id <- newSysLocalDs (idType fld_id)
; return (idName fld_id, lcl_id, rhs) }
add_field_binds [] expr = expr
add_field_binds ((_,b,r):bs) expr = bindNonRec b r (add_field_binds bs expr)
tycon = dataConTyCon (head cons_to_upd)
in_ty = mkTyConApp tycon in_inst_tys
in_out_ty = mkFunTy in_ty (mkFamilyTyConApp tycon out_inst_tys)
mk_alt upd_fld_env con
= do { let (univ_tvs, ex_tvs, eq_spec,
eq_theta, dict_theta, arg_tys, _) = dataConFullSig con
subst = mkTopTvSubst (univ_tvs `zip` in_inst_tys)
; eqs_vars <- mapM newPredVarDs (substTheta subst (eqSpecPreds eq_spec))
; theta_vars <- mapM newPredVarDs (substTheta subst (eq_theta ++ dict_theta))
; arg_ids <- newSysLocalsDs (substTys subst arg_tys)
; let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
(dataConFieldLabels con) arg_ids
mk_val_arg field_name pat_arg_id
= nlHsVar (lookupNameEnv upd_fld_env field_name `orElse` pat_arg_id)
inst_con = noLoc $ HsWrap wrap (HsVar (dataConWrapId con))
wrap = mkWpEvVarApps theta_vars `WpCompose`
mkWpTyApps (mkTyVarTys ex_tvs) `WpCompose`
mkWpTyApps [ty | (tv, ty) <- univ_tvs `zip` out_inst_tys
, isNothing (lookupTyVar wrap_subst tv) ]
rhs = foldl (\a b -> nlHsApp a b) inst_con val_args
wrapped_rhs | null eq_spec = rhs
| otherwise = mkLHsWrap (WpCast wrap_co) rhs
wrap_co = mkTyConApp tycon [ lookup tv ty
| (tv,ty) <- univ_tvs `zip` out_inst_tys]
lookup univ_tv ty = case lookupTyVar wrap_subst univ_tv of
Just ty' -> ty'
Nothing -> ty
wrap_subst = mkTopTvSubst [ (tv,mkSymCoercion (mkTyVarTy co_var))
| ((tv,_),co_var) <- eq_spec `zip` eqs_vars ]
pat = noLoc $ ConPatOut { pat_con = noLoc con, pat_tvs = ex_tvs
, pat_dicts = eqs_vars ++ theta_vars
, pat_binds = emptyTcEvBinds
, pat_args = PrefixCon $ map nlVarPat arg_ids
, pat_ty = in_ty }
; return (mkSimpleMatch [pat] wrapped_rhs) }
\end{code}
Here is where we desugar the Template Haskell brackets and escapes
\begin{code}
#ifdef GHCI /* Only if bootstrapping */
dsExpr (HsBracketOut x ps) = dsBracket x ps
dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s)
#endif
dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
\end{code}
Hpc Support
\begin{code}
dsExpr (HsTick ix vars e) = do
e' <- dsLExpr e
mkTickBox ix vars e'
dsExpr (HsBinTick ixT ixF e) = do
e2 <- dsLExpr e
do { ASSERT(exprType e2 `coreEqType` boolTy)
mkBinaryTickBox ixT ixF e2
}
\end{code}
\begin{code}
dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig"
findField :: [HsRecField Id arg] -> Name -> [arg]
findField rbinds lbl
= [rhs | HsRecField { hsRecFieldId = id, hsRecFieldArg = rhs } <- rbinds
, lbl == idName (unLoc id) ]
\end{code}
%--------------------------------------------------------------------
Note [Desugaring explicit lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Explicit lists are desugared in a cleverer way to prevent some
fruitless allocations. Essentially, whenever we see a list literal
[x_1, ..., x_n] we:
1. Find the tail of the list that can be allocated statically (say
[x_k, ..., x_n]) by later stages and ensure we desugar that
normally: this makes sure that we don't cause a code size increase
by having the cons in that expression fused (see later) and hence
being unable to statically allocate any more
2. For the prefix of the list which cannot be allocated statically,
say [x_1, ..., x_(k1)], we turn it into an expression involving
build so that if we find any foldrs over it it will fuse away
entirely!
So in this example we will desugar to:
build (\c n -> x_1 `c` x_2 `c` .... `c` foldr c n [x_k, ..., x_n]
If fusion fails to occur then build will get inlined and (since we
defined a RULE for foldr (:) []) we will get back exactly the
normal desugaring for an explicit list.
This optimisation can be worth a lot: up to 25% of the total
allocation in some nofib programs. Specifically
Program Size Allocs Runtime CompTime
rewrite +0.0% 26.3% 0.02 1.8%
ansi 0.3% 13.8% 0.00 +0.0%
lift +0.0% 8.7% 0.00 2.3%
Of course, if rules aren't turned on then there is pretty much no
point doing this fancy stuff, and it may even be harmful.
=======> Note by SLPJ Dec 08.
I'm unconvinced that we should *ever* generate a build for an explicit
list. See the comments in GHC.Base about the foldr/cons rule, which
points out that (foldr k z [a,b,c]) may generate *much* less code than
(a `k` b `k` c `k` z).
Furthermore generating builds messes up the LHS of RULES.
Example: the foldr/single rule in GHC.Base
foldr k z [x] = ...
We do not want to generate a build invocation on the LHS of this RULE!
We fix this by disabling rules in rule LHSs, and testing that
flag here; see Note [Desugaring RULE left hand sides] in Desugar
To test this I've added a (static) flag fsimplelistliterals, which
makes all list literals be generated via the simple route.
\begin{code}
dsExplicitList :: PostTcType -> [LHsExpr Id] -> DsM CoreExpr
dsExplicitList elt_ty xs
= do { dflags <- getDOptsDs
; xs' <- mapM dsLExpr xs
; let (dynamic_prefix, static_suffix) = spanTail is_static xs'
; if opt_SimpleListLiterals
|| not (dopt Opt_EnableRewriteRules dflags)
|| null dynamic_prefix
then return $ mkListExpr elt_ty xs'
else mkBuildExpr elt_ty (mkSplitExplicitList dynamic_prefix static_suffix) }
where
is_static :: CoreExpr -> Bool
is_static e = all is_static_var (varSetElems (exprFreeVars e))
is_static_var :: Var -> Bool
is_static_var v
| isId v = isExternalName (idName v)
| otherwise = False
mkSplitExplicitList prefix suffix (c, _) (n, n_ty)
= do { let suffix' = mkListExpr elt_ty suffix
; folded_suffix <- mkFoldrExpr elt_ty n_ty (Var c) (Var n) suffix'
; return (foldr (App . App (Var c)) folded_suffix prefix) }
spanTail :: (a -> Bool) -> [a] -> ([a], [a])
spanTail f xs = (reverse rejected, reverse satisfying)
where (satisfying, rejected) = span f $ reverse xs
\end{code}
Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
handled in DsListComp). Basically does the translation given in the
Haskell 98 report:
\begin{code}
dsDo :: [LStmt Id]
-> LHsExpr Id
-> Type
-> DsM CoreExpr
dsDo stmts body result_ty
= goL stmts
where
(m_ty, _b_ty) = tcSplitAppTy result_ty
goL [] = dsLExpr body
goL ((L loc stmt):lstmts) = putSrcSpanDs loc (go loc stmt lstmts)
go _ (ExprStmt rhs then_expr _) stmts
= do { rhs2 <- dsLExpr rhs
; case tcSplitAppTy_maybe (exprType rhs2) of
Just (container_ty, returning_ty) -> warnDiscardedDoBindings rhs container_ty returning_ty
_ -> return ()
; then_expr2 <- dsExpr then_expr
; rest <- goL stmts
; return (mkApps then_expr2 [rhs2, rest]) }
go _ (LetStmt binds) stmts
= do { rest <- goL stmts
; dsLocalBinds binds rest }
go _ (BindStmt pat rhs bind_op fail_op) stmts
= do { body <- goL stmts
; rhs' <- dsLExpr rhs
; bind_op' <- dsExpr bind_op
; var <- selectSimpleMatchVarL pat
; let bind_ty = exprType bind_op'
res1_ty = funResultTy (funArgTy (funResultTy bind_ty))
; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
res1_ty (cantFailMatchResult body)
; match_code <- handle_failure pat match fail_op
; return (mkApps bind_op' [rhs', Lam var match_code]) }
go loc (RecStmt { recS_stmts = rec_stmts, recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_ret_fn = return_op
, recS_mfix_fn = mfix_op, recS_bind_fn = bind_op
, recS_rec_rets = rec_rets, recS_dicts = _ev_binds }) stmts
= ASSERT( length rec_ids > 0 )
ASSERT( isEmptyTcEvBinds _ev_binds )
goL (new_bind_stmt : stmts)
where
new_bind_stmt = L loc $ BindStmt (mkLHsPatTup later_pats) mfix_app
bind_op
noSyntaxExpr
tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids
rec_tup_pats = map nlVarPat tup_ids
later_pats = rec_tup_pats
rets = map noLoc rec_rets
mfix_app = nlHsApp (noLoc mfix_op) mfix_arg
mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body]
(mkFunTy tup_ty body_ty))
mfix_pat = noLoc $ LazyPat $ mkLHsPatTup rec_tup_pats
body = noLoc $ HsDo DoExpr rec_stmts return_app body_ty
return_app = nlHsApp (noLoc return_op) (mkLHsTupleExpr rets)
body_ty = mkAppTy m_ty tup_ty
tup_ty = mkBoxedTupleTy (map idType tup_ids)
handle_failure pat match fail_op
| matchCanFail match
= do { fail_op' <- dsExpr fail_op
; fail_msg <- mkStringExpr (mk_fail_msg pat)
; extractMatchResult match (App fail_op' fail_msg) }
| otherwise
= extractMatchResult match (error "It can't fail")
mk_fail_msg :: Located e -> String
mk_fail_msg pat = "Pattern match failure in do expression at " ++
showSDoc (ppr (getLoc pat))
\end{code}
Translation for RecStmt's:
We turn (RecStmt [v1,..vn] stmts) into:
(v1,..,vn) <- mfix (\~(v1,..vn). do stmts
return (v1,..vn))
\begin{code}
dsMDo :: HsStmtContext Name
-> [(Name,Id)]
-> [LStmt Id]
-> LHsExpr Id
-> Type
-> DsM CoreExpr
dsMDo ctxt tbl stmts body result_ty
= goL stmts
where
goL [] = dsLExpr body
goL ((L loc stmt):lstmts) = putSrcSpanDs loc (go loc stmt lstmts)
(m_ty, b_ty) = tcSplitAppTy result_ty
mfix_id = lookupEvidence tbl mfixName
return_id = lookupEvidence tbl returnMName
bind_id = lookupEvidence tbl bindMName
then_id = lookupEvidence tbl thenMName
fail_id = lookupEvidence tbl failMName
go _ (LetStmt binds) stmts
= do { rest <- goL stmts
; dsLocalBinds binds rest }
go _ (ExprStmt rhs _ rhs_ty) stmts
= do { rhs2 <- dsLExpr rhs
; warnDiscardedDoBindings rhs m_ty rhs_ty
; rest <- goL stmts
; return (mkApps (Var then_id) [Type rhs_ty, Type b_ty, rhs2, rest]) }
go _ (BindStmt pat rhs _ _) stmts
= do { body <- goL stmts
; var <- selectSimpleMatchVarL pat
; match <- matchSinglePat (Var var) (StmtCtxt ctxt) pat
result_ty (cantFailMatchResult body)
; fail_msg <- mkStringExpr (mk_fail_msg pat)
; let fail_expr = mkApps (Var fail_id) [Type b_ty, fail_msg]
; match_code <- extractMatchResult match fail_expr
; rhs' <- dsLExpr rhs
; return (mkApps (Var bind_id) [Type (hsLPatType pat), Type b_ty,
rhs', Lam var match_code]) }
go loc (RecStmt { recS_stmts = rec_stmts, recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_rec_rets = rec_rets
, recS_dicts = _ev_binds }) stmts
= ASSERT( length rec_ids > 0 )
ASSERT( length rec_ids == length rec_rets )
ASSERT( isEmptyTcEvBinds _ev_binds )
pprTrace "dsMDo" (ppr later_ids) $
goL (new_bind_stmt : stmts)
where
new_bind_stmt = L loc $ mkBindStmt (mk_tup_pat later_pats) mfix_app
later_ids' = filter (`notElem` mono_rec_ids) later_ids
mono_rec_ids = [ id | HsVar id <- rec_rets ]
mfix_app = nlHsApp (nlHsTyApp mfix_id [tup_ty]) mfix_arg
mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body]
(mkFunTy tup_ty body_ty))
rec_tup_pats = map mk_wild_pat later_ids' ++ map nlVarPat rec_ids
later_pats = map nlVarPat later_ids' ++ map mk_later_pat rec_ids
rets = map nlHsVar later_ids' ++ map noLoc rec_rets
mfix_pat = noLoc $ LazyPat $ mk_tup_pat rec_tup_pats
body = noLoc $ HsDo ctxt rec_stmts return_app body_ty
body_ty = mkAppTy m_ty tup_ty
tup_ty = mkBoxedTupleTy (map idType (later_ids' ++ rec_ids))
return_app = nlHsApp (nlHsTyApp return_id [tup_ty])
(mkLHsTupleExpr rets)
mk_wild_pat :: Id -> LPat Id
mk_wild_pat v = noLoc $ WildPat $ idType v
mk_later_pat :: Id -> LPat Id
mk_later_pat v | v `elem` later_ids' = mk_wild_pat v
| otherwise = nlVarPat v
mk_tup_pat :: [LPat Id] -> LPat Id
mk_tup_pat [p] = p
mk_tup_pat ps = noLoc $ mkVanillaTuplePat ps Boxed
\end{code}
%************************************************************************
%* *
\subsection{Errors and contexts}
%* *
%************************************************************************
\begin{code}
warnDiscardedDoBindings :: LHsExpr Id -> Type -> Type -> DsM ()
warnDiscardedDoBindings rhs container_ty returning_ty = do {
; warn_unused <- doptDs Opt_WarnUnusedDoBind
; if warn_unused && not (returning_ty `tcEqType` unitTy)
then warnDs (unusedMonadBind rhs returning_ty)
else do {
; warn_wrong <- doptDs Opt_WarnWrongDoBind
; case tcSplitAppTy_maybe returning_ty of
Just (returning_container_ty, _) -> when (warn_wrong && container_ty `tcEqType` returning_container_ty) $
warnDs (wrongMonadBind rhs returning_ty)
_ -> return () } }
unusedMonadBind :: LHsExpr Id -> Type -> SDoc
unusedMonadBind rhs returning_ty
= ptext (sLit "A do-notation statement discarded a result of type") <+> ppr returning_ty <> dot $$
ptext (sLit "Suppress this warning by saying \"_ <- ") <> ppr rhs <> ptext (sLit "\",") $$
ptext (sLit "or by using the flag -fno-warn-unused-do-bind")
wrongMonadBind :: LHsExpr Id -> Type -> SDoc
wrongMonadBind rhs returning_ty
= ptext (sLit "A do-notation statement discarded a result of type") <+> ppr returning_ty <> dot $$
ptext (sLit "Suppress this warning by saying \"_ <- ") <> ppr rhs <> ptext (sLit "\",") $$
ptext (sLit "or by using the flag -fno-warn-wrong-do-bind")
\end{code}