%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
Patternmatching constructors
\begin{code}
module MatchCon ( matchConFamily ) where
#include "HsVersions.h"
import Match ( match )
import HsSyn
import DsBinds
import DataCon
import TcType
import DsMonad
import DsUtils
import Util ( all2, takeList, zipEqual )
import ListSetOps ( runs )
import Id
import Var ( Var )
import NameEnv
import SrcLoc
import Outputable
\end{code}
We are confronted with the first column of patterns in a set of
equations, all beginning with constructors from one ``family'' (e.g.,
@[]@ and @:@ make up the @List@ ``family''). We want to generate the
alternatives for a @Case@ expression. There are several choices:
\begin{enumerate}
\item
Generate an alternative for every constructor in the family, whether
they are used in this set of equations or not; this is what the Wadler
chapter does.
\begin{description}
\item[Advantages:]
(a)~Simple. (b)~It may also be that large sparselyused constructor
families are mainly handled by the code for literals.
\item[Disadvantages:]
(a)~Not practical for large sparselyused constructor families, e.g.,
the ASCII character set. (b)~Have to look up a list of what
constructors make up the whole family.
\end{description}
\item
Generate an alternative for each constructor used, then add a default
alternative in case some constructors in the family weren't used.
\begin{description}
\item[Advantages:]
(a)~Alternatives aren't generated for unused constructors. (b)~The
STG is quite happy with defaults. (c)~No lookup in an environment needed.
\item[Disadvantages:]
(a)~A spurious default alternative may be generated.
\end{description}
\item
``Do it right:'' generate an alternative for each constructor used,
and add a default alternative if all constructors in the family
weren't used.
\begin{description}
\item[Advantages:]
(a)~You will get cases with only one alternative (and no default),
which should be amenable to optimisation. Tuples are a common example.
\item[Disadvantages:]
(b)~Have to look up constructor families in TDE (as above).
\end{description}
\end{enumerate}
We are implementing the ``doitright'' option for now. The arguments
to @matchConFamily@ are the same as to @match@; the extra @Int@
returned is the number of constructors in the family.
The function @matchConFamily@ is concerned with this
haveweusedalltheconstructors? question; the local function
@match_cons_used@ does all the real work.
\begin{code}
matchConFamily :: [Id]
-> Type
-> [[EquationInfo]]
-> DsM MatchResult
matchConFamily (var:vars) ty groups
= do { alts <- mapM (matchOneCon vars ty) groups
; return (mkCoAlgCaseMatchResult var ty alts) }
type ConArgPats = HsConDetails (LPat Id) (HsRecFields Id (LPat Id))
matchOneCon :: [Id]
-> Type
-> [EquationInfo]
-> DsM (DataCon, [Var], MatchResult)
matchOneCon vars ty (eqn1 : eqns)
= do { arg_vars <- selectConMatchVars arg_tys args1
; let groups :: [[(ConArgPats, EquationInfo)]]
groups = runs compatible_pats [ (pat_args (firstPat eqn), eqn)
| eqn <- eqn1:eqns ]
; match_results <- mapM (match_group arg_vars) groups
; return (con1, tvs1 ++ dicts1 ++ arg_vars,
foldr1 combineMatchResults match_results) }
where
ConPatOut { pat_con = L _ con1, pat_ty = pat_ty1,
pat_tvs = tvs1, pat_dicts = dicts1, pat_args = args1 }
= firstPat eqn1
fields1 = dataConFieldLabels con1
arg_tys = dataConInstOrigArgTys con1 inst_tys
inst_tys = tcTyConAppArgs pat_ty1 ++
mkTyVarTys (takeList (dataConExTyVars con1) tvs1)
match_group :: [Id] -> [(ConArgPats, EquationInfo)] -> DsM MatchResult
match_group arg_vars arg_eqn_prs
= do { (wraps, eqns') <- mapAndUnzipM shift arg_eqn_prs
; let group_arg_vars = select_arg_vars arg_vars arg_eqn_prs
; match_result <- match (group_arg_vars ++ vars) ty eqns'
; return (adjustMatchResult (foldr1 (.) wraps) match_result) }
shift (_, eqn@(EqnInfo { eqn_pats = ConPatOut{ pat_tvs = tvs, pat_dicts = ds,
pat_binds = bind, pat_args = args
} : pats }))
= do { ds_ev_binds <- dsTcEvBinds bind
; return (wrapBinds (tvs `zip` tvs1)
. wrapBinds (ds `zip` dicts1)
. wrapDsEvBinds ds_ev_binds,
eqn { eqn_pats = conArgPats arg_tys args ++ pats }) }
select_arg_vars arg_vars ((arg_pats, _) : _)
| RecCon flds <- arg_pats
, let rpats = rec_flds flds
, not (null rpats)
= ASSERT2( length fields1 == length arg_vars,
ppr con1 $$ ppr fields1 $$ ppr arg_vars )
map lookup_fld rpats
| otherwise
= arg_vars
where
fld_var_env = mkNameEnv $ zipEqual "get_arg_vars" fields1 arg_vars
lookup_fld rpat = lookupNameEnv_NF fld_var_env
(idName (unLoc (hsRecFieldId rpat)))
compatible_pats :: (ConArgPats,a) -> (ConArgPats,a) -> Bool
compatible_pats (RecCon flds1, _) (RecCon flds2, _) = same_fields flds1 flds2
compatible_pats (RecCon flds1, _) _ = null (rec_flds flds1)
compatible_pats _ (RecCon flds2, _) = null (rec_flds flds2)
compatible_pats _ _ = True
same_fields :: HsRecFields Id (LPat Id) -> HsRecFields Id (LPat Id) -> Bool
same_fields flds1 flds2
= all2 (\f1 f2 -> unLoc (hsRecFieldId f1) == unLoc (hsRecFieldId f2))
(rec_flds flds1) (rec_flds flds2)
selectConMatchVars :: [Type] -> ConArgPats -> DsM [Id]
selectConMatchVars arg_tys (RecCon {}) = newSysLocalsDs arg_tys
selectConMatchVars _ (PrefixCon ps) = selectMatchVars (map unLoc ps)
selectConMatchVars _ (InfixCon p1 p2) = selectMatchVars [unLoc p1, unLoc p2]
conArgPats :: [Type]
-> ConArgPats
-> [Pat Id]
conArgPats _arg_tys (PrefixCon ps) = map unLoc ps
conArgPats _arg_tys (InfixCon p1 p2) = [unLoc p1, unLoc p2]
conArgPats arg_tys (RecCon (HsRecFields { rec_flds = rpats }))
| null rpats = map WildPat arg_tys
| otherwise = map (unLoc . hsRecFieldArg) rpats
\end{code}
Note [Record patterns]
~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = T { x,y,z :: Bool }
f (T { y=True, x=False }) = ...
We must match the patterns IN THE ORDER GIVEN, thus for the first
one we match y=True before x=False. See Trac #246; or imagine
matching against (T { y=False, x=undefined }): should fail without
touching the undefined.
Now consider:
f (T { y=True, x=False }) = ...
f (T { x=True, y= False}) = ...
In the first we must test y first; in the second we must test x
first. So we must divide even the equations for a single constructor
T into subgoups, based on whether they match the same field in the
same order. That's what the (runs compatible_pats) grouping.
All nonrecord patterns are "compatible" in this sense, because the
positional patterns (T a b) and (a `T` b) all match the arguments
in order. Also T {} is special because it's equivalent to (T _ _).
Hence the (null rpats) checks here and there.
Note [Existentials in shift_con_pat]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = forall a. Ord a => T a (a->Int)
f (T x f) True = ...expr1...
f (T y g) False = ...expr2..
When we put in the tyvars etc we get
f (T a (d::Ord a) (x::a) (f::a->Int)) True = ...expr1...
f (T b (e::Ord b) (y::a) (g::a->Int)) True = ...expr2...
After desugaring etc we'll get a single case:
f = \t::T b::Bool ->
case t of
T a (d::Ord a) (x::a) (f::a->Int)) ->
case b of
True -> ...expr1...
False -> ...expr2...
*** We have to substitute [a/b, d/e] in expr2! **
Hence
False -> ....((/\b\(e:Ord b).expr2) a d)....
Originally I tried to use
(\b -> let e = d in expr2) a
to do this substitution. While this is "correct" in a way, it fails
Lint, because e::Ord b but d::Ord a.