%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
TcInstDecls: Typechecking instance declarations
\begin{code}
module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
import HsSyn
import TcBinds
import TcTyClsDecls
import TcClassDcl
import TcPat( addInlinePrags )
import TcRnMonad
import TcMType
import TcType
import Inst
import InstEnv
import FamInst
import FamInstEnv
import MkCore ( nO_METHOD_BINDING_ERROR_ID )
import TcDeriv
import TcEnv
import RnSource ( addTcgDUs )
import TcSimplify( simplifySuperClass )
import TcHsType
import TcUnify
import Type
import Coercion
import TyCon
import DataCon
import Class
import Var
import CoreUtils ( mkPiTypes )
import CoreUnfold ( mkDFunUnfolding )
import CoreSyn ( Expr(Var) )
import Id
import MkId
import Name
import NameSet
import DynFlags
import SrcLoc
import Util
import Outputable
import Bag
import BasicTypes
import HscTypes
import FastString
import Maybes ( orElse )
import Data.Maybe
import Control.Monad
import Data.List
#include "HsVersions.h"
\end{code}
Typechecking instance declarations is done in two passes. The first
pass, made by @tcInstDecls1@, collects information to be used in the
second pass.
This preprocessed info includes the asyetunprocessed bindings
inside the instance declaration. These are typechecked in the second
pass, when the classinstance envs and GVE contain all the info from
all the instance and value decls. Indeed that's the reason we need
two passes over the instance decls.
Note [How instance declarations are translated]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how we translation instance declarations into Core
Running example:
class C a where
op1, op2 :: Ix b => a -> b -> b
op2 = <dmrhs>
instance C a => C [a]
op1 = <rhs>
===>
op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
op1 = ...
op2 = ...
$dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
$dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dmrhs>
op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
op1_i = /\a. \(d:C a).
let this :: C [a]
this = df_i a d
local_op1 :: forall b. Ix b => [a] -> b -> b
local_op1 = <rhs>
in local_op1 a d
op2_i = /\a \d:C a. $dmop2 [a] (df_i a d)
df_i :: forall a. C a -> C [a]
df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
Note [Instances and loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Note that df_i may be mutually recursive with both op1_i and op2_i.
It's crucial that df_i is not chosen as the loop breaker, even
though op1_i has a (userspecified) INLINE pragma.
* Instead the idea is to inline df_i into op1_i, which may then select
methods from the MkC record, and thereby break the recursion with
df_i, leaving a *self*-recurisve op1_i. (If op1_i doesn't call op at
the same type, it won't mention df_i, so there won't be recursion in
the first place.)
* If op1_i is marked INLINE by the user there's a danger that we won't
inline df_i in it, and that in turn means that (since it'll be a
loopbreaker because df_i isn't), op1_i will ironically never be
inlined. But this is OK: the recursion breaking happens by way of
a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils
Note [ClassOp/DFun selection]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One thing we see a lot is stuff like
op2 (df d1 d2)
where 'op2' is a ClassOp and 'df' is DFun. Now, we could inline *both*
'op2' and 'df' to get
case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
MkD _ op2 _ _ _ -> op2
And that will reduce to ($cop2 d1 d2) which is what we wanted.
But it's tricky to make this work in practice, because it requires us to
inline both 'op2' and 'df'. But neither is keen to inline without having
seen the other's result; and it's very easy to get code bloat (from the
big intermediate) if you inline a bit too much.
Instead we use a cunning trick.
* We arrange that 'df' and 'op2' NEVER inline.
* We arrange that 'df' is ALWAYS defined in the sylised form
df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...
* We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
that lists its methods.
* We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
a suitable constructor application
were.
* We give the ClassOp 'op2' a BuiltinRule that extracts the right piece
iff its argument satisfies exprIsConApp_maybe. This is done in
MkId mkDictSelId
* We make 'df' CONLIKE, so that shared uses stil match; eg
let d = df d1 d2
in ...(op2 d)...(op1 d)...
Note [Singlemethod classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the class has just one method (or, more accurately, just one element
of {superclasses + methods}), then we still use the *same* strategy
class C a where op :: a -> a
instance C a => C [a] where op = <blah>
We translate the class decl into a newtype, which just gives
a toplevel axiom:
axiom Co:C a :: C a ~ (a->a)
op :: forall a. C a -> (a -> a)
op a d = d |> (Co:C a)
MkC :: forall a. (a->a) -> C a
MkC = /\a.\op. op |> (sym Co:C a)
df :: forall a. C a => C [a]
df = /\a. \d. MkC ($cop_list a d)
$cop_list :: forall a. C a => [a] -> [a]
$cop_list = <blah>
The "constructor" MkC expands to a cast, as does the classop selector.
The RULE works just like for multifield dictionaries:
* (df a d) returns (Just (MkC,..,[$cop_list a d]))
to exprIsConApp_Maybe
* The RULE for op picks the right result
This is a bit of a hack, because (df a d) isn't *really* a constructor
application. But it works just fine in this case, exprIsConApp_maybe
is otherwise used only when we hit a case expression which will have
a real data constructor in it.
The biggest reason for doing it this way, apart from uniformity, is
that we want to be very careful when we have
instance C a => C [a] where
op = ...
then we'll get an INLINE pragma on $cop_list but it's important that
$cop_list only inlines when it's applied to *two* arguments (the
dictionary and the list argument
The danger is that we'll get something like
op_list :: C a => [a] -> [a]
op_list = /\a.\d. $cop_list a d
and then we'll eta expand, and then we'll inline TOO EARLY. This happened in
Trac #3772 and I spent far too long fiddling around trying to fix it.
Look at the test for Trac #3772.
(Note: rereading the above, I can't see how using the
uniform story solves the problem.)
Note [Subtle interaction of recursion and overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
class C a where { op1,op2 :: a -> a }
instance C a => C [a] where
op1 x = op2 x ++ op2 x
op2 x = ...
instance C [Int] where
...
When typechecking the C [a] instance, we need a C [a] dictionary (for
the call of op2). If we look up in the instance environment, we find
an overlap. And in *general* the right thing is to complain (see Note
[Overlapping instances] in InstEnv). But in *this* case it's wrong to
complain, because we just want to delegate to the op2 of this same
instance.
Why is this justified? Because we generate a (C [a]) constraint in
a context in which 'a' cannot be instantiated to anything that matches
other overlapping instances, or else we would not be excecuting this
version of op1 in the first place.
It might even be a bit disguised:
nullFail :: C [a] => [a] -> [a]
nullFail x = op2 x ++ op2 x
instance C a => C [a] where
op1 x = nullFail x
Precisely this is used in package 'regexbase', module Context.hs.
See the overlapping instances for RegexContext, and the fact that they
call 'nullFail' just like the example above. The DoCon package also
does the same thing; it shows up in module Fraction.hs
Conclusion: when typechecking the methods in a C [a] instance, we want
to have C [a] available. That is why we have the strange local
definition for 'this' in the definition of op1_i in the example above.
We can typecheck the defintion of local_op1, and when doing tcSimplifyCheck
we supply 'this' as a given dictionary. Only needed, though, if there
are some type variables involved; otherwise there can be no overlap and
none of this arises.
Note [Tricky type variable scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In our example
class C a where
op1, op2 :: Ix b => a -> b -> b
op2 = <dmrhs>
instance C a => C [a]
op1 = <rhs>
note that 'a' and 'b' are *both* in scope in <dmrhs>, but only 'a' is
in scope in <rhs>. In particular, we must make sure that 'b' is in
scope when typechecking <dmrhs>. This is achieved by subFunTys,
which brings appropriate tyvars into scope. This happens for both
<dmrhs> and for <rhs>, but that doesn't matter: the *renamer* will have
complained if 'b' is mentioned in <rhs>.
%************************************************************************
%* *
\subsection{Extracting instance decls}
%* *
%************************************************************************
Gather up the instance declarations from their various sources
\begin{code}
tcInstDecls1
:: [LTyClDecl Name]
-> [LInstDecl Name]
-> [LDerivDecl Name]
-> TcM (TcGblEnv,
[InstInfo Name],
HsValBinds Name)
tcInstDecls1 tycl_decls inst_decls deriv_decls
= checkNoErrs $
do {
; idx_tycons <- mapAndRecoverM (tcFamInstDecl TopLevel) $
filter (isFamInstDecl . unLoc) tycl_decls
; local_info_tycons <- mapAndRecoverM tcLocalInstDecl1 inst_decls
; let { (local_info,
at_tycons_s) = unzip local_info_tycons
; at_idx_tycons = concat at_tycons_s ++ idx_tycons
; clas_decls = filter (isClassDecl.unLoc) tycl_decls
; implicit_things = concatMap implicitTyThings at_idx_tycons
; aux_binds = mkRecSelBinds at_idx_tycons
}
; tcExtendGlobalEnv (at_idx_tycons ++ implicit_things) $ do {
; generic_inst_info <- getGenericInstances clas_decls
; addInsts local_info $
addInsts generic_inst_info $
addFamInsts at_idx_tycons $ do {
failIfErrsM
; (deriv_inst_info, deriv_binds, deriv_dus)
<- tcDeriving tycl_decls inst_decls deriv_decls
; gbl_env <- addInsts deriv_inst_info getGblEnv
; return ( addTcgDUs gbl_env deriv_dus,
generic_inst_info ++ deriv_inst_info ++ local_info,
aux_binds `plusHsValBinds` deriv_binds)
}}}
addInsts :: [InstInfo Name] -> TcM a -> TcM a
addInsts infos thing_inside
= tcExtendLocalInstEnv (map iSpec infos) thing_inside
addFamInsts :: [TyThing] -> TcM a -> TcM a
addFamInsts tycons thing_inside
= tcExtendLocalFamInstEnv (map mkLocalFamInstTyThing tycons) thing_inside
where
mkLocalFamInstTyThing (ATyCon tycon) = mkLocalFamInst tycon
mkLocalFamInstTyThing tything = pprPanic "TcInstDcls.addFamInsts"
(ppr tything)
\end{code}
\begin{code}
tcLocalInstDecl1 :: LInstDecl Name
-> TcM (InstInfo Name, [TyThing])
tcLocalInstDecl1 (L loc (InstDecl poly_ty binds uprags ats))
= setSrcSpan loc $
addErrCtxt (instDeclCtxt1 poly_ty) $
do { is_boot <- tcIsHsBoot
; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
badBootDeclErr
; (tyvars, theta, tau) <- tcHsInstHead poly_ty
; (clas, inst_tys) <- checkValidInstance poly_ty tyvars theta tau
; idx_tycons <- recoverM (return []) $
do { idx_tycons <- checkNoErrs $
mapAndRecoverM (tcFamInstDecl NotTopLevel) ats
; checkValidAndMissingATs clas (tyvars, inst_tys)
(zip ats idx_tycons)
; return idx_tycons }
; dfun_name <- newDFunName clas inst_tys (getLoc poly_ty)
; overlap_flag <- getOverlapFlag
; let (eq_theta,dict_theta) = partition isEqPred theta
theta' = eq_theta ++ dict_theta
dfun = mkDictFunId dfun_name tyvars theta' clas inst_tys
ispec = mkLocalInstance dfun overlap_flag
; return (InstInfo { iSpec = ispec,
iBinds = VanillaInst binds uprags False },
idx_tycons)
}
where
checkValidAndMissingATs :: Class
-> ([TyVar], [TcType])
-> [(LTyClDecl Name,
TyThing)]
-> TcM ()
checkValidAndMissingATs clas inst_tys ats
= do {
; let class_ats = map tyConName (classATs clas)
defined_ats = listToNameSet . map (tcdName.unLoc.fst) $ ats
omitted = filterOut (`elemNameSet` defined_ats) class_ats
; warn <- doptM Opt_WarnMissingMethods
; mapM_ (warnTc warn . omittedATWarn) omitted
; mapM_ (checkIndexes clas inst_tys) ats
}
checkIndexes clas inst_tys (hsAT, ATyCon tycon)
= checkIndexes' clas inst_tys hsAT
(tyConTyVars tycon,
snd . fromJust . tyConFamInst_maybe $ tycon)
checkIndexes _ _ _ = panic "checkIndexes"
checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
= let atName = tcdName . unLoc $ hsAT
in
setSrcSpan (getLoc hsAT) $
addErrCtxt (atInstCtxt atName) $
case find ((atName ==) . tyConName) (classATs clas) of
Nothing -> addErrTc $ badATErr clas atName
Just atycon ->
let poss :: [Int]
poss = catMaybes [ tv `elemIndex` classTyVars clas
| tv <- tyConTyVars atycon]
relevantInstTys = map (instTys !!) poss
instArgs = map Just relevantInstTys ++
repeat Nothing
renaming = substSameTyVar atTvs instTvs
in
zipWithM_ checkIndex (substTys renaming atTys) instArgs
checkIndex ty Nothing
| isTyVarTy ty = return ()
| otherwise = addErrTc $ mustBeVarArgErr ty
checkIndex ty (Just instTy)
| ty `tcEqType` instTy = return ()
| otherwise = addErrTc $ wrongATArgErr ty instTy
listToNameSet = addListToNameSet emptyNameSet
substSameTyVar [] _ = emptyTvSubst
substSameTyVar (tv:tvs) replacingTvs =
let replacement = case find (tv `sameLexeme`) replacingTvs of
Nothing -> mkTyVarTy tv
Just rtv -> mkTyVarTy rtv
tv1 `sameLexeme` tv2 =
nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
in
extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
\end{code}
%************************************************************************
%* *
Typechecking instance declarations, pass 2
%* *
%************************************************************************
\begin{code}
tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
-> TcM (LHsBinds Id)
tcInstDecls2 tycl_decls inst_decls
= do {
let class_decls = filter (isClassDecl . unLoc) tycl_decls
; dm_binds_s <- mapM tcClassDecl2 class_decls
; let dm_binds = unionManyBags dm_binds_s
; let dm_ids = collectHsBindsBinders dm_binds
; inst_binds_s <- tcExtendIdEnv dm_ids $
mapM tcInstDecl2 inst_decls
; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
= recoverM (return emptyLHsBinds) $
setSrcSpan loc $
addErrCtxt (instDeclCtxt2 (idType dfun_id)) $
tc_inst_decl2 dfun_id ibinds
where
dfun_id = instanceDFunId ispec
loc = getSrcSpan dfun_id
\end{code}
See Note [Default methods and instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default method Ids are already in the type environment (see Note
[Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
don't have their InlinePragmas yet. Usually that would not matter,
because the simplifier propagates information from binding site to
use. But, unusually, when compiling instance decls we *copy* the
INLINE pragma from the default method to the method for that
particular operation (see Note [INLINE and default methods] below).
So right here in tcInstDecl2 we must reextend the type envt with
the default method Ids replete with their INLINE pragmas. Urk.
\begin{code}
tc_inst_decl2 :: Id -> InstBindings Name -> TcM (LHsBinds Id)
tc_inst_decl2 dfun_id inst_binds
= do { let rigid_info = InstSkol
inst_ty = idType dfun_id
loc = getSrcSpan dfun_id
; (inst_tyvars', dfun_theta', inst_head') <- tcSkolSigType rigid_info inst_ty
; let
(clas, inst_tys') = tcSplitDFunHead inst_head'
(class_tyvars, sc_theta, sc_sels, op_items) = classBigSig clas
sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys') sc_theta
; dfun_ev_vars <- newEvVars dfun_theta'
; self_dict <- newSelfDict clas inst_tys'
; let self_ev_bind = EvBind self_dict $
EvDFunApp dfun_id (mkTyVarTys inst_tyvars') dfun_ev_vars
; spec_info <- tcSpecInstPrags dfun_id inst_binds
; (meth_ids, meth_binds)
<- tcExtendTyVarEnv inst_tyvars' $
tcInstanceMethods dfun_id clas inst_tyvars' dfun_ev_vars
inst_tys' self_ev_bind spec_info
op_items inst_binds
; let tc_sc = tcSuperClass inst_tyvars' dfun_ev_vars self_ev_bind
(sc_eqs, sc_dicts) = splitAt (classSCNEqs clas) sc_theta'
; (sc_dict_ids, sc_binds) <- ASSERT( equalLength sc_sels sc_dicts )
ASSERT( all isEqPred sc_eqs )
mapAndUnzipM tc_sc (sc_sels `zip` sc_dicts)
; (_eq_sc_binds, sc_eq_vars) <- checkConstraints InstSkol
inst_tyvars' dfun_ev_vars $
emitWanteds ScOrigin sc_eqs
; let dict_constr = classDataCon clas
dict_bind = mkVarBind self_dict dict_rhs
dict_rhs = foldl mk_app inst_constr dict_and_meth_ids
dict_and_meth_ids = sc_dict_ids ++ meth_ids
inst_constr = L loc $ wrapId (mkWpEvVarApps sc_eq_vars
<.> mkWpTyApps inst_tys')
(dataConWrapId dict_constr)
mk_app :: LHsExpr Id -> Id -> LHsExpr Id
mk_app fun arg_id = L loc (HsApp fun (L loc (wrapId arg_wrapper arg_id)))
arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps (mkTyVarTys inst_tyvars')
dfun_id_w_fun = dfun_id
`setIdUnfolding` mkDFunUnfolding inst_ty (map Var dict_and_meth_ids)
`setInlinePragma` dfunInlinePragma
(spec_inst_prags, _) = spec_info
main_bind = AbsBinds { abs_tvs = inst_tyvars'
, abs_ev_vars = dfun_ev_vars
, abs_exports = [(inst_tyvars', dfun_id_w_fun, self_dict,
SpecPrags spec_inst_prags)]
, abs_ev_binds = emptyTcEvBinds
, abs_binds = unitBag dict_bind }
; return (unitBag (L loc main_bind) `unionBags`
listToBag meth_binds `unionBags`
listToBag sc_binds)
}
tcSpecInstPrags :: DFunId -> InstBindings Name
-> TcM ([Located TcSpecPrag], PragFun)
tcSpecInstPrags _ (NewTypeDerived {})
= return ([], \_ -> [])
tcSpecInstPrags dfun_id (VanillaInst binds uprags _)
= do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
filter isSpecInstLSig uprags
; return (spec_inst_prags, mkPragFun uprags binds) }
tcSuperClass :: [TyVar] -> [EvVar]
-> EvBind
-> (Id, PredType) -> TcM (Id, LHsBind Id)
tcSuperClass tyvars dicts
self_ev_bind@(EvBind self_dict _)
(sc_sel, sc_pred)
= do { (ev_binds, wanted, sc_dict)
<- newImplication InstSkol tyvars dicts $
emitWanted ScOrigin sc_pred
; simplifySuperClass self_dict wanted
; uniq <- newUnique
; let sc_op_ty = mkForAllTys tyvars $ mkPiTypes dicts (varType sc_dict)
sc_op_name = mkDerivedInternalName mkClassOpAuxOcc uniq
(getName sc_sel)
sc_op_id = mkLocalId sc_op_name sc_op_ty
sc_op_bind = VarBind { var_id = sc_op_id, var_inline = False
, var_rhs = L noSrcSpan $ wrapId sc_wrapper sc_dict }
sc_wrapper = mkWpTyLams tyvars
<.> mkWpLams dicts
<.> mkWpLet (EvBinds (unitBag self_ev_bind))
<.> mkWpLet ev_binds
; return (sc_op_id, noLoc sc_op_bind) }
\end{code}
Note [Recursive superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See Trac #1470 for why we would *like* to add "self_dict" to the
available instances here. But we can't do so because then the superclases
get satisfied by selection from self_dict, and that leads to an immediate
loop. What we need is to add self_dict to Avails without adding its
superclasses, and we currently have no way to do that.
Note [SPECIALISE instance pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
instance (Ix a, Ix b) => Ix (a,b) where
range (x,y) = ...
We do *not* want to make a specialised version of the dictionary
function. Rather, we want specialised versions of each method.
Thus we should generate something like this:
$dfIx :: (Ix a, Ix x) => Ix (a,b)
$dfIx da db = Ix ($crange da db) (...other methods...)
$dfIxPair :: (Ix a, Ix x) => Ix (a,b)
$dfIxPair = Ix ($crangePair da db) (...other methods...)
$crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
$crange da db = <blah>
Note that
* The RULE is unaffected by the specialisation. We don't want to
specialise $dfIx, because then it would need a specialised RULE
which is a pain. The single RULE works fine at all specialisations.
See Note [How instance declarations are translated] above
* Instead, we want to specialise the *method*, $crange
In practice, rather than faking up a SPECIALISE pragama for each
method (which is painful, since we'd have to figure out its
specialised type), we call tcSpecPrag *as if* were going to specialise
$dfIx
SpecPrag which, as it turns out, can be used unchanged for each method.
The "it turns out" bit is delicate, but it works fine!
\begin{code}
tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
tcSpecInst dfun_id prag@(SpecInstSig hs_ty)
= addErrCtxt (spec_ctxt prag) $
do { let name = idName dfun_id
; (tyvars, theta, tau) <- tcHsInstHead hs_ty
; let spec_ty = mkSigmaTy tyvars theta tau
; co_fn <- tcSubType (SpecPragOrigin name) (SigSkol SpecInstCtxt)
(idType dfun_id) spec_ty
; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
where
spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag)
tcSpecInst _ _ = panic "tcSpecInst"
\end{code}
%************************************************************************
%* *
Typechecking an instance method
%* *
%************************************************************************
tcInstanceMethod
Make the method bindings, as a [(NonRec, HsBinds)], one per method
Remembering to use fresh Name (the instance method Name) as the binder
Bring the instance method Ids into scope, for the benefit of tcInstSig
Use sig_fn mapping instance method Name -> instance tyvars
Ditto prag_fn
Use tcValBinds to do the checking
\begin{code}
tcInstanceMethods :: DFunId -> Class -> [TcTyVar]
-> [EvVar]
-> [TcType]
-> EvBind
-> ([Located TcSpecPrag], PragFun)
-> [(Id, DefMeth)]
-> InstBindings Name
-> TcM ([Id], [LHsBind Id])
tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys
self_dict_ev (spec_inst_prags, prag_fn)
op_items (VanillaInst binds _ standalone_deriv)
= mapAndUnzipM tc_item op_items
where
tc_item :: (Id, DefMeth) -> TcM (Id, LHsBind Id)
tc_item (sel_id, dm_info)
= case findMethodBind (idName sel_id) binds of
Just user_bind -> tc_body sel_id standalone_deriv user_bind
Nothing -> tc_default sel_id dm_info
tc_body :: Id -> Bool -> LHsBind Name -> TcM (TcId, LHsBind Id)
tc_body sel_id generated_code rn_bind
= add_meth_ctxt sel_id generated_code rn_bind $
do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; let prags = prag_fn (idName sel_id)
; meth_id1 <- addInlinePrags meth_id prags
; spec_prags <- tcSpecPrags meth_id1 prags
; bind <- tcInstanceMethodBody InstSkol
tyvars dfun_ev_vars mb_dict_ev
meth_id1 local_meth_id meth_sig_fn
(mk_meth_spec_prags meth_id1 spec_prags)
rn_bind
; return (meth_id1, bind) }
tc_default :: Id -> DefMeth -> TcM (TcId, LHsBind Id)
tc_default sel_id GenDefMeth
= do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id
; tc_body sel_id False meth_bind }
tc_default sel_id NoDefMeth
= do { warnMissingMethod sel_id
; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; return (meth_id, mkVarBind meth_id $
mkLHsWrap lam_wrapper error_rhs) }
where
error_rhs = L loc $ HsApp error_fun error_msg
error_fun = L loc $ wrapId (WpTyApp meth_tau) nO_METHOD_BINDING_ERROR_ID
error_msg = L loc (HsLit (HsStringPrim (mkFastString error_string)))
meth_tau = funResultTy (applyTys (idType sel_id) inst_tys)
error_string = showSDoc (hcat [ppr loc, text "|", ppr sel_id ])
lam_wrapper = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars
tc_default sel_id (DefMeth dm_name)
= do {
; (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; dm_id <- tcLookupId dm_name
; let dm_inline_prag = idInlinePragma dm_id
EvBind self_dict _ = self_dict_ev
rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
HsVar dm_id
meth_bind = L loc $ VarBind { var_id = local_meth_id
, var_rhs = L loc rhs
, var_inline = False }
meth_id1 = meth_id `setInlinePragma` dm_inline_prag
bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
, abs_exports = [( tyvars, meth_id1, local_meth_id
, mk_meth_spec_prags meth_id1 [])]
, abs_ev_binds = EvBinds (unitBag self_dict_ev)
, abs_binds = unitBag meth_bind }
; return (meth_id1, L loc bind) }
mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> TcSpecPrags
mk_meth_spec_prags meth_id spec_prags_for_me
= SpecPrags (spec_prags_for_me ++
[ L loc (SpecPrag meth_id wrap inl)
| L loc (SpecPrag _ wrap inl) <- spec_inst_prags])
loc = getSrcSpan dfun_id
meth_sig_fn _ = Just ([],loc)
mb_dict_ev = if null tyvars then Nothing else Just self_dict_ev
add_meth_ctxt sel_id generated_code rn_bind thing
| generated_code = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys rn_bind) thing
| otherwise = thing
tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys
_ _ op_items (NewTypeDerived coi _)
= do { rep_d_stuff <- checkConstraints InstSkol tyvars dfun_ev_vars $
emitWanted ScOrigin rep_pred
; mapAndUnzipM (tc_item rep_d_stuff) op_items }
where
loc = getSrcSpan dfun_id
inst_tvs = fst (tcSplitForAllTys (idType dfun_id))
Just (init_inst_tys, _) = snocView inst_tys
rep_ty = fst (coercionKind co)
rep_pred = mkClassPred clas (init_inst_tys ++ [rep_ty])
co = substTyWith inst_tvs (mkTyVarTys tyvars) $
case coi of { IdCo ty -> ty ;
ACo co -> mkSymCoercion co }
tc_item :: (TcEvBinds, EvVar) -> (Id, DefMeth) -> TcM (TcId, LHsBind TcId)
tc_item (rep_ev_binds, rep_d) (sel_id, _)
= do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; let meth_rhs = wrapId (mk_op_wrapper sel_id rep_d) sel_id
meth_bind = VarBind { var_id = local_meth_id
, var_rhs = L loc meth_rhs
, var_inline = False }
bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
, abs_exports = [(tyvars, meth_id,
local_meth_id, noSpecPrags)]
, abs_ev_binds = rep_ev_binds
, abs_binds = unitBag $ L loc meth_bind }
; return (meth_id, L loc bind) }
mk_op_wrapper :: Id -> EvVar -> HsWrapper
mk_op_wrapper sel_id rep_d
= WpCast (substTyWith sel_tvs (init_inst_tys ++ [co]) local_meth_ty)
<.> WpEvApp (EvId rep_d)
<.> mkWpTyApps (init_inst_tys ++ [rep_ty])
where
(sel_tvs, sel_rho) = tcSplitForAllTys (idType sel_id)
(_, local_meth_ty) = tcSplitPredFunTy_maybe sel_rho
`orElse` pprPanic "tcInstanceMethods" (ppr sel_id)
mkMethIds :: Class -> [TcTyVar] -> [EvVar] -> [TcType] -> Id -> TcM (TcId, TcId)
mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
= do { uniq <- newUnique
; let meth_name = mkDerivedInternalName mkClassOpAuxOcc uniq sel_name
; local_meth_name <- newLocalName sel_name
; let meth_id = mkLocalId meth_name meth_ty
local_meth_id = mkLocalId local_meth_name local_meth_ty
; return (meth_id, local_meth_id) }
where
local_meth_ty = instantiateMethod clas sel_id inst_tys
meth_ty = mkForAllTys tyvars $ mkPiTypes dfun_ev_vars local_meth_ty
sel_name = idName sel_id
wrapId :: HsWrapper -> id -> HsExpr id
wrapId wrapper id = mkHsWrap wrapper (HsVar id)
derivBindCtxt :: Id -> Class -> [Type ] -> LHsBind Name -> SDoc
derivBindCtxt sel_id clas tys _bind
= vcat [ ptext (sLit "When typechecking the code for ") <+> quotes (ppr sel_id)
, nest 2 (ptext (sLit "in a standalone derived instance for")
<+> quotes (pprClassPred clas tys) <> colon)
, nest 2 $ ptext (sLit "To see the code I am typechecking, use -ddump-deriv") ]
warnMissingMethod :: Id -> TcM ()
warnMissingMethod sel_id
= do { warn <- doptM Opt_WarnMissingMethods
; warnTc (warn
&& not (startsWithUnderscore (getOccName sel_id)))
(ptext (sLit "No explicit method nor default method for")
<+> quotes (ppr sel_id)) }
\end{code}
Note [Export helper functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange to export the "helper functions" of an instance declaration,
so that they are not subject to preInlineUnconditionally, even if their
RHS is trivial. Reason: they are mentioned in the DFunUnfolding of
the dict fun as Ids, not as CoreExprs, so we can't substitute a
nonvariable for them.
We could change this by making DFunUnfoldings have CoreExprs, but it
seems a bit simpler this way.
Note [Default methods in instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
class Baz v x where
foo :: x -> x
foo y = <blah>
instance Baz Int Int
From the class decl we get
$dmfoo :: forall v x. Baz v x => x -> x
$dmfoo y = <blah>
Notice that the type is ambiguous. That's fine, though. The instance
decl generates
$dBazIntInt = MkBaz fooIntInt
fooIntInt = $dmfoo Int Int $dBazIntInt
BUT this does mean we must generate the dictionary translation of
fooIntInt directly, rather than generating sourcecode and
typechecking it. That was the bug in Trac #1061. In any case it's
less work to generate the translated version!
Note [INLINE and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Default methods need special case. They are supposed to behave rather like
macros. For exmample
class Foo a where
op1, op2 :: Bool -> a -> a
op1 b x = op2 (not b) x
instance Foo Int where
op2 b x = <blah>
The instance declaration should behave
just as if 'op1' had been defined with the
code, and INLINE pragma, from its original
definition.
That is, just as if you'd written
instance Foo Int where
op2 b x = <blah>
op1 b x = op2 (not b) x
So for the above example we generate:
$dmop1 d b x = op2 d (not b) x
$fFooInt = MkD $cop1 $cop2
$cop1 = $dmop1 $fFooInt
$cop2 = <blah>
Note carefullly:
* We *copy* any INLINE pragma from the default method $dmop1 to the
instance $cop1. Otherwise we'll just inline the former in the
latter and stop, which isn't what the user expected
* Regardless of its pragma, we give the default method an
unfolding with an InlineCompulsory source. That means
that it'll be inlined at every use site, notably in
each instance declaration, such as $cop1. This inlining
must happen even though
a) $dmop1 is not saturated in $cop1
b) $cop1 itself has an INLINE pragma
It's vital that $dmop1 *is* inlined in this way, to allow the mutual
recursion between $fooInt and $cop1 to be broken
* To communicate the need for an InlineCompulsory to the desugarer
(which makes the Unfoldings), we use the IsDefaultMethod constructor
in TcSpecPrags.
%************************************************************************
%* *
\subsection{Error messages}
%* *
%************************************************************************
\begin{code}
instDeclCtxt1 :: LHsType Name -> SDoc
instDeclCtxt1 hs_inst_ty
= inst_decl_ctxt (case unLoc hs_inst_ty of
HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
HsPredTy pred -> ppr pred
_ -> ppr hs_inst_ty)
instDeclCtxt2 :: Type -> SDoc
instDeclCtxt2 dfun_ty
= inst_decl_ctxt (ppr (mkClassPred cls tys))
where
(_,cls,tys) = tcSplitDFunTy dfun_ty
inst_decl_ctxt :: SDoc -> SDoc
inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
atInstCtxt :: Name -> SDoc
atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
quotes (ppr name)
mustBeVarArgErr :: Type -> SDoc
mustBeVarArgErr ty =
sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
ptext (sLit "must be variables")
, ptext (sLit "Instead of a variable, found") <+> ppr ty
]
wrongATArgErr :: Type -> Type -> SDoc
wrongATArgErr ty instTy =
sep [ ptext (sLit "Type indexes must match class instance head")
, ptext (sLit "Found") <+> quotes (ppr ty)
<+> ptext (sLit "but expected") <+> quotes (ppr instTy)
]
\end{code}