{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------

-- This is a big module, but, if you pay attention to
-- (a) the sectioning, (b) the type signatures, and
-- (c) the #if blah_TARGET_ARCH} things, the
-- structure should not be too overwhelming.

module X86.CodeGen ( 
	cmmTopCodeGen, 
	InstrBlock 
) 

where

#include "HsVersions.h"
#include "nativeGen/NCG.h"
#include "../includes/MachDeps.h"

-- NCG stuff:
import X86.Instr
import X86.Cond
import X86.Regs
import X86.RegInfo
import X86.Ppr
import Instruction
import PIC
import NCGMonad
import Size
import Reg
import RegClass
import Platform

-- Our intermediate code:
import BasicTypes
import BlockId
import PprCmm		( pprExpr )
import Cmm
import CLabel
import ClosureInfo	( C_SRT(..) )

-- The rest:
import StaticFlags	( opt_PIC )
import ForeignCall	( CCallConv(..) )
import OrdList
import Pretty
import qualified Outputable as O
import Outputable
import FastString
import FastBool		( isFastTrue )
import Constants	( wORD_SIZE )
import DynFlags

import Debug.Trace	( trace )

import Control.Monad	( mapAndUnzipM )
import Data.Maybe	( fromJust )
import Data.Bits
import Data.Word
import Data.Int

sse2Enabled :: NatM Bool
#if x86_64_TARGET_ARCH
-- SSE2 is fixed on for x86_64.  It would be possible to make it optional,
-- but we'd need to fix at least the foreign call code where the calling
-- convention specifies the use of xmm regs, and possibly other places.
sse2Enabled = return True
#else
sse2Enabled = do
  dflags <- getDynFlagsNat
  return (dopt Opt_SSE2 dflags)
#endif

if_sse2 :: NatM a -> NatM a -> NatM a
if_sse2 sse2 x87 = do
  b <- sse2Enabled
  if b then sse2 else x87

cmmTopCodeGen 
	:: DynFlags
	-> RawCmmTop
	-> NatM [NatCmmTop Instr]

cmmTopCodeGen dynflags 
	(CmmProc info lab params (ListGraph blocks)) = do
  (nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
  picBaseMb <- getPicBaseMaybeNat
  let proc = CmmProc info lab params (ListGraph $ concat nat_blocks)
      tops = proc : concat statics
      os   = platformOS $ targetPlatform dynflags

  case picBaseMb of
      Just picBase -> initializePicBase_x86 ArchX86 os picBase tops
      Nothing -> return tops
  
cmmTopCodeGen _ (CmmData sec dat) = do
  return [CmmData sec dat]  -- no translation, we just use CmmStatic


basicBlockCodeGen 
	:: CmmBasicBlock 
	-> NatM ( [NatBasicBlock Instr]
		, [NatCmmTop Instr])

basicBlockCodeGen (BasicBlock id stmts) = do
  instrs <- stmtsToInstrs stmts
  -- code generation may introduce new basic block boundaries, which
  -- are indicated by the NEWBLOCK instruction.  We must split up the
  -- instruction stream into basic blocks again.  Also, we extract
  -- LDATAs here too.
  let
	(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs
	
	mkBlocks (NEWBLOCK id) (instrs,blocks,statics) 
	  = ([], BasicBlock id instrs : blocks, statics)
	mkBlocks (LDATA sec dat) (instrs,blocks,statics) 
	  = (instrs, blocks, CmmData sec dat:statics)
	mkBlocks instr (instrs,blocks,statics)
	  = (instr:instrs, blocks, statics)
  -- in
  return (BasicBlock id top : other_blocks, statics)


stmtsToInstrs :: [CmmStmt] -> NatM InstrBlock
stmtsToInstrs stmts
   = do instrss <- mapM stmtToInstrs stmts
        return (concatOL instrss)


stmtToInstrs :: CmmStmt -> NatM InstrBlock
stmtToInstrs stmt = case stmt of
    CmmNop	   -> return nilOL
    CmmComment s   -> return (unitOL (COMMENT s))

    CmmAssign reg src
      | isFloatType ty -> assignReg_FltCode size reg src
#if WORD_SIZE_IN_BITS==32
      | isWord64 ty    -> assignReg_I64Code      reg src
#endif
      | otherwise	 -> assignReg_IntCode size reg src
	where ty = cmmRegType reg
	      size = cmmTypeSize ty

    CmmStore addr src
      | isFloatType ty -> assignMem_FltCode size addr src
#if WORD_SIZE_IN_BITS==32
      | isWord64 ty 	 -> assignMem_I64Code      addr src
#endif
      | otherwise	 -> assignMem_IntCode size addr src
	where ty = cmmExprType src
	      size = cmmTypeSize ty

    CmmCall target result_regs args _ _
       -> genCCall target result_regs args

    CmmBranch id	  -> genBranch id
    CmmCondBranch arg id  -> genCondJump id arg
    CmmSwitch arg ids     -> genSwitch arg ids
    CmmJump arg params	  -> genJump arg
    CmmReturn params	  ->
      panic "stmtToInstrs: return statement should have been cps'd away"


--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- 	They are really trees of insns to facilitate fast appending, where a
-- 	left-to-right traversal yields the insns in the correct	order.
--
type InstrBlock 
	= OrdList Instr


-- | Condition codes passed up the tree.
--
data CondCode 	
	= CondCode Bool Cond InstrBlock


-- | a.k.a "Register64"
--	Reg is the lower 32-bit temporary which contains the result. 
--	Use getHiVRegFromLo to find the other VRegUnique.  
--
--	Rules of this simplified insn selection game are therefore that
--	the returned Reg may be modified
--
data ChildCode64 	
   = ChildCode64 
        InstrBlock
        Reg	 	


-- | Register's passed up the tree.  If the stix code forces the register
-- 	to live in a pre-decided machine register, it comes out as @Fixed@;
-- 	otherwise, it comes out as @Any@, and the parent can decide which
-- 	register to put it in.
--
data Register
	= Fixed	Size Reg InstrBlock
	| Any	Size (Reg -> InstrBlock)


swizzleRegisterRep :: Register -> Size -> Register
swizzleRegisterRep (Fixed _ reg code) size = Fixed size reg code
swizzleRegisterRep (Any _ codefn)     size = Any   size codefn


-- | Grab the Reg for a CmmReg
getRegisterReg :: Bool -> CmmReg -> Reg

getRegisterReg use_sse2 (CmmLocal (LocalReg u pk))
  = let sz = cmmTypeSize pk in
    if isFloatSize sz && not use_sse2
       then RegVirtual (mkVirtualReg u FF80)
       else RegVirtual (mkVirtualReg u sz)

getRegisterReg _ (CmmGlobal mid)
  = case globalRegMaybe mid of
        Just reg -> RegReal $ reg
        Nothing  -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
        -- By this stage, the only MagicIds remaining should be the
        -- ones which map to a real machine register on this
        -- platform.  Hence ...


-- | Memory addressing modes passed up the tree.
data Amode 
	= Amode AddrMode InstrBlock

{-
Now, given a tree (the argument to an CmmLoad) that references memory,
produce a suitable addressing mode.

A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to.  So you can't put
anything in between, lest it overwrite some of those registers.  If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:

    code
    LEA amode, tmp
    ... other computation ...
    ... (tmp) ...
-}


-- | Check whether an integer will fit in 32 bits.
--	A CmmInt is intended to be truncated to the appropriate 
-- 	number of bits, so here we truncate it to Int64.  This is
-- 	important because e.g. -1 as a CmmInt might be either
-- 	-1 or 18446744073709551615.
--
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
  where i64 = fromIntegral i :: Int64


-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: Maybe BlockId -> CmmStatic
jumpTableEntry Nothing = CmmStaticLit (CmmInt 0 wordWidth)
jumpTableEntry (Just (BlockId id)) = CmmStaticLit (CmmLabel blockLabel)
    where blockLabel = mkAsmTempLabel id


-- -----------------------------------------------------------------------------
-- General things for putting together code sequences

-- Expand CmmRegOff.  ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: CmmExpr -> CmmExpr
mangleIndexTree (CmmRegOff reg off)
  = CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
  where width = typeWidth (cmmRegType reg)

-- | The dual to getAnyReg: compute an expression into a register, but
-- 	we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
  r <- getRegister expr
  case r of
    Any rep code -> do
	tmp <- getNewRegNat rep
	return (tmp, code tmp)
    Fixed _ reg code -> 
	return (reg, code)





assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
  Amode addr addr_code <- getAmode addrTree
  ChildCode64 vcode rlo <- iselExpr64 valueTree
  let 
        rhi = getHiVRegFromLo rlo

        -- Little-endian store
        mov_lo = MOV II32 (OpReg rlo) (OpAddr addr)
        mov_hi = MOV II32 (OpReg rhi) (OpAddr (fromJust (addrOffset addr 4)))
  -- in
  return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)


assignReg_I64Code :: CmmReg  -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst pk)) valueTree = do
   ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
   let 
         r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
         r_dst_hi = getHiVRegFromLo r_dst_lo
         r_src_hi = getHiVRegFromLo r_src_lo
         mov_lo = MOV II32 (OpReg r_src_lo) (OpReg r_dst_lo)
         mov_hi = MOV II32 (OpReg r_src_hi) (OpReg r_dst_hi)
   -- in
   return (
        vcode `snocOL` mov_lo `snocOL` mov_hi
     )

assignReg_I64Code lvalue valueTree
   = panic "assignReg_I64Code(i386): invalid lvalue"




iselExpr64        :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLit (CmmInt i _)) = do
  (rlo,rhi) <- getNewRegPairNat II32
  let
	r = fromIntegral (fromIntegral i :: Word32)
	q = fromIntegral ((fromIntegral i `shiftR` 32) :: Word32)
	code = toOL [
		MOV II32 (OpImm (ImmInteger r)) (OpReg rlo),
		MOV II32 (OpImm (ImmInteger q)) (OpReg rhi)
		]
  -- in
  return (ChildCode64 code rlo)

iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
   Amode addr addr_code <- getAmode addrTree
   (rlo,rhi) <- getNewRegPairNat II32
   let 
        mov_lo = MOV II32 (OpAddr addr) (OpReg rlo)
        mov_hi = MOV II32 (OpAddr (fromJust (addrOffset addr 4))) (OpReg rhi)
   -- in
   return (
            ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi) 
                        rlo
     )

iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
   = return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))
         
-- we handle addition, but rather badly
iselExpr64 (CmmMachOp (MO_Add _) [e1, CmmLit (CmmInt i _)]) = do
   ChildCode64 code1 r1lo <- iselExpr64 e1
   (rlo,rhi) <- getNewRegPairNat II32
   let
	r = fromIntegral (fromIntegral i :: Word32)
	q = fromIntegral ((fromIntegral i `shiftR` 32) :: Word32)
	r1hi = getHiVRegFromLo r1lo
	code =  code1 `appOL`
		toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
		       ADD II32 (OpImm (ImmInteger r)) (OpReg rlo),
		       MOV II32 (OpReg r1hi) (OpReg rhi),
		       ADC II32 (OpImm (ImmInteger q)) (OpReg rhi) ]
   -- in
   return (ChildCode64 code rlo)

iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
   ChildCode64 code1 r1lo <- iselExpr64 e1
   ChildCode64 code2 r2lo <- iselExpr64 e2
   (rlo,rhi) <- getNewRegPairNat II32
   let
	r1hi = getHiVRegFromLo r1lo
	r2hi = getHiVRegFromLo r2lo
	code =  code1 `appOL`
		code2 `appOL`
		toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
		       ADD II32 (OpReg r2lo) (OpReg rlo),
		       MOV II32 (OpReg r1hi) (OpReg rhi),
		       ADC II32 (OpReg r2hi) (OpReg rhi) ]
   -- in
   return (ChildCode64 code rlo)

iselExpr64 (CmmMachOp (MO_UU_Conv _ W64) [expr]) = do
     fn <- getAnyReg expr
     r_dst_lo <-  getNewRegNat II32
     let r_dst_hi = getHiVRegFromLo r_dst_lo
         code = fn r_dst_lo
     return (
             ChildCode64 (code `snocOL` 
                          MOV II32 (OpImm (ImmInt 0)) (OpReg r_dst_hi))
                          r_dst_lo
            )

iselExpr64 expr
   = pprPanic "iselExpr64(i386)" (ppr expr)



--------------------------------------------------------------------------------
getRegister :: CmmExpr -> NatM Register

#if !x86_64_TARGET_ARCH
    -- on x86_64, we have %rip for PicBaseReg, but it's not a full-featured
    -- register, it can only be used for rip-relative addressing.
getRegister (CmmReg (CmmGlobal PicBaseReg))
  = do
      reg <- getPicBaseNat archWordSize
      return (Fixed archWordSize reg nilOL)
#endif

getRegister (CmmReg reg) 
  = do use_sse2 <- sse2Enabled
       let
         sz = cmmTypeSize (cmmRegType reg)
         size | not use_sse2 && isFloatSize sz = FF80
              | otherwise                      = sz
       --
       return (Fixed sz (getRegisterReg use_sse2 reg) nilOL)
  

getRegister tree@(CmmRegOff _ _) 
  = getRegister (mangleIndexTree tree)


#if WORD_SIZE_IN_BITS==32
    -- for 32-bit architectuers, support some 64 -> 32 bit conversions:
    -- TO_W_(x), TO_W_(x >> 32)

getRegister (CmmMachOp (MO_UU_Conv W64 W32)
             [CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 (getHiVRegFromLo rlo) code

getRegister (CmmMachOp (MO_SS_Conv W64 W32)
             [CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 (getHiVRegFromLo rlo) code

getRegister (CmmMachOp (MO_UU_Conv W64 W32) [x]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 rlo code

getRegister (CmmMachOp (MO_SS_Conv W64 W32) [x]) = do
  ChildCode64 code rlo <- iselExpr64 x
  return $ Fixed II32 rlo code       

#endif


getRegister (CmmLit lit@(CmmFloat f w)) =
  if_sse2 float_const_sse2 float_const_x87
 where
  float_const_sse2
    | f == 0.0 = do
      let
          size = floatSize w
          code dst = unitOL  (XOR size (OpReg dst) (OpReg dst))
   	-- I don't know why there are xorpd, xorps, and pxor instructions.
   	-- They all appear to do the same thing --SDM
      return (Any size code)

   | otherwise = do
      Amode addr code <- memConstant (widthInBytes w) lit
      loadFloatAmode True w addr code

  float_const_x87 = case w of
    W64
      | f == 0.0 ->
        let code dst = unitOL (GLDZ dst)
        in  return (Any FF80 code)
    
      | f == 1.0 ->
        let code dst = unitOL (GLD1 dst)
        in  return (Any FF80 code)
    
    _otherwise -> do
      Amode addr code <- memConstant (widthInBytes w) lit
      loadFloatAmode False w addr code

-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVZxL II8) addr
  return (Any II32 code)

getRegister (CmmMachOp (MO_SS_Conv W8 W32) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVSxL II8) addr
  return (Any II32 code)

getRegister (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVZxL II16) addr
  return (Any II32 code)

getRegister (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVSxL II16) addr
  return (Any II32 code)


#if x86_64_TARGET_ARCH

-- catch simple cases of zero- or sign-extended load
getRegister (CmmMachOp (MO_UU_Conv W8 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVZxL II8) addr
  return (Any II64 code)

getRegister (CmmMachOp (MO_SS_Conv W8 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVSxL II8) addr
  return (Any II64 code)

getRegister (CmmMachOp (MO_UU_Conv W16 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVZxL II16) addr
  return (Any II64 code)

getRegister (CmmMachOp (MO_SS_Conv W16 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVSxL II16) addr
  return (Any II64 code)

getRegister (CmmMachOp (MO_UU_Conv W32 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOV II32) addr -- 32-bit loads zero-extend
  return (Any II64 code)

getRegister (CmmMachOp (MO_SS_Conv W32 W64) [CmmLoad addr _]) = do
  code <- intLoadCode (MOVSxL II32) addr
  return (Any II64 code)

getRegister (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
                                     CmmLit displacement])
    = return $ Any II64 (\dst -> unitOL $
        LEA II64 (OpAddr (ripRel (litToImm displacement))) (OpReg dst))

#endif /* x86_64_TARGET_ARCH */





getRegister (CmmMachOp mop [x]) = do -- unary MachOps
    sse2 <- sse2Enabled
    case mop of
      MO_F_Neg w
         | sse2      -> sse2NegCode w x
         | otherwise -> trivialUFCode FF80 (GNEG FF80) x

      MO_S_Neg w -> triv_ucode NEGI (intSize w)
      MO_Not w   -> triv_ucode NOT  (intSize w)

      -- Nop conversions
      MO_UU_Conv W32 W8  -> toI8Reg  W32 x
      MO_SS_Conv W32 W8  -> toI8Reg  W32 x
      MO_UU_Conv W16 W8  -> toI8Reg  W16 x
      MO_SS_Conv W16 W8  -> toI8Reg  W16 x
      MO_UU_Conv W32 W16 -> toI16Reg W32 x
      MO_SS_Conv W32 W16 -> toI16Reg W32 x

#if x86_64_TARGET_ARCH
      MO_UU_Conv W64 W32 -> conversionNop II64 x
      MO_SS_Conv W64 W32 -> conversionNop II64 x
      MO_UU_Conv W64 W16 -> toI16Reg W64 x
      MO_SS_Conv W64 W16 -> toI16Reg W64 x
      MO_UU_Conv W64 W8  -> toI8Reg  W64 x
      MO_SS_Conv W64 W8  -> toI8Reg  W64 x
#endif

      MO_UU_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intSize rep1) x
      MO_SS_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intSize rep1) x

      -- widenings
      MO_UU_Conv W8  W32 -> integerExtend W8  W32 MOVZxL x
      MO_UU_Conv W16 W32 -> integerExtend W16 W32 MOVZxL x
      MO_UU_Conv W8  W16 -> integerExtend W8  W16 MOVZxL x

      MO_SS_Conv W8  W32 -> integerExtend W8  W32 MOVSxL x
      MO_SS_Conv W16 W32 -> integerExtend W16 W32 MOVSxL x
      MO_SS_Conv W8  W16 -> integerExtend W8  W16 MOVSxL x

#if x86_64_TARGET_ARCH
      MO_UU_Conv W8  W64 -> integerExtend W8  W64 MOVZxL x
      MO_UU_Conv W16 W64 -> integerExtend W16 W64 MOVZxL x
      MO_UU_Conv W32 W64 -> integerExtend W32 W64 MOVZxL x
      MO_SS_Conv W8  W64 -> integerExtend W8  W64 MOVSxL x
      MO_SS_Conv W16 W64 -> integerExtend W16 W64 MOVSxL x
      MO_SS_Conv W32 W64 -> integerExtend W32 W64 MOVSxL x
	-- for 32-to-64 bit zero extension, amd64 uses an ordinary movl.
	-- However, we don't want the register allocator to throw it
	-- away as an unnecessary reg-to-reg move, so we keep it in
	-- the form of a movzl and print it as a movl later.
#endif

      MO_FF_Conv W32 W64
        | sse2      -> coerceFP2FP W64 x
        | otherwise -> conversionNop FF80 x 

      MO_FF_Conv W64 W32
        | sse2      -> coerceFP2FP W32 x
        | otherwise -> conversionNop FF80 x 

      MO_FS_Conv from to -> coerceFP2Int from to x
      MO_SF_Conv from to -> coerceInt2FP from to x

      other -> pprPanic "getRegister" (pprMachOp mop)
   where
	triv_ucode :: (Size -> Operand -> Instr) -> Size -> NatM Register
	triv_ucode instr size = trivialUCode size (instr size) x

	-- signed or unsigned extension.
	integerExtend :: Width -> Width
		      -> (Size -> Operand -> Operand -> Instr)
		      -> CmmExpr -> NatM Register
	integerExtend from to instr expr = do
	    (reg,e_code) <- if from == W8 then getByteReg expr
					  else getSomeReg expr
	    let 
		code dst = 
		  e_code `snocOL`
		  instr (intSize from) (OpReg reg) (OpReg dst)
	    return (Any (intSize to) code)

	toI8Reg :: Width -> CmmExpr -> NatM Register
	toI8Reg new_rep expr
            = do codefn <- getAnyReg expr
		 return (Any (intSize new_rep) codefn)
		-- HACK: use getAnyReg to get a byte-addressable register.
		-- If the source was a Fixed register, this will add the
		-- mov instruction to put it into the desired destination.
		-- We're assuming that the destination won't be a fixed
		-- non-byte-addressable register; it won't be, because all
		-- fixed registers are word-sized.

	toI16Reg = toI8Reg -- for now

	conversionNop :: Size -> CmmExpr -> NatM Register
        conversionNop new_size expr
            = do e_code <- getRegister expr
                 return (swizzleRegisterRep e_code new_size)


getRegister e@(CmmMachOp mop [x, y]) = do -- dyadic MachOps
  sse2 <- sse2Enabled
  case mop of
      MO_F_Eq w -> condFltReg EQQ x y
      MO_F_Ne w -> condFltReg NE x y
      MO_F_Gt w -> condFltReg GTT x y
      MO_F_Ge w -> condFltReg GE x y
      MO_F_Lt w -> condFltReg LTT x y
      MO_F_Le w -> condFltReg LE x y

      MO_Eq rep   -> condIntReg EQQ x y
      MO_Ne rep   -> condIntReg NE x y

      MO_S_Gt rep -> condIntReg GTT x y
      MO_S_Ge rep -> condIntReg GE x y
      MO_S_Lt rep -> condIntReg LTT x y
      MO_S_Le rep -> condIntReg LE x y

      MO_U_Gt rep -> condIntReg GU  x y
      MO_U_Ge rep -> condIntReg GEU x y
      MO_U_Lt rep -> condIntReg LU  x y
      MO_U_Le rep -> condIntReg LEU x y

      MO_F_Add w  | sse2      -> trivialFCode_sse2 w ADD  x y
                  | otherwise -> trivialFCode_x87  w GADD x y
      MO_F_Sub w  | sse2      -> trivialFCode_sse2 w SUB  x y
                  | otherwise -> trivialFCode_x87  w GSUB x y
      MO_F_Quot w | sse2      -> trivialFCode_sse2 w FDIV x y
                  | otherwise -> trivialFCode_x87  w GDIV x y
      MO_F_Mul w  | sse2      -> trivialFCode_sse2 w MUL x y
                  | otherwise -> trivialFCode_x87  w GMUL x y

      MO_Add rep -> add_code rep x y
      MO_Sub rep -> sub_code rep x y

      MO_S_Quot rep -> div_code rep True  True  x y
      MO_S_Rem  rep -> div_code rep True  False x y
      MO_U_Quot rep -> div_code rep False True  x y
      MO_U_Rem  rep -> div_code rep False False x y

      MO_S_MulMayOflo rep -> imulMayOflo rep x y

      MO_Mul rep -> triv_op rep IMUL
      MO_And rep -> triv_op rep AND
      MO_Or  rep -> triv_op rep OR
      MO_Xor rep -> triv_op rep XOR

	{- Shift ops on x86s have constraints on their source, it
	   either has to be Imm, CL or 1
	    => trivialCode is not restrictive enough (sigh.)
	-}	   
      MO_Shl rep   -> shift_code rep SHL x y {-False-}
      MO_U_Shr rep -> shift_code rep SHR x y {-False-}
      MO_S_Shr rep -> shift_code rep SAR x y {-False-}

      other -> pprPanic "getRegister(x86) - binary CmmMachOp (1)" (pprMachOp mop)
  where
    --------------------
    triv_op width instr = trivialCode width op (Just op) x y
			where op   = instr (intSize width)

    imulMayOflo :: Width -> CmmExpr -> CmmExpr -> NatM Register
    imulMayOflo rep a b = do
         (a_reg, a_code) <- getNonClobberedReg a
         b_code <- getAnyReg b
         let 
	     shift_amt  = case rep of
			   W32 -> 31
			   W64 -> 63
			   _ -> panic "shift_amt"

	     size = intSize rep
             code = a_code `appOL` b_code eax `appOL`
                        toOL [
			   IMUL2 size (OpReg a_reg),   -- result in %edx:%eax
                           SAR size (OpImm (ImmInt shift_amt)) (OpReg eax),
				-- sign extend lower part
                           SUB size (OpReg edx) (OpReg eax)
				-- compare against upper
                           -- eax==0 if high part == sign extended low part
                        ]
         -- in
	 return (Fixed size eax code)

    --------------------
    shift_code :: Width
	       -> (Size -> Operand -> Operand -> Instr)
	       -> CmmExpr
	       -> CmmExpr
	       -> NatM Register

    {- Case1: shift length as immediate -}
    shift_code width instr x y@(CmmLit lit) = do
	  x_code <- getAnyReg x
	  let
	       size = intSize width
	       code dst
		  = x_code dst `snocOL` 
		    instr size (OpImm (litToImm lit)) (OpReg dst)
	  -- in
	  return (Any size code)
        
    {- Case2: shift length is complex (non-immediate)
      * y must go in %ecx.
      * we cannot do y first *and* put its result in %ecx, because
        %ecx might be clobbered by x.
      * if we do y second, then x cannot be 
        in a clobbered reg.  Also, we cannot clobber x's reg
        with the instruction itself.
      * so we can either:
        - do y first, put its result in a fresh tmp, then copy it to %ecx later
        - do y second and put its result into %ecx.  x gets placed in a fresh
          tmp.  This is likely to be better, becuase the reg alloc can
          eliminate this reg->reg move here (it won't eliminate the other one,
          because the move is into the fixed %ecx).
    -}
    shift_code width instr x y{-amount-} = do
        x_code <- getAnyReg x
	let size = intSize width
	tmp <- getNewRegNat size
        y_code <- getAnyReg y
	let 
	   code = x_code tmp `appOL`
		  y_code ecx `snocOL`
		  instr size (OpReg ecx) (OpReg tmp)
        -- in
        return (Fixed size tmp code)

    --------------------
    add_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
    add_code rep x (CmmLit (CmmInt y _))
	| is32BitInteger y = add_int rep x y
    add_code rep x y = trivialCode rep (ADD size) (Just (ADD size)) x y
      where size = intSize rep

    --------------------
    sub_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
    sub_code rep x (CmmLit (CmmInt y _))
	| is32BitInteger (-y) = add_int rep x (-y)
    sub_code rep x y = trivialCode rep (SUB (intSize rep)) Nothing x y

    -- our three-operand add instruction:
    add_int width x y = do
	(x_reg, x_code) <- getSomeReg x
	let
	    size = intSize width
	    imm = ImmInt (fromInteger y)
	    code dst
               = x_code `snocOL`
		 LEA size
			(OpAddr (AddrBaseIndex (EABaseReg x_reg) EAIndexNone imm))
                        (OpReg dst)
	-- 
	return (Any size code)

    ----------------------
    div_code width signed quotient x y = do
	   (y_op, y_code) <- getRegOrMem y -- cannot be clobbered
	   x_code <- getAnyReg x
	   let
	     size = intSize width
	     widen | signed    = CLTD size
		   | otherwise = XOR size (OpReg edx) (OpReg edx)

	     instr | signed    = IDIV
		   | otherwise = DIV

	     code = y_code `appOL`
		    x_code eax `appOL`
		    toOL [widen, instr size y_op]

	     result | quotient  = eax
		    | otherwise = edx

	   -- in
           return (Fixed size result code)


getRegister (CmmLoad mem pk)
  | isFloatType pk
  = do
    Amode addr mem_code <- getAmode mem
    use_sse2 <- sse2Enabled
    loadFloatAmode use_sse2 (typeWidth pk) addr mem_code

#if i386_TARGET_ARCH
getRegister (CmmLoad mem pk)
  | not (isWord64 pk)
  = do 
    code <- intLoadCode instr mem
    return (Any size code)
  where
    width = typeWidth pk
    size = intSize width
    instr = case width of
		W8     -> MOVZxL II8
		_other -> MOV size
	-- We always zero-extend 8-bit loads, if we
	-- can't think of anything better.  This is because
	-- we can't guarantee access to an 8-bit variant of every register
	-- (esi and edi don't have 8-bit variants), so to make things
	-- simpler we do our 8-bit arithmetic with full 32-bit registers.
#endif

#if x86_64_TARGET_ARCH
-- Simpler memory load code on x86_64
getRegister (CmmLoad mem pk)
  = do 
    code <- intLoadCode (MOV size) mem
    return (Any size code)
  where size = intSize $ typeWidth pk
#endif

getRegister (CmmLit (CmmInt 0 width))
  = let
	size = intSize width

	-- x86_64: 32-bit xor is one byte shorter, and zero-extends to 64 bits
	adj_size = case size of II64 -> II32; _ -> size
	size1 = IF_ARCH_i386( size, adj_size ) 
    	code dst 
           = unitOL (XOR size1 (OpReg dst) (OpReg dst))
    in
    	return (Any size code)

#if x86_64_TARGET_ARCH
  -- optimisation for loading small literals on x86_64: take advantage
  -- of the automatic zero-extension from 32 to 64 bits, because the 32-bit
  -- instruction forms are shorter.
getRegister (CmmLit lit) 
  | isWord64 (cmmLitType lit), not (isBigLit lit)
  = let 
	imm = litToImm lit
	code dst = unitOL (MOV II32 (OpImm imm) (OpReg dst))
    in
    	return (Any II64 code)
  where
   isBigLit (CmmInt i _) = i < 0 || i > 0xffffffff
   isBigLit _ = False
	-- note1: not the same as (not.is32BitLit), because that checks for
	-- signed literals that fit in 32 bits, but we want unsigned
	-- literals here.
	-- note2: all labels are small, because we're assuming the
	-- small memory model (see gcc docs, -mcmodel=small).
#endif

getRegister (CmmLit lit)
  = let 
	size = cmmTypeSize (cmmLitType lit)
	imm = litToImm lit
	code dst = unitOL (MOV size (OpImm imm) (OpReg dst))
    in
    	return (Any size code)

getRegister other = pprPanic "getRegister(x86)" (ppr other)


intLoadCode :: (Operand -> Operand -> Instr) -> CmmExpr
   -> NatM (Reg -> InstrBlock)
intLoadCode instr mem = do
  Amode src mem_code <- getAmode mem
  return (\dst -> mem_code `snocOL` instr (OpAddr src) (OpReg dst))

-- Compute an expression into *any* register, adding the appropriate
-- move instruction if necessary.
getAnyReg :: CmmExpr -> NatM (Reg -> InstrBlock)
getAnyReg expr = do
  r <- getRegister expr
  anyReg r

anyReg :: Register -> NatM (Reg -> InstrBlock)
anyReg (Any _ code)          = return code
anyReg (Fixed rep reg fcode) = return (\dst -> fcode `snocOL` reg2reg rep reg dst)

-- A bit like getSomeReg, but we want a reg that can be byte-addressed.
-- Fixed registers might not be byte-addressable, so we make sure we've
-- got a temporary, inserting an extra reg copy if necessary.
getByteReg :: CmmExpr -> NatM (Reg, InstrBlock)
#if x86_64_TARGET_ARCH
getByteReg = getSomeReg -- all regs are byte-addressable on x86_64
#else
getByteReg expr = do
  r <- getRegister expr
  case r of
    Any rep code -> do
	tmp <- getNewRegNat rep
	return (tmp, code tmp)
    Fixed rep reg code 
	| isVirtualReg reg -> return (reg,code)
	| otherwise -> do
	    tmp <- getNewRegNat rep
	    return (tmp, code `snocOL` reg2reg rep reg tmp)
	-- ToDo: could optimise slightly by checking for byte-addressable
	-- real registers, but that will happen very rarely if at all.
#endif

-- Another variant: this time we want the result in a register that cannot
-- be modified by code to evaluate an arbitrary expression.
getNonClobberedReg :: CmmExpr -> NatM (Reg, InstrBlock)
getNonClobberedReg expr = do
  r <- getRegister expr
  case r of
    Any rep code -> do
	tmp <- getNewRegNat rep
	return (tmp, code tmp)
    Fixed rep reg code
	-- only free regs can be clobbered
	| RegReal (RealRegSingle rr) <- reg
	, isFastTrue (freeReg rr) 
	-> do
		tmp <- getNewRegNat rep
		return (tmp, code `snocOL` reg2reg rep reg tmp)
	| otherwise -> 
		return (reg, code)

reg2reg :: Size -> Reg -> Reg -> Instr
reg2reg size src dst 
  | size == FF80 = GMOV src dst
  | otherwise	 = MOV size (OpReg src) (OpReg dst)


--------------------------------------------------------------------------------
getAmode :: CmmExpr -> NatM Amode
getAmode tree@(CmmRegOff _ _) = getAmode (mangleIndexTree tree)

#if x86_64_TARGET_ARCH

getAmode (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
                                     CmmLit displacement])
    = return $ Amode (ripRel (litToImm displacement)) nilOL

#endif


-- This is all just ridiculous, since it carefully undoes 
-- what mangleIndexTree has just done.
getAmode (CmmMachOp (MO_Sub rep) [x, CmmLit lit@(CmmInt i _)])
  | is32BitLit lit
  -- ASSERT(rep == II32)???
  = do (x_reg, x_code) <- getSomeReg x
       let off = ImmInt (-(fromInteger i))
       return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
  
getAmode (CmmMachOp (MO_Add rep) [x, CmmLit lit])
  | is32BitLit lit
  -- ASSERT(rep == II32)???
  = do (x_reg, x_code) <- getSomeReg x
       let off = litToImm lit
       return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)

-- Turn (lit1 << n  + lit2) into  (lit2 + lit1 << n) so it will be 
-- recognised by the next rule.
getAmode (CmmMachOp (MO_Add rep) [a@(CmmMachOp (MO_Shl _) _),
				  b@(CmmLit _)])
  = getAmode (CmmMachOp (MO_Add rep) [b,a])

getAmode (CmmMachOp (MO_Add rep) [x, CmmMachOp (MO_Shl _) 
					[y, CmmLit (CmmInt shift _)]])
  | shift == 0 || shift == 1 || shift == 2 || shift == 3
  = x86_complex_amode x y shift 0

getAmode (CmmMachOp (MO_Add rep) 
                [x, CmmMachOp (MO_Add _)
                        [CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)],
                         CmmLit (CmmInt offset _)]])
  | shift == 0 || shift == 1 || shift == 2 || shift == 3
  && is32BitInteger offset
  = x86_complex_amode x y shift offset

getAmode (CmmMachOp (MO_Add rep) [x,y])
  = x86_complex_amode x y 0 0

getAmode (CmmLit lit) | is32BitLit lit
  = return (Amode (ImmAddr (litToImm lit) 0) nilOL)

getAmode expr = do
  (reg,code) <- getSomeReg expr
  return (Amode (AddrBaseIndex (EABaseReg reg) EAIndexNone (ImmInt 0)) code)


x86_complex_amode :: CmmExpr -> CmmExpr -> Integer -> Integer -> NatM Amode
x86_complex_amode base index shift offset
  = do (x_reg, x_code) <- getNonClobberedReg base
	-- x must be in a temp, because it has to stay live over y_code
	-- we could compre x_reg and y_reg and do something better here...
       (y_reg, y_code) <- getSomeReg index
       let
    	   code = x_code `appOL` y_code
           base = case shift of 0 -> 1; 1 -> 2; 2 -> 4; 3 -> 8
       return (Amode (AddrBaseIndex (EABaseReg x_reg) (EAIndex y_reg base) (ImmInt (fromIntegral offset)))
               code)




-- -----------------------------------------------------------------------------
-- getOperand: sometimes any operand will do.

-- getNonClobberedOperand: the value of the operand will remain valid across
-- the computation of an arbitrary expression, unless the expression
-- is computed directly into a register which the operand refers to
-- (see trivialCode where this function is used for an example).

getNonClobberedOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand (CmmLit lit) = do
  use_sse2 <- sse2Enabled
  if use_sse2 && isSuitableFloatingPointLit lit
    then do
      let CmmFloat _ w = lit
      Amode addr code <- memConstant (widthInBytes w) lit
      return (OpAddr addr, code)
     else do

  if is32BitLit lit && not (isFloatType (cmmLitType lit))
    then return (OpImm (litToImm lit), nilOL)
    else getNonClobberedOperand_generic (CmmLit lit)

getNonClobberedOperand (CmmLoad mem pk) = do
  use_sse2 <- sse2Enabled
  if (not (isFloatType pk) || use_sse2)
      && IF_ARCH_i386(not (isWord64 pk), True)
    then do
      Amode src mem_code <- getAmode mem
      (src',save_code) <- 
  	if (amodeCouldBeClobbered src) 
  		then do
  		   tmp <- getNewRegNat archWordSize
  		   return (AddrBaseIndex (EABaseReg tmp) EAIndexNone (ImmInt 0),
  			   unitOL (LEA II32 (OpAddr src) (OpReg tmp)))
  		else
  		   return (src, nilOL)
      return (OpAddr src', save_code `appOL` mem_code)
    else do
      getNonClobberedOperand_generic (CmmLoad mem pk)

getNonClobberedOperand e = getNonClobberedOperand_generic e

getNonClobberedOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand_generic e = do
    (reg, code) <- getNonClobberedReg e
    return (OpReg reg, code)

amodeCouldBeClobbered :: AddrMode -> Bool
amodeCouldBeClobbered amode = any regClobbered (addrModeRegs amode)

regClobbered (RegReal (RealRegSingle rr)) = isFastTrue (freeReg rr)
regClobbered _ = False

-- getOperand: the operand is not required to remain valid across the
-- computation of an arbitrary expression.
getOperand :: CmmExpr -> NatM (Operand, InstrBlock)

getOperand (CmmLit lit) = do
  use_sse2 <- sse2Enabled
  if (use_sse2 && isSuitableFloatingPointLit lit)
    then do
      let CmmFloat _ w = lit
      Amode addr code <- memConstant (widthInBytes w) lit
      return (OpAddr addr, code)
    else do

  if is32BitLit lit && not (isFloatType (cmmLitType lit))
    then return (OpImm (litToImm lit), nilOL)
    else getOperand_generic (CmmLit lit)

getOperand (CmmLoad mem pk) = do
  use_sse2 <- sse2Enabled
  if (not (isFloatType pk) || use_sse2) && IF_ARCH_i386(not (isWord64 pk), True)
     then do
       Amode src mem_code <- getAmode mem
       return (OpAddr src, mem_code)
     else
       getOperand_generic (CmmLoad mem pk)

getOperand e = getOperand_generic e

getOperand_generic e = do
    (reg, code) <- getSomeReg e
    return (OpReg reg, code)

isOperand :: CmmExpr -> Bool
isOperand (CmmLoad _ _) = True
isOperand (CmmLit lit)  = is32BitLit lit
			  || isSuitableFloatingPointLit lit
isOperand _             = False

memConstant :: Int -> CmmLit -> NatM Amode
memConstant align lit = do
#ifdef x86_64_TARGET_ARCH
  lbl <- getNewLabelNat
  let addr = ripRel (ImmCLbl lbl)
      addr_code = nilOL
#else
  lbl <- getNewLabelNat
  dflags <- getDynFlagsNat
  dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
  Amode addr addr_code <- getAmode dynRef
#endif
  let code =
        LDATA ReadOnlyData
  		[CmmAlign align,
                 CmmDataLabel lbl,
  		 CmmStaticLit lit]
        `consOL` addr_code
  return (Amode addr code)


loadFloatAmode :: Bool -> Width -> AddrMode -> InstrBlock -> NatM Register
loadFloatAmode use_sse2 w addr addr_code = do
  let size = floatSize w
      code dst = addr_code `snocOL`
                 if use_sse2
                    then MOV size (OpAddr addr) (OpReg dst)
                    else GLD size addr dst
  -- in
  return (Any (if use_sse2 then size else FF80) code)


-- if we want a floating-point literal as an operand, we can
-- use it directly from memory.  However, if the literal is
-- zero, we're better off generating it into a register using
-- xor.
isSuitableFloatingPointLit (CmmFloat f _) = f /= 0.0
isSuitableFloatingPointLit _ = False

getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
getRegOrMem e@(CmmLoad mem pk) = do
  use_sse2 <- sse2Enabled
  if (not (isFloatType pk) || use_sse2) && IF_ARCH_i386(not (isWord64 pk), True)
     then do
       Amode src mem_code <- getAmode mem
       return (OpAddr src, mem_code)
     else do
       (reg, code) <- getNonClobberedReg e
       return (OpReg reg, code)
getRegOrMem e = do
    (reg, code) <- getNonClobberedReg e
    return (OpReg reg, code)

#if x86_64_TARGET_ARCH
is32BitLit (CmmInt i W64) = is32BitInteger i
   -- assume that labels are in the range 0-2^31-1: this assumes the
   -- small memory model (see gcc docs, -mcmodel=small).
#endif
is32BitLit x = True




-- Set up a condition code for a conditional branch.

getCondCode :: CmmExpr -> NatM CondCode

-- yes, they really do seem to want exactly the same!

getCondCode (CmmMachOp mop [x, y])
  = 
    case mop of
      MO_F_Eq W32 -> condFltCode EQQ x y
      MO_F_Ne W32 -> condFltCode NE  x y
      MO_F_Gt W32 -> condFltCode GTT x y
      MO_F_Ge W32 -> condFltCode GE  x y
      MO_F_Lt W32 -> condFltCode LTT x y
      MO_F_Le W32 -> condFltCode LE  x y

      MO_F_Eq W64 -> condFltCode EQQ x y
      MO_F_Ne W64 -> condFltCode NE  x y
      MO_F_Gt W64 -> condFltCode GTT x y
      MO_F_Ge W64 -> condFltCode GE  x y
      MO_F_Lt W64 -> condFltCode LTT x y
      MO_F_Le W64 -> condFltCode LE  x y

      MO_Eq rep -> condIntCode EQQ  x y
      MO_Ne rep -> condIntCode NE   x y

      MO_S_Gt rep -> condIntCode GTT  x y
      MO_S_Ge rep -> condIntCode GE   x y
      MO_S_Lt rep -> condIntCode LTT  x y
      MO_S_Le rep -> condIntCode LE   x y

      MO_U_Gt rep -> condIntCode GU   x y
      MO_U_Ge rep -> condIntCode GEU  x y
      MO_U_Lt rep -> condIntCode LU   x y
      MO_U_Le rep -> condIntCode LEU  x y

      other -> pprPanic "getCondCode(x86,x86_64,sparc)" (ppr (CmmMachOp mop [x,y]))

getCondCode other =  pprPanic "getCondCode(2)(x86,sparc)" (ppr other)




-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.

condIntCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode

-- memory vs immediate
condIntCode cond (CmmLoad x pk) (CmmLit lit) | is32BitLit lit = do
    Amode x_addr x_code <- getAmode x
    let
	imm  = litToImm lit
    	code = x_code `snocOL`
    	    	  CMP (cmmTypeSize pk) (OpImm imm) (OpAddr x_addr)
    --
    return (CondCode False cond code)

-- anything vs zero, using a mask
-- TODO: Add some sanity checking!!!!
condIntCode cond (CmmMachOp (MO_And rep) [x,o2]) (CmmLit (CmmInt 0 pk))
    | (CmmLit lit@(CmmInt mask pk2)) <- o2, is32BitLit lit
    = do
      (x_reg, x_code) <- getSomeReg x
      let
         code = x_code `snocOL`
                TEST (intSize pk) (OpImm (ImmInteger mask)) (OpReg x_reg)
      --
      return (CondCode False cond code)

-- anything vs zero
condIntCode cond x (CmmLit (CmmInt 0 pk)) = do
    (x_reg, x_code) <- getSomeReg x
    let
	code = x_code `snocOL`
    	    	  TEST (intSize pk) (OpReg x_reg) (OpReg x_reg)
    --
    return (CondCode False cond code)

-- anything vs operand
condIntCode cond x y | isOperand y = do
    (x_reg, x_code) <- getNonClobberedReg x
    (y_op,  y_code) <- getOperand y    
    let
	code = x_code `appOL` y_code `snocOL`
                  CMP (cmmTypeSize (cmmExprType x)) y_op (OpReg x_reg)
    -- in
    return (CondCode False cond code)

-- anything vs anything
condIntCode cond x y = do
  (y_reg, y_code) <- getNonClobberedReg y
  (x_op, x_code) <- getRegOrMem x
  let
	code = y_code `appOL`
	       x_code `snocOL`
    	    	  CMP (cmmTypeSize (cmmExprType x)) (OpReg y_reg) x_op
  -- in
  return (CondCode False cond code)



--------------------------------------------------------------------------------
condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode

condFltCode cond x y 
  = if_sse2 condFltCode_sse2 condFltCode_x87
  where

  condFltCode_x87
    = ASSERT(cond `elem` ([EQQ, NE, LE, LTT, GE, GTT])) do
    (x_reg, x_code) <- getNonClobberedReg x
    (y_reg, y_code) <- getSomeReg y
    use_sse2 <- sse2Enabled
    let
  	code = x_code `appOL` y_code `snocOL`
  		GCMP cond x_reg y_reg
    -- The GCMP insn does the test and sets the zero flag if comparable
    -- and true.  Hence we always supply EQQ as the condition to test.
    return (CondCode True EQQ code)
  
  -- in the SSE2 comparison ops (ucomiss, ucomisd) the left arg may be
  -- an operand, but the right must be a reg.  We can probably do better
  -- than this general case...
  condFltCode_sse2 = do
    (x_reg, x_code) <- getNonClobberedReg x
    (y_op, y_code) <- getOperand y
    let
  	code = x_code `appOL`
  	       y_code `snocOL`
      	    	  CMP (floatSize $ cmmExprWidth x) y_op (OpReg x_reg)
  	-- NB(1): we need to use the unsigned comparison operators on the
  	-- result of this comparison.
    -- in
    return (CondCode True (condToUnsigned cond) code)

-- -----------------------------------------------------------------------------
-- Generating assignments

-- Assignments are really at the heart of the whole code generation
-- business.  Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers.  If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side.  This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).

assignMem_IntCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Size -> CmmReg  -> CmmExpr -> NatM InstrBlock

assignMem_FltCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Size -> CmmReg  -> CmmExpr -> NatM InstrBlock


-- integer assignment to memory

-- specific case of adding/subtracting an integer to a particular address.
-- ToDo: catch other cases where we can use an operation directly on a memory 
-- address.
assignMem_IntCode pk addr (CmmMachOp op [CmmLoad addr2 _,
                                                 CmmLit (CmmInt i _)])
   | addr == addr2, pk /= II64 || is32BitInteger i,
     Just instr <- check op
   = do Amode amode code_addr <- getAmode addr
        let code = code_addr `snocOL`
                   instr pk (OpImm (ImmInt (fromIntegral i))) (OpAddr amode)
        return code
   where
        check (MO_Add _) = Just ADD
        check (MO_Sub _) = Just SUB
        check _ = Nothing
        -- ToDo: more?

-- general case
assignMem_IntCode pk addr src = do
    Amode addr code_addr <- getAmode addr
    (code_src, op_src)   <- get_op_RI src
    let
	code = code_src `appOL`
	       code_addr `snocOL`
                  MOV pk op_src (OpAddr addr)
	-- NOTE: op_src is stable, so it will still be valid
	-- after code_addr.  This may involve the introduction 
	-- of an extra MOV to a temporary register, but we hope
	-- the register allocator will get rid of it.
    --
    return code
  where
    get_op_RI :: CmmExpr -> NatM (InstrBlock,Operand)	-- code, operator
    get_op_RI (CmmLit lit) | is32BitLit lit
      = return (nilOL, OpImm (litToImm lit))
    get_op_RI op
      = do (reg,code) <- getNonClobberedReg op
	   return (code, OpReg reg)


-- Assign; dst is a reg, rhs is mem
assignReg_IntCode pk reg (CmmLoad src _) = do
  load_code <- intLoadCode (MOV pk) src
  return (load_code (getRegisterReg False{-no sse2-} reg))

-- dst is a reg, but src could be anything
assignReg_IntCode pk reg src = do
  code <- getAnyReg src
  return (code (getRegisterReg False{-no sse2-} reg))


-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
  (src_reg, src_code) <- getNonClobberedReg src
  Amode addr addr_code <- getAmode addr
  use_sse2 <- sse2Enabled
  let
	code = src_code `appOL`
	       addr_code `snocOL`
                if use_sse2 then MOV pk (OpReg src_reg) (OpAddr addr)
                            else GST pk src_reg addr
  return code

-- Floating point assignment to a register/temporary
assignReg_FltCode pk reg src = do
  use_sse2 <- sse2Enabled
  src_code <- getAnyReg src
  return (src_code (getRegisterReg use_sse2 reg))


genJump :: CmmExpr{-the branch target-} -> NatM InstrBlock

genJump (CmmLoad mem pk) = do
  Amode target code <- getAmode mem
  return (code `snocOL` JMP (OpAddr target))

genJump (CmmLit lit) = do
  return (unitOL (JMP (OpImm (litToImm lit))))

genJump expr = do
  (reg,code) <- getSomeReg expr
  return (code `snocOL` JMP (OpReg reg))


-- -----------------------------------------------------------------------------
--  Unconditional branches

genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkJumpInstr



-- -----------------------------------------------------------------------------
--  Conditional jumps

{-
Conditional jumps are always to local labels, so we can use branch
instructions.  We peek at the arguments to decide what kind of
comparison to do.

I386: First, we have to ensure that the condition
codes are set according to the supplied comparison operation.
-}

genCondJump
    :: BlockId	    -- the branch target
    -> CmmExpr      -- the condition on which to branch
    -> NatM InstrBlock

genCondJump id bool = do
  CondCode is_float cond cond_code <- getCondCode bool
  use_sse2 <- sse2Enabled
  if not is_float || not use_sse2
    then
	return (cond_code `snocOL` JXX cond id)
    else do
	lbl <- getBlockIdNat

	-- see comment with condFltReg
	let code = case cond of
	  		NE  -> or_unordered
			GU  -> plain_test
			GEU -> plain_test
			_   -> and_ordered

	    plain_test = unitOL (
		  JXX cond id
		)
	    or_unordered = toOL [
		  JXX cond id,
		  JXX PARITY id
		]
	    and_ordered = toOL [
		  JXX PARITY lbl,
		  JXX cond id,
		  JXX ALWAYS lbl,
		  NEWBLOCK lbl
		]
	return (cond_code `appOL` code)


-- -----------------------------------------------------------------------------
--  Generating C calls

-- Now the biggest nightmare---calls.  Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations.  Apart from that, the code is easy.
-- 
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.

genCCall
    :: CmmCallTarget		-- function to call
    -> HintedCmmFormals		-- where to put the result
    -> HintedCmmActuals		-- arguments (of mixed type)
    -> NatM InstrBlock

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#if i386_TARGET_ARCH

genCCall (CmmPrim MO_WriteBarrier) _ _ = return nilOL
	-- write barrier compiles to no code on x86/x86-64; 
	-- we keep it this long in order to prevent earlier optimisations.

-- we only cope with a single result for foreign calls
genCCall (CmmPrim op) [CmmHinted r _] args = do
  l1 <- getNewLabelNat
  l2 <- getNewLabelNat
  sse2 <- sse2Enabled
  if sse2
    then
      outOfLineFloatOp op r args
    else case op of
	MO_F32_Sqrt -> actuallyInlineFloatOp GSQRT FF32 args
	MO_F64_Sqrt -> actuallyInlineFloatOp GSQRT FF64 args
	
	MO_F32_Sin  -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF32 args
	MO_F64_Sin  -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF64 args

	MO_F32_Cos  -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF32 args
	MO_F64_Cos  -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF64 args

	MO_F32_Tan  -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF32 args
	MO_F64_Tan  -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF64 args
	
	other_op    -> outOfLineFloatOp op r args

 where
  actuallyInlineFloatOp instr size [CmmHinted x _]
	= do res <- trivialUFCode size (instr size) x
	     any <- anyReg res
 	     return (any (getRegisterReg False (CmmLocal r)))

genCCall target dest_regs args = do
    let
        sizes               = map (arg_size . cmmExprType . hintlessCmm) (reverse args)
#if !darwin_TARGET_OS        
        tot_arg_size        = sum sizes
#else
        raw_arg_size        = sum sizes
        tot_arg_size        = roundTo 16 raw_arg_size
        arg_pad_size        = tot_arg_size - raw_arg_size
    delta0 <- getDeltaNat
    setDeltaNat (delta0 - arg_pad_size)
#endif

    use_sse2 <- sse2Enabled
    push_codes <- mapM (push_arg use_sse2) (reverse args)
    delta <- getDeltaNat

    -- in
    -- deal with static vs dynamic call targets
    (callinsns,cconv) <-
      case target of
	-- CmmPrim -> ...
        CmmCallee (CmmLit (CmmLabel lbl)) conv
           -> -- ToDo: stdcall arg sizes
	      return (unitOL (CALL (Left fn_imm) []), conv)
	   where fn_imm = ImmCLbl lbl
        CmmCallee expr conv
           -> do { (dyn_r, dyn_c) <- getSomeReg expr
                 ; ASSERT( isWord32 (cmmExprType expr) )
                   return (dyn_c `snocOL` CALL (Right dyn_r) [], conv) }

    let	push_code
#if darwin_TARGET_OS
            | arg_pad_size /= 0
            = toOL [SUB II32 (OpImm (ImmInt arg_pad_size)) (OpReg esp),
                    DELTA (delta0 - arg_pad_size)]
              `appOL` concatOL push_codes
            | otherwise
#endif
            = concatOL push_codes
	call = callinsns `appOL`
               toOL (
			-- Deallocate parameters after call for ccall;
			-- but not for stdcall (callee does it)
                  (if cconv == StdCallConv || tot_arg_size==0 then [] else 
		   [ADD II32 (OpImm (ImmInt tot_arg_size)) (OpReg esp)])
                  ++
                  [DELTA (delta + tot_arg_size)]
               )
    -- in
    setDeltaNat (delta + tot_arg_size)

    let
	-- assign the results, if necessary
	assign_code []     = nilOL
	assign_code [CmmHinted dest _hint]
	  | isFloatType ty = 
             if use_sse2
                then let tmp_amode = AddrBaseIndex (EABaseReg esp)
                                                   EAIndexNone
                                                   (ImmInt 0)
                         sz = floatSize w
                     in toOL [ SUB II32 (OpImm (ImmInt b)) (OpReg esp),
                               GST sz fake0 tmp_amode,
                               MOV sz (OpAddr tmp_amode) (OpReg r_dest),
                               ADD II32 (OpImm (ImmInt b)) (OpReg esp)]
                else unitOL (GMOV fake0 r_dest)
	  | isWord64 ty    = toOL [MOV II32 (OpReg eax) (OpReg r_dest),
				    MOV II32 (OpReg edx) (OpReg r_dest_hi)]
	  | otherwise      = unitOL (MOV (intSize w) (OpReg eax) (OpReg r_dest))
	  where 
		ty = localRegType dest
		w  = typeWidth ty
                b  = widthInBytes w
		r_dest_hi = getHiVRegFromLo r_dest
		r_dest    = getRegisterReg use_sse2 (CmmLocal dest)
	assign_code many = pprPanic "genCCall.assign_code - too many return values:" (ppr many)

    return (push_code `appOL` 
	    call `appOL` 
	    assign_code dest_regs)

  where
    arg_size :: CmmType -> Int	-- Width in bytes
    arg_size ty = widthInBytes (typeWidth ty)

    roundTo a x | x `mod` a == 0 = x
                | otherwise = x + a - (x `mod` a)


    push_arg :: Bool -> HintedCmmActual {-current argument-}
                    -> NatM InstrBlock  -- code

    push_arg use_sse2 (CmmHinted arg _hint) -- we don't need the hints on x86
      | isWord64 arg_ty = do
        ChildCode64 code r_lo <- iselExpr64 arg
        delta <- getDeltaNat
        setDeltaNat (delta - 8)
        let 
            r_hi = getHiVRegFromLo r_lo
        -- in
	return (       code `appOL`
                       toOL [PUSH II32 (OpReg r_hi), DELTA (delta - 4),
                             PUSH II32 (OpReg r_lo), DELTA (delta - 8),
			     DELTA (delta-8)]
            )

      | isFloatType arg_ty = do
        (reg, code) <- getSomeReg arg
        delta <- getDeltaNat
        setDeltaNat (delta-size)
        return (code `appOL`
                        toOL [SUB II32 (OpImm (ImmInt size)) (OpReg esp),
                              DELTA (delta-size),
                              let addr = AddrBaseIndex (EABaseReg esp) 
                                                        EAIndexNone
                                                        (ImmInt 0)
                                  size = floatSize (typeWidth arg_ty)
                              in
                              if use_sse2 
                                 then MOV size (OpReg reg) (OpAddr addr)
                                 else GST size reg addr
                             ]
                       )

      | otherwise = do
        (operand, code) <- getOperand arg
        delta <- getDeltaNat
        setDeltaNat (delta-size)
        return (code `snocOL`
                PUSH II32 operand `snocOL`
                DELTA (delta-size))

      where
         arg_ty = cmmExprType arg
         size = arg_size arg_ty	-- Byte size

#elif x86_64_TARGET_ARCH

genCCall (CmmPrim MO_WriteBarrier) _ _ = return nilOL
	-- write barrier compiles to no code on x86/x86-64; 
	-- we keep it this long in order to prevent earlier optimisations.


genCCall (CmmPrim op) [CmmHinted r _] args = 
  outOfLineFloatOp op r args

genCCall target dest_regs args = do

	-- load up the register arguments
    (stack_args, aregs, fregs, load_args_code)
	 <- load_args args allArgRegs allFPArgRegs nilOL

    let
	fp_regs_used  = reverse (drop (length fregs) (reverse allFPArgRegs))
	int_regs_used = reverse (drop (length aregs) (reverse allArgRegs))
	arg_regs = [eax] ++ int_regs_used ++ fp_regs_used
		-- for annotating the call instruction with

	sse_regs = length fp_regs_used

	tot_arg_size = arg_size * length stack_args

	-- On entry to the called function, %rsp should be aligned
	-- on a 16-byte boundary +8 (i.e. the first stack arg after
	-- the return address is 16-byte aligned).  In STG land
	-- %rsp is kept 16-byte aligned (see StgCRun.c), so we just
	-- need to make sure we push a multiple of 16-bytes of args,
	-- plus the return address, to get the correct alignment.
	-- Urg, this is hard.  We need to feed the delta back into
	-- the arg pushing code.
    (real_size, adjust_rsp) <-
	if tot_arg_size `rem` 16 == 0
	    then return (tot_arg_size, nilOL)
	    else do -- we need to adjust...
		delta <- getDeltaNat
		setDeltaNat (delta-8)
		return (tot_arg_size+8, toOL [
				SUB II64 (OpImm (ImmInt 8)) (OpReg rsp),
				DELTA (delta-8)
			])

	-- push the stack args, right to left
    push_code <- push_args (reverse stack_args) nilOL
    delta <- getDeltaNat

    -- deal with static vs dynamic call targets
    (callinsns,cconv) <-
      case target of
	-- CmmPrim -> ...
        CmmCallee (CmmLit (CmmLabel lbl)) conv
           -> -- ToDo: stdcall arg sizes
	      return (unitOL (CALL (Left fn_imm) arg_regs), conv)
	   where fn_imm = ImmCLbl lbl
        CmmCallee expr conv
           -> do (dyn_r, dyn_c) <- getSomeReg expr
		 return (dyn_c `snocOL` CALL (Right dyn_r) arg_regs, conv)

    let
	-- The x86_64 ABI requires us to set %al to the number of SSE2
	-- registers that contain arguments, if the called routine
	-- is a varargs function.  We don't know whether it's a
	-- varargs function or not, so we have to assume it is.
	--
	-- It's not safe to omit this assignment, even if the number
	-- of SSE2 regs in use is zero.  If %al is larger than 8
	-- on entry to a varargs function, seg faults ensue.
	assign_eax n = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))

    let call = callinsns `appOL`
               toOL (
			-- Deallocate parameters after call for ccall;
			-- but not for stdcall (callee does it)
                  (if cconv == StdCallConv || real_size==0 then [] else 
		   [ADD (intSize wordWidth) (OpImm (ImmInt real_size)) (OpReg esp)])
                  ++
                  [DELTA (delta + real_size)]
               )
    -- in
    setDeltaNat (delta + real_size)

    let
	-- assign the results, if necessary
	assign_code []     = nilOL
	assign_code [CmmHinted dest _hint] = 
	  case typeWidth rep of
		W32 | isFloatType rep -> unitOL (MOV (floatSize W32) (OpReg xmm0) (OpReg r_dest))
		W64 | isFloatType rep -> unitOL (MOV (floatSize W64) (OpReg xmm0) (OpReg r_dest))
		_ -> unitOL (MOV (cmmTypeSize rep) (OpReg rax) (OpReg r_dest))
	  where 
		rep = localRegType dest
		r_dest = getRegisterReg True (CmmLocal dest)
	assign_code many = panic "genCCall.assign_code many"

    return (load_args_code 	`appOL` 
	    adjust_rsp 		`appOL`
	    push_code 		`appOL`
	    assign_eax sse_regs `appOL`
	    call 		`appOL` 
	    assign_code dest_regs)

  where
    arg_size = 8 -- always, at the mo

    load_args :: [CmmHinted CmmExpr]
	      -> [Reg] 			-- int regs avail for args
	      -> [Reg] 			-- FP regs avail for args
	      -> InstrBlock
	      -> NatM ([CmmHinted CmmExpr],[Reg],[Reg],InstrBlock)
    load_args args [] [] code     =  return (args, [], [], code)
	-- no more regs to use
    load_args [] aregs fregs code =  return ([], aregs, fregs, code)
	-- no more args to push
    load_args ((CmmHinted arg hint) : rest) aregs fregs code
	| isFloatType arg_rep = 
	case fregs of
	  [] -> push_this_arg
	  (r:rs) -> do
	     arg_code <- getAnyReg arg
	     load_args rest aregs rs (code `appOL` arg_code r)
	| otherwise =
	case aregs of
	  [] -> push_this_arg
	  (r:rs) -> do
	     arg_code <- getAnyReg arg
	     load_args rest rs fregs (code `appOL` arg_code r)
	where
	  arg_rep = cmmExprType arg

	  push_this_arg = do
	    (args',ars,frs,code') <- load_args rest aregs fregs code
	    return ((CmmHinted arg hint):args', ars, frs, code')

    push_args [] code = return code
    push_args ((CmmHinted arg hint):rest) code
       | isFloatType arg_rep = do
	 (arg_reg, arg_code) <- getSomeReg arg
         delta <- getDeltaNat
         setDeltaNat (delta-arg_size)
	 let code' = code `appOL` arg_code `appOL` toOL [
			SUB (intSize wordWidth) (OpImm (ImmInt arg_size)) (OpReg rsp) ,
	 		DELTA (delta-arg_size),
			MOV (floatSize width) (OpReg arg_reg) (OpAddr  (spRel 0))]
	 push_args rest code'

       | otherwise = do
       -- we only ever generate word-sized function arguments.  Promotion
       -- has already happened: our Int8# type is kept sign-extended
       -- in an Int#, for example.
	 ASSERT(width == W64) return ()
	 (arg_op, arg_code) <- getOperand arg
         delta <- getDeltaNat
         setDeltaNat (delta-arg_size)
	 let code' = code `appOL` arg_code `appOL` toOL [
	 			PUSH II64 arg_op, 
	 		        DELTA (delta-arg_size)]
	 push_args rest code'
	where
	  arg_rep = cmmExprType arg
	  width = typeWidth arg_rep

#else
genCCall	= panic "X86.genCCAll: not defined"

#endif /* x86_64_TARGET_ARCH */




outOfLineFloatOp :: CallishMachOp -> CmmFormal -> HintedCmmActuals -> NatM InstrBlock
outOfLineFloatOp mop res args
  = do
      dflags <- getDynFlagsNat
      targetExpr <- cmmMakeDynamicReference dflags addImportNat CallReference lbl
      let target = CmmCallee targetExpr CCallConv
     
      stmtToInstrs (CmmCall target [CmmHinted res NoHint] args CmmUnsafe CmmMayReturn)
  where
	-- Assume we can call these functions directly, and that they're not in a dynamic library.
	-- TODO: Why is this ok? Under linux this code will be in libm.so
	--	 Is is because they're really implemented as a primitive instruction by the assembler??  -- BL 2009/12/31 
	lbl = mkForeignLabel fn Nothing ForeignLabelInThisPackage IsFunction

	fn = case mop of
	      MO_F32_Sqrt  -> fsLit "sqrtf"
	      MO_F32_Sin   -> fsLit "sinf"
	      MO_F32_Cos   -> fsLit "cosf"
	      MO_F32_Tan   -> fsLit "tanf"
	      MO_F32_Exp   -> fsLit "expf"
	      MO_F32_Log   -> fsLit "logf"

	      MO_F32_Asin  -> fsLit "asinf"
	      MO_F32_Acos  -> fsLit "acosf"
	      MO_F32_Atan  -> fsLit "atanf"

	      MO_F32_Sinh  -> fsLit "sinhf"
	      MO_F32_Cosh  -> fsLit "coshf"
	      MO_F32_Tanh  -> fsLit "tanhf"
	      MO_F32_Pwr   -> fsLit "powf"

	      MO_F64_Sqrt  -> fsLit "sqrt"
	      MO_F64_Sin   -> fsLit "sin"
	      MO_F64_Cos   -> fsLit "cos"
	      MO_F64_Tan   -> fsLit "tan"
	      MO_F64_Exp   -> fsLit "exp"
	      MO_F64_Log   -> fsLit "log"

	      MO_F64_Asin  -> fsLit "asin"
	      MO_F64_Acos  -> fsLit "acos"
	      MO_F64_Atan  -> fsLit "atan"

	      MO_F64_Sinh  -> fsLit "sinh"
	      MO_F64_Cosh  -> fsLit "cosh"
	      MO_F64_Tanh  -> fsLit "tanh"
	      MO_F64_Pwr   -> fsLit "pow"





-- -----------------------------------------------------------------------------
-- Generating a table-branch

genSwitch :: CmmExpr -> [Maybe BlockId] -> NatM InstrBlock

genSwitch expr ids
  | opt_PIC
  = do
        (reg,e_code) <- getSomeReg expr
        lbl <- getNewLabelNat
        dflags <- getDynFlagsNat
        dynRef <- cmmMakeDynamicReference dflags addImportNat DataReference lbl
        (tableReg,t_code) <- getSomeReg $ dynRef
        let
            jumpTable = map jumpTableEntryRel ids
            
            jumpTableEntryRel Nothing
                = CmmStaticLit (CmmInt 0 wordWidth)
            jumpTableEntryRel (Just (BlockId id))
                = CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0)
                where blockLabel = mkAsmTempLabel id

            op = OpAddr (AddrBaseIndex (EABaseReg tableReg)
                                       (EAIndex reg wORD_SIZE) (ImmInt 0))

#if x86_64_TARGET_ARCH
#if darwin_TARGET_OS
    -- on Mac OS X/x86_64, put the jump table in the text section
    -- to work around a limitation of the linker.
    -- ld64 is unable to handle the relocations for
    --     .quad L1 - L0
    -- if L0 is not preceded by a non-anonymous label in its section.
    
            code = e_code `appOL` t_code `appOL` toOL [
                            ADD (intSize wordWidth) op (OpReg tableReg),
                            JMP_TBL (OpReg tableReg) [ id | Just id <- ids ],
                            LDATA Text (CmmDataLabel lbl : jumpTable)
                    ]
#else
    -- HACK: On x86_64 binutils<2.17 is only able to generate PC32
    -- relocations, hence we only get 32-bit offsets in the jump
    -- table. As these offsets are always negative we need to properly
    -- sign extend them to 64-bit. This hack should be removed in
    -- conjunction with the hack in PprMach.hs/pprDataItem once
    -- binutils 2.17 is standard.
            code = e_code `appOL` t_code `appOL` toOL [
			    LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
			    MOVSxL II32
				   (OpAddr (AddrBaseIndex (EABaseReg tableReg)
							  (EAIndex reg wORD_SIZE) (ImmInt 0)))
				   (OpReg reg),
			    ADD (intSize wordWidth) (OpReg reg) (OpReg tableReg),
			    JMP_TBL (OpReg tableReg) [ id | Just id <- ids ]
		   ]
#endif
#else
            code = e_code `appOL` t_code `appOL` toOL [
                            LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
                            ADD (intSize wordWidth) op (OpReg tableReg),
                            JMP_TBL (OpReg tableReg) [ id | Just id <- ids ]
                    ]
#endif
        return code
  | otherwise
  = do
        (reg,e_code) <- getSomeReg expr
        lbl <- getNewLabelNat
        let
            jumpTable = map jumpTableEntry ids
            op = OpAddr (AddrBaseIndex EABaseNone (EAIndex reg wORD_SIZE) (ImmCLbl lbl))
            code = e_code `appOL` toOL [
                    LDATA ReadOnlyData (CmmDataLabel lbl : jumpTable),
                    JMP_TBL op [ id | Just id <- ids ]
                 ]
        -- in
        return code


-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers

-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
-- 
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.

condIntReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register

condIntReg cond x y = do
  CondCode _ cond cond_code <- condIntCode cond x y
  tmp <- getNewRegNat II8
  let 
	code dst = cond_code `appOL` toOL [
		    SETCC cond (OpReg tmp),
		    MOVZxL II8 (OpReg tmp) (OpReg dst)
		  ]
  -- in
  return (Any II32 code)



condFltReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
condFltReg cond x y = if_sse2 condFltReg_sse2 condFltReg_x87
 where
  condFltReg_x87 = do
    CondCode _ cond cond_code <- condFltCode cond x y
    tmp <- getNewRegNat II8
    let 
  	code dst = cond_code `appOL` toOL [
  		    SETCC cond (OpReg tmp),
  		    MOVZxL II8 (OpReg tmp) (OpReg dst)
  		  ]
    -- in
    return (Any II32 code)
  
  condFltReg_sse2 = do
    CondCode _ cond cond_code <- condFltCode cond x y
    tmp1 <- getNewRegNat archWordSize
    tmp2 <- getNewRegNat archWordSize
    let 
  	-- We have to worry about unordered operands (eg. comparisons
  	-- against NaN).  If the operands are unordered, the comparison
  	-- sets the parity flag, carry flag and zero flag.
  	-- All comparisons are supposed to return false for unordered
  	-- operands except for !=, which returns true.
  	--
  	-- Optimisation: we don't have to test the parity flag if we
  	-- know the test has already excluded the unordered case: eg >
  	-- and >= test for a zero carry flag, which can only occur for
  	-- ordered operands.
  	--
  	-- ToDo: by reversing comparisons we could avoid testing the
  	-- parity flag in more cases.
  
  	code dst = 
  	   cond_code `appOL` 
  	     (case cond of
  	  	NE  -> or_unordered dst
  		GU  -> plain_test   dst
  		GEU -> plain_test   dst
  		_   -> and_ordered  dst)
  
  	plain_test dst = toOL [
  		    SETCC cond (OpReg tmp1),
  		    MOVZxL II8 (OpReg tmp1) (OpReg dst)
  		 ]
  	or_unordered dst = toOL [
  		    SETCC cond (OpReg tmp1),
  		    SETCC PARITY (OpReg tmp2),
  		    OR II8 (OpReg tmp1) (OpReg tmp2),
  		    MOVZxL II8 (OpReg tmp2) (OpReg dst)
  		  ]
  	and_ordered dst = toOL [
  		    SETCC cond (OpReg tmp1),
  		    SETCC NOTPARITY (OpReg tmp2),
  		    AND II8 (OpReg tmp1) (OpReg tmp2),
  		    MOVZxL II8 (OpReg tmp2) (OpReg dst)
  		  ]
    -- in
    return (Any II32 code)


-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions

-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.

-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.


{-
The Rules of the Game are:

* You cannot assume anything about the destination register dst;
  it may be anything, including a fixed reg.

* You may compute an operand into a fixed reg, but you may not 
  subsequently change the contents of that fixed reg.  If you
  want to do so, first copy the value either to a temporary
  or into dst.  You are free to modify dst even if it happens
  to be a fixed reg -- that's not your problem.

* You cannot assume that a fixed reg will stay live over an
  arbitrary computation.  The same applies to the dst reg.

* Temporary regs obtained from getNewRegNat are distinct from 
  each other and from all other regs, and stay live over 
  arbitrary computations.

--------------------

SDM's version of The Rules:

* If getRegister returns Any, that means it can generate correct
  code which places the result in any register, period.  Even if that
  register happens to be read during the computation.

  Corollary #1: this means that if you are generating code for an
  operation with two arbitrary operands, you cannot assign the result
  of the first operand into the destination register before computing
  the second operand.  The second operand might require the old value
  of the destination register.

  Corollary #2: A function might be able to generate more efficient
  code if it knows the destination register is a new temporary (and
  therefore not read by any of the sub-computations).

* If getRegister returns Any, then the code it generates may modify only:
	(a) fresh temporaries
	(b) the destination register
	(c) known registers (eg. %ecx is used by shifts)
  In particular, it may *not* modify global registers, unless the global
  register happens to be the destination register.
-}

trivialCode width instr (Just revinstr) (CmmLit lit_a) b
  | is32BitLit lit_a = do
  b_code <- getAnyReg b
  let
       code dst 
	 = b_code dst `snocOL`
           revinstr (OpImm (litToImm lit_a)) (OpReg dst)
  -- in
  return (Any (intSize width) code)

trivialCode width instr maybe_revinstr a b
  = genTrivialCode (intSize width) instr a b

-- This is re-used for floating pt instructions too.
genTrivialCode rep instr a b = do
  (b_op, b_code) <- getNonClobberedOperand b
  a_code <- getAnyReg a
  tmp <- getNewRegNat rep
  let
     -- We want the value of b to stay alive across the computation of a.
     -- But, we want to calculate a straight into the destination register,
     -- because the instruction only has two operands (dst := dst `op` src).
     -- The troublesome case is when the result of b is in the same register
     -- as the destination reg.  In this case, we have to save b in a
     -- new temporary across the computation of a.
     code dst
	| dst `regClashesWithOp` b_op =
		b_code `appOL`
		unitOL (MOV rep b_op (OpReg tmp)) `appOL`
		a_code dst `snocOL`
		instr (OpReg tmp) (OpReg dst)
	| otherwise =
		b_code `appOL`
		a_code dst `snocOL`
		instr b_op (OpReg dst)
  -- in
  return (Any rep code)

reg `regClashesWithOp` OpReg reg2   = reg == reg2
reg `regClashesWithOp` OpAddr amode = any (==reg) (addrModeRegs amode)
reg `regClashesWithOp` _            = False

-----------

trivialUCode rep instr x = do
  x_code <- getAnyReg x
  let
     code dst =
	x_code dst `snocOL`
	instr (OpReg dst)
  return (Any rep code)

-----------

trivialFCode_x87 width instr x y = do
  (x_reg, x_code) <- getNonClobberedReg x -- these work for float regs too
  (y_reg, y_code) <- getSomeReg y
  let
     size = FF80 -- always, on x87
     code dst =
	x_code `appOL`
	y_code `snocOL`
	instr size x_reg y_reg dst
  return (Any size code)

trivialFCode_sse2 pk instr x y
    = genTrivialCode size (instr size) x y
    where size = floatSize pk


trivialUFCode size instr x = do
  (x_reg, x_code) <- getSomeReg x
  let
     code dst =
	x_code `snocOL`
	instr x_reg dst
  -- in
  return (Any size code)


--------------------------------------------------------------------------------
coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP from to x = if_sse2 coerce_sse2 coerce_x87
 where
   coerce_x87 = do
     (x_reg, x_code) <- getSomeReg x
     let
           opc  = case to of W32 -> GITOF; W64 -> GITOD
           code dst = x_code `snocOL` opc x_reg dst
   	-- ToDo: works for non-II32 reps?
     return (Any FF80 code)
   
   coerce_sse2 = do
     (x_op, x_code) <- getOperand x  -- ToDo: could be a safe operand
     let
           opc  = case to of W32 -> CVTSI2SS; W64 -> CVTSI2SD
           code dst = x_code `snocOL` opc (intSize from) x_op dst
     -- in
     return (Any (floatSize to) code)
        -- works even if the destination rep is <II32

--------------------------------------------------------------------------------
coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int from to x = if_sse2 coerceFP2Int_sse2 coerceFP2Int_x87
 where
   coerceFP2Int_x87 = do
     (x_reg, x_code) <- getSomeReg x
     let
           opc  = case from of W32 -> GFTOI; W64 -> GDTOI
           code dst = x_code `snocOL` opc x_reg dst
   	-- ToDo: works for non-II32 reps?
     -- in
     return (Any (intSize to) code)
   
   coerceFP2Int_sse2 = do
     (x_op, x_code) <- getOperand x  -- ToDo: could be a safe operand
     let
           opc  = case from of W32 -> CVTTSS2SIQ; W64 -> CVTTSD2SIQ
           code dst = x_code `snocOL` opc (intSize to) x_op dst
     -- in
     return (Any (intSize to) code)
         -- works even if the destination rep is <II32


--------------------------------------------------------------------------------
coerceFP2FP :: Width -> CmmExpr -> NatM Register
coerceFP2FP to x = do
  (x_reg, x_code) <- getSomeReg x
  let
        opc  = case to of W32 -> CVTSD2SS; W64 -> CVTSS2SD
        code dst = x_code `snocOL` opc x_reg dst
  -- in
  return (Any (floatSize to) code)

--------------------------------------------------------------------------------

sse2NegCode :: Width -> CmmExpr -> NatM Register
sse2NegCode w x = do
  let sz = floatSize w
  x_code <- getAnyReg x
  -- This is how gcc does it, so it can't be that bad:
  let
    const | FF32 <- sz = CmmInt 0x80000000 W32
          | otherwise  = CmmInt 0x8000000000000000 W64
  Amode amode amode_code <- memConstant (widthInBytes w) const
  tmp <- getNewRegNat sz
  let
    code dst = x_code dst `appOL` amode_code `appOL` toOL [
        MOV sz (OpAddr amode) (OpReg tmp),
	XOR sz (OpReg tmp) (OpReg dst)
	]
  --
  return (Any sz code)