#if __GLASGOW_HASKELL__ >= 611
{-# OPTIONS_GHC -XNoMonoLocalBinds #-}
#endif
-- Norman likes local bindings
-- If this module lives on I'd like to get rid of this flag in due course

module CmmStackLayout
    ( SlotEnv, liveSlotAnal, liveSlotTransfers, removeLiveSlotDefs
    , layout, manifestSP, igraph, areaBuilder
    , stubSlotsOnDeath ) -- to help crash early during debugging
where

import Constants
import Prelude hiding (zip, unzip, last)

import BlockId
import CmmExpr
import CmmProcPointZ
import CmmTx
import DFMonad
import Maybes
import MkZipCfg
import MkZipCfgCmm hiding (CmmBlock, CmmGraph)
import Control.Monad
import Outputable
import SMRep (ByteOff)
import ZipCfg
import ZipCfg as Z
import ZipCfgCmmRep
import ZipDataflow

import Data.Map (Map)
import qualified Data.Map as Map
import qualified FiniteMap as Map

------------------------------------------------------------------------
--                    Stack Layout                                    --
------------------------------------------------------------------------

-- | Before we lay out the stack, we need to know something about the
-- liveness of the stack slots. In particular, to decide whether we can
-- reuse a stack location to hold multiple stack slots, we need to know
-- when each of the stack slots is used.
-- Although tempted to use something simpler, we really need a full interference
-- graph. Consider the following case:
--   case <...> of
--     1 -> <spill x>; // y is dead out
--     2 -> <spill y>; // x is dead out
--     3 -> <spill x and y>
-- If we consider the arms in order and we use just the deadness information given by a
-- dataflow analysis, we might decide to allocate the stack slots for x and y
-- to the same stack location, which will lead to incorrect code in the third arm.
-- We won't make this mistake with an interference graph.

-- First, the liveness analysis.
-- We represent a slot with an area, an offset into the area, and a width.
-- Tracking the live slots is a bit tricky because there may be loads and stores
-- into only a part of a stack slot (e.g. loading the low word of a 2-word long),
-- e.g. Slot A 0 8 overlaps with Slot A 4 4.
--
-- The definition of a slot set is intended to reduce the number of overlap
-- checks we have to make. There's no reason to check for overlap between
-- slots in different areas, so we segregate the map by Area's.
-- We expect few slots in each Area, so we collect them in an unordered list.
-- To keep these lists short, any contiguous live slots are coalesced into
-- a single slot, on insertion.

slotLattice :: DataflowLattice SubAreaSet
slotLattice = DataflowLattice "live slots" Map.empty add False
  where add new old = case Map.foldRightWithKey addArea (False, old) new of
                        (True,  x) -> aTx  x
                        (False, x) -> noTx x
        addArea a newSlots z = foldr (addSlot a) z newSlots
        addSlot a slot (changed, map) =
          let (c, live) = liveGen slot $ Map.findWithDefault [] a map
          in (c || changed, Map.insert a live map)

type SlotEnv   = BlockEnv SubAreaSet
  -- The sub-areas live on entry to the block

type SlotFix a = FuelMonad (BackwardFixedPoint Middle Last SubAreaSet a)

liveSlotAnal :: LGraph Middle Last -> FuelMonad SlotEnv
liveSlotAnal g = liftM zdfFpFacts (res :: SlotFix ())
  where res = zdfSolveFromL emptyBlockEnv "live slot analysis" slotLattice
                            liveSlotTransfers (fact_bot slotLattice) g

-- Add the subarea s to the subareas in the list-set (possibly coalescing it with
-- adjacent subareas), and also return whether s was a new addition.
liveGen :: SubArea -> [SubArea] -> (Bool, [SubArea])
liveGen s set = liveGen' s set []
  where liveGen' s [] z = (True, s : z)
        liveGen' s@(a, hi, w) (s'@(a', hi', w') : rst) z =
          if a /= a' || hi < lo' || lo > hi' then    -- no overlap
            liveGen' s rst (s' : z)
          else if s' `contains` s then               -- old contains new
            (False, set)
          else                                       -- overlap: coalesce the slots
            let new_hi = max hi hi'
                new_lo = min lo lo'
            in liveGen' (a, new_hi, new_hi - new_lo) rst z
          where lo  = hi  - w  -- remember: areas grow down
                lo' = hi' - w'
        contains (a, hi, w) (a', hi', w') =
          a == a' && hi >= hi' && hi - w <= hi' - w'

liveKill :: SubArea -> [SubArea] -> [SubArea]
liveKill (a, hi, w) set = -- pprTrace "killing slots in area" (ppr a) $
                          liveKill' set []
  where liveKill' [] z = z
        liveKill' (s'@(a', hi', w') : rst) z =
          if a /= a' || hi < lo' || lo > hi' then    -- no overlap
            liveKill' rst (s' : z)
          else                                       -- overlap: split the old slot
            let z'  = if hi' > hi  then (a, hi', hi' - hi)  : z else z
                z'' = if lo  > lo' then (a, lo,  lo  - lo') : z' else z'
            in liveKill' rst z''
          where lo  = hi  - w  -- remember: areas grow down
                lo' = hi' - w'

-- Note: the stack slots that hold variables returned on the stack are not
-- considered live in to the block -- we treat the first node as a definition site.
-- BEWARE?: Am I being a little careless here in failing to check for the
-- entry Id (which would use the CallArea Old).
liveSlotTransfers :: BackwardTransfers Middle Last SubAreaSet
liveSlotTransfers =
  BackwardTransfers first liveInSlots liveLastIn
    where first id live = Map.delete (CallArea (Young id)) live

-- Slot sets: adding slots, removing slots, and checking for membership.
liftToArea :: Area -> ([SubArea] -> [SubArea]) -> SubAreaSet -> SubAreaSet 
addSlot, removeSlot :: SubAreaSet -> SubArea -> SubAreaSet
elemSlot            :: SubAreaSet -> SubArea -> Bool
liftToArea a f map = Map.insert a (f (Map.findWithDefault [] a map)) map
addSlot    live (a, i, w) = liftToArea a (snd . liveGen  (a, i, w)) live
removeSlot live (a, i, w) = liftToArea a       (liveKill (a, i, w)) live
elemSlot   live (a, i, w) =
  not $ fst $ liveGen  (a, i, w) (Map.findWithDefault [] a live)

removeLiveSlotDefs :: (DefinerOfSlots s, UserOfSlots s) => SubAreaSet -> s -> SubAreaSet
removeLiveSlotDefs = foldSlotsDefd removeSlot

liveInSlots :: (DefinerOfSlots s, UserOfSlots s) => s -> SubAreaSet -> SubAreaSet
liveInSlots x live = foldSlotsUsed addSlot (removeLiveSlotDefs live x) x

liveLastIn :: Last -> (BlockId -> SubAreaSet) -> SubAreaSet
liveLastIn l env = liveInSlots l (liveLastOut env l)

-- Don't forget to keep the outgoing parameters in the CallArea live,
-- as well as the update frame.
-- Note: We have to keep the update frame live at a call because of the
-- case where the function doesn't return -- in that case, there won't
-- be a return to keep the update frame live. We'd still better keep the
-- info pointer in the update frame live at any call site;
-- otherwise we could screw up the garbage collector.
liveLastOut :: (BlockId -> SubAreaSet) -> Last -> SubAreaSet
liveLastOut env l =
  case l of
    LastCall _ Nothing n _ _ -> 
      add_area (CallArea Old) n out -- add outgoing args (includes upd frame)
    LastCall _ (Just k) n _ (Just _) ->
      add_area (CallArea Old) n (add_area (CallArea (Young k)) n out)
    LastCall _ (Just k) n _ Nothing ->
      add_area (CallArea (Young k)) n out
    _ -> out
  where out = joinOuts slotLattice env l
        add_area _ n live | n == 0 = live
        add_area a n live =
          Map.insert a (snd $ liveGen (a, n, n) $ Map.findWithDefault [] a live) live

-- The liveness analysis must be precise: otherwise, we won't know if a definition
-- should really kill a live-out stack slot.
-- But the interference graph does not have to be precise -- it might decide that
-- any live areas interfere. To maintain both a precise analysis and an imprecise
-- interference graph, we need to convert the live-out stack slots to graph nodes
-- at each and every instruction; rather than reconstruct a new list of nodes
-- every time, I provide a function to fold over the nodes, which should be a
-- reasonably efficient approach for the implementations we envision.
-- Of course, it will probably be much easier to program if we just return a list...
type Set x = Map x ()
data IGraphBuilder n =
  Builder { foldNodes     :: forall z. SubArea -> (n -> z -> z) -> z -> z
          , _wordsOccupied :: AreaMap -> AreaMap -> n -> [Int]
          }

areaBuilder :: IGraphBuilder Area
areaBuilder = Builder fold words
  where fold (a, _, _) f z = f a z
        words areaSize areaMap a =
          case Map.lookup a areaMap of
            Just addr -> [addr .. addr + (Map.lookup a areaSize `orElse`
                                          pprPanic "wordsOccupied: unknown area" (ppr a))]
            Nothing   -> []

--slotBuilder :: IGraphBuilder (Area, Int)
--slotBuilder = undefined

-- Now, we can build the interference graph.
-- The usual story: a definition interferes with all live outs and all other
-- definitions.
type IGraph x = Map x (Set x)
type IGPair x = (IGraph x, IGraphBuilder x)
igraph :: (Ord x) => IGraphBuilder x -> SlotEnv -> LGraph Middle Last -> IGraph x
igraph builder env g = foldr interfere Map.empty (postorder_dfs g)
  where foldN = foldNodes builder
        interfere block igraph =
          let (h, l) = goto_end (unzip block)
              --heads :: ZHead Middle -> (IGraph x, SubAreaSet) -> IGraph x
              heads (ZFirst _) (igraph, _)       = igraph
              heads (ZHead h m)    (igraph, liveOut) =
                heads h (addEdges igraph m liveOut, liveInSlots m liveOut)
              -- add edges between a def and the other defs and liveouts
              addEdges igraph i out = fst $ foldSlotsDefd addDef (igraph, out) i
              addDef (igraph, out) def@(a, _, _) =
                (foldN def (addDefN out) igraph,
                 Map.insert a (snd $ liveGen def (Map.findWithDefault [] a out)) out)
              addDefN out n igraph =
                let addEdgeNO o igraph = foldN o addEdgeNN igraph
                    addEdgeNN n' igraph = addEdgeNN' n n' $ addEdgeNN' n' n igraph
                    addEdgeNN' n n' igraph = Map.insert n (Map.insert n' () set) igraph
                      where set = Map.findWithDefault Map.empty n igraph
                in Map.foldRightWithKey (\ _ os igraph -> foldr addEdgeNO igraph os) igraph out
              env' bid = lookupBlockEnv env bid `orElse` panic "unknown blockId in igraph"
          in heads h $ case l of LastExit    -> (igraph, Map.empty)
                                 LastOther l -> (addEdges igraph l $ liveLastOut env' l,
                                                 liveLastIn l env')

-- Before allocating stack slots, we need to collect one more piece of information:
-- what's the highest offset (in bytes) used in each Area?
-- We'll need to allocate that much space for each Area.
getAreaSize :: ByteOff -> LGraph Middle Last -> AreaMap
  -- The domain of the returned mapping consists only of Areas
  -- used for (a) variable spill slots, and (b) parameter passing ares for calls
getAreaSize entry_off g@(LGraph _ _) =
  fold_blocks (fold_fwd_block first add_regslots last)
              (Map.singleton (CallArea Old) entry_off) g
  where first _  z = z
        last l@(LastOther (LastCall _ Nothing args res _)) z =
          add_regslots l (add (add z area args) area res)
          where area = CallArea Old
        last l@(LastOther (LastCall _ (Just k) args res _)) z =
          add_regslots l (add (add z area args) area res)
          where area = CallArea (Young k)
        last l z = add_regslots l z
        add_regslots i z = foldSlotsUsed addSlot (foldSlotsDefd addSlot z i) i
        addSlot z (a@(RegSlot (LocalReg _ ty)), _, _) =
          add z a $ widthInBytes $ typeWidth ty
        addSlot z _ = z
        add z a off = Map.insert a (max off (Map.findWithDefault 0 a z)) z
	-- The 'max' is important.  Two calls, to f and g, might share a common
	-- continuation (and hence a common CallArea), but their number of overflow
	-- parameters might differ.


-- Find the Stack slots occupied by the subarea's conflicts
conflictSlots :: Ord x => IGPair x -> AreaMap -> AreaMap -> SubArea -> Set Int
conflictSlots (ig, Builder foldNodes wordsOccupied) areaSize areaMap subarea =
  foldNodes subarea foldNode Map.empty
  where foldNode n set = Map.foldRightWithKey conflict set $ Map.findWithDefault Map.empty n ig
        conflict n' () set = liveInSlots areaMap n' set
        -- Add stack slots occupied by igraph node n
        liveInSlots areaMap n set = foldr setAdd set (wordsOccupied areaSize areaMap n)
        setAdd w s = Map.insert w () s

-- Find any open space on the stack, starting from the offset.
-- If the area is a CallArea or a spill slot for a pointer, then it must
-- be word-aligned.
freeSlotFrom :: Ord x => IGPair x -> AreaMap -> Int -> AreaMap -> Area -> Int
freeSlotFrom ig areaSize offset areaMap area =
  let size = Map.lookup area areaSize `orElse` 0
      conflicts = conflictSlots ig areaSize areaMap (area, size, size)
      -- CallAreas and Ptrs need to be word-aligned (round up!)
      align = case area of CallArea _                                -> align'
                           RegSlot  r | isGcPtrType (localRegType r) -> align'
                           RegSlot  _                                -> id
      align' n = (n + (wORD_SIZE - 1)) `div` wORD_SIZE * wORD_SIZE
      -- Find a space big enough to hold the area
      findSpace curr 0 = curr
      findSpace curr cnt = -- part of target slot, # of bytes left to check
        if Map.member curr conflicts then
          findSpace (align (curr + size)) size -- try the next (possibly) open space
        else findSpace (curr - 1) (cnt - 1)
  in findSpace (align (offset + size)) size

-- Find an open space on the stack, and assign it to the area.
allocSlotFrom :: Ord x => IGPair x -> AreaMap -> Int -> AreaMap -> Area -> AreaMap
allocSlotFrom ig areaSize from areaMap area =
  if Map.member area areaMap then areaMap
  else Map.insert area (freeSlotFrom ig areaSize from areaMap area) areaMap

-- | Greedy stack layout.
-- Compute liveness, build the interference graph, and allocate slots for the areas.
-- We visit each basic block in a (generally) forward order.

-- At each instruction that names a register subarea r, we immediately allocate
-- any available slot on the stack by the following procedure:
--  1. Find the sub-areas S that conflict with r
--  2. Find the stack slots used for S
--  3. Choose a contiguous stack space s not in S (s must be large enough to hold r)

-- For a CallArea, we allocate the stack space only when we reach a function
-- call that returns to the CallArea's blockId.
-- Then, we allocate the Area subject to the following constraints:
--   a) It must be younger than all the sub-areas that are live on entry to the block
--         This constraint is only necessary for the successor of a call
--   b) It must not overlap with any already-allocated Area with which it conflicts
--   	   (ie at some point, not necessarily now, is live at the same time)
--   Part (b) is just the 1,2,3 part above

-- Note: The stack pointer only has to be younger than the youngest live stack slot
-- at proc points. Otherwise, the stack pointer can point anywhere.

layout :: ProcPointSet -> SlotEnv -> ByteOff -> LGraph Middle Last -> AreaMap
-- The domain of the returned map includes an Area for EVERY block
-- including each block that is not the successor of a call (ie is not a proc-point)
-- That's how we return the info of what the SP should be at the entry of every block

layout procPoints env entry_off g =
  let ig = (igraph areaBuilder env g, areaBuilder)
      env' bid = lookupBlockEnv env bid `orElse` panic "unknown blockId in igraph"
      areaSize = getAreaSize entry_off g
      -- Find the slots that are live-in to a block tail
      live_in (ZTail m l) = liveInSlots m (live_in l)
      live_in (ZLast (LastOther l)) = liveLastIn l env'
      live_in (ZLast LastExit) = Map.empty 

      -- Find the youngest live stack slot that has already been allocated
      youngest_live :: AreaMap 	   -- Already allocated
                    -> SubAreaSet  -- Sub-areas live here
		    -> ByteOff     -- Offset of the youngest byte of any 
		       		   --    already-allocated, live sub-area
      youngest_live areaMap live = fold_subareas young_slot live 0
        where young_slot (a, o, _) z = case Map.lookup a areaMap of
                                         Just top -> max z $ top + o
                                         Nothing  -> z
              fold_subareas f m z = Map.foldRightWithKey (\_ s z -> foldr f z s) z m

      -- Allocate space for spill slots and call areas
      allocVarSlot = allocSlotFrom ig areaSize 0

      -- Update the successor's incoming SP.
      setSuccSPs inSp bid areaMap =
        case (Map.lookup area areaMap, lookupBlockEnv (lg_blocks g) bid) of
          (Just _, _) -> areaMap -- succ already knows incoming SP
          (Nothing, Just (Block _ _)) ->
            if elemBlockSet bid procPoints then
              let young = youngest_live areaMap $ env' bid
                  -- start = case returnOff stackInfo of Just b  -> max b young
                  --                                     Nothing -> young
                  start = young -- maybe wrong, but I don't understand
                                -- why the preceding is necessary...
              in  allocSlotFrom ig areaSize start areaMap area
            else Map.insert area inSp areaMap
          (_, Nothing) -> panic "Block not found in cfg"
        where area = CallArea (Young bid)

      allocLast (Block id _) areaMap l =
        fold_succs (setSuccSPs inSp) l areaMap
        where inSp = expectJust "sp in" $ Map.lookup (CallArea (Young id)) areaMap

      allocMidCall m@(MidForeignCall (Safe bid _) _ _ _) t areaMap =
        let young     = youngest_live areaMap $ removeLiveSlotDefs (live_in t) m
            area      = CallArea (Young bid)
            areaSize' = Map.insert area (widthInBytes (typeWidth gcWord)) areaSize
        in  allocSlotFrom ig areaSize' young areaMap area
      allocMidCall _ _ areaMap = areaMap

      alloc m t areaMap =
          foldSlotsDefd alloc' (foldSlotsUsed alloc' (allocMidCall m t areaMap) m) m
        where alloc' areaMap (a@(RegSlot _), _, _) = allocVarSlot areaMap a
              alloc' areaMap _ = areaMap

      layoutAreas areaMap b@(Block _ t) = layout areaMap t
        where layout areaMap (ZTail m t) = layout (alloc m t areaMap) t
              layout areaMap (ZLast l)   = allocLast b areaMap l
      initMap = Map.insert (CallArea (Young (lg_entry g))) 0
                           (Map.insert (CallArea Old) 0 Map.empty)
      areaMap = foldl layoutAreas initMap (postorder_dfs g)
  in -- pprTrace "ProcPoints" (ppr procPoints) $
        -- pprTrace "Area SizeMap" (ppr areaSize) $
         -- pprTrace "Entry SP" (ppr entrySp) $
           -- pprTrace "Area Map" (ppr areaMap) $
     areaMap

-- After determining the stack layout, we can:
-- 1. Replace references to stack Areas with addresses relative to the stack
--    pointer.
-- 2. Insert adjustments to the stack pointer to ensure that it is at a
--    conventional location at each proc point.
--    Because we don't take interrupts on the execution stack, we only need the
--    stack pointer to be younger than the live values on the stack at proc points.
-- 3. Compute the maximum stack offset used in the procedure and replace
--    the stack high-water mark with that offset.
manifestSP :: AreaMap -> ByteOff -> LGraph Middle Last -> FuelMonad (LGraph Middle Last)
manifestSP areaMap entry_off g@(LGraph entry _blocks) =
  liftM (LGraph entry) $ foldl replB (return emptyBlockEnv) (postorder_dfs g)
  where slot a = -- pprTrace "slot" (ppr a) $
                   Map.lookup a areaMap `orElse` panic "unallocated Area"
        slot' (Just id) = slot $ CallArea (Young id)
        slot' Nothing   = slot $ CallArea Old
        sp_high = maxSlot slot g
        proc_entry_sp = slot (CallArea Old) + entry_off

        add_sp_off b env =
          case Z.last (unzip b) of
            LastOther (LastCall {cml_cont = Just succ, cml_ret_args = off}) ->
              extendBlockEnv env succ off
            _ -> env
        spEntryMap = fold_blocks add_sp_off (mkBlockEnv [(entry, entry_off)]) g
        spOffset id = lookupBlockEnv spEntryMap id `orElse` 0

        sp_on_entry id | id == entry = proc_entry_sp
        sp_on_entry id = slot' (Just id) + spOffset id

        -- On entry to procpoints, the stack pointer is conventional;
        -- otherwise, we check the SP set by predecessors.
        replB :: FuelMonad (BlockEnv CmmBlock) -> CmmBlock -> FuelMonad (BlockEnv CmmBlock)
        replB blocks (Block id t) =
          do bs <- replTail (Block id) spIn t
             -- pprTrace "spIn" (ppr id <+> ppr spIn) $ do
             liftM (flip (foldr insertBlock) bs) blocks
          where spIn = sp_on_entry id
        replTail :: (ZTail Middle Last -> CmmBlock) -> Int -> (ZTail Middle Last) -> 
                    FuelMonad ([CmmBlock])
        replTail h spOff (ZTail m@(MidForeignCall (Safe bid _) _ _ _) t) =
          replTail (\t' -> h (setSp spOff spOff' (ZTail (middle spOff m) t'))) spOff' t
            where spOff' = slot' (Just bid) + widthInBytes (typeWidth gcWord)
        replTail h spOff (ZTail m t) = replTail (h . ZTail (middle spOff m)) spOff t
        replTail h spOff (ZLast (LastOther l)) = fixSp h spOff l
        replTail h _   l@(ZLast LastExit) = return [h l]
        middle spOff m = mapExpDeepMiddle (replSlot spOff) m
        last   spOff l = mapExpDeepLast   (replSlot spOff) l
        replSlot spOff (CmmStackSlot a i) = CmmRegOff (CmmGlobal Sp) (spOff - (slot a + i))
        replSlot _ (CmmLit CmmHighStackMark) = -- replacing the high water mark
          CmmLit (CmmInt (toInteger (max 0 (sp_high - proc_entry_sp))) (typeWidth bWord))
        replSlot _ e = e
        -- The block must establish the SP expected at each successsor.
        fixSp :: (ZTail Middle Last -> CmmBlock) -> Int -> Last -> FuelMonad ([CmmBlock])
        fixSp h spOff l@(LastCall _ k n _ _) = updSp h spOff (slot' k + n) l
        fixSp h spOff l@(LastBranch k) =
          let succSp = sp_on_entry k in
          if succSp /= spOff then
               -- pprTrace "updSp" (ppr k <> ppr spOff <> ppr (sp_on_entry k)) $
               updSp h spOff succSp l
          else return $ [h (ZLast (LastOther (last spOff l)))]
        fixSp h spOff l = liftM (uncurry (:)) $ fold_succs succ l $ return (b, [])
          where b = h (ZLast (LastOther (last spOff l)))
                succ succId z =
                  let succSp = sp_on_entry succId in
                  if succSp /= spOff then
                    do (b,  bs)  <- z
                       (b', bs') <- insertBetween b [setSpMid spOff succSp] succId
                       return (b', bs ++ bs')
                  else z
        updSp h old new l = return [h $ setSp old new $ ZLast $ LastOther (last new l)]
        setSpMid sp sp' = MidAssign (CmmGlobal Sp) e
          where e = CmmMachOp (MO_Add wordWidth) [CmmReg (CmmGlobal Sp), off]
                off = CmmLit $ CmmInt (toInteger $ sp - sp') wordWidth
        setSp sp sp' t = if sp == sp' then t else ZTail (setSpMid sp sp') t


-- To compute the stack high-water mark, we fold over the graph and
-- compute the highest slot offset.
maxSlot :: (Area -> Int) -> CmmGraph -> Int
maxSlot slotOff g = fold_blocks (fold_fwd_block (\ _ x -> x) highSlot highSlot) 0 g
  where highSlot i z = foldSlotsUsed add (foldSlotsDefd add z i) i
        add z (a, i, _) = max z (slotOff a + i)

-----------------------------------------------------------------------------
-- | Sanity check: stub pointers immediately after they die
-----------------------------------------------------------------------------
-- This will miss stack slots that are last used in a Last node,
-- but it should do pretty well...

type StubPtrFix = FuelMonad (BackwardFixedPoint Middle Last SubAreaSet CmmGraph)

stubSlotsOnDeath :: (LGraph Middle Last) -> FuelMonad (LGraph Middle Last)
stubSlotsOnDeath g = liftM zdfFpContents $ (res :: StubPtrFix)
    where res = zdfBRewriteFromL RewriteShallow emptyBlockEnv "stub ptrs" slotLattice
                                 liveSlotTransfers rewrites (fact_bot slotLattice) g
          rewrites = BackwardRewrites first middle last Nothing
          first _ _ = Nothing
          last  _ _ = Nothing
          middle m liveSlots = foldSlotsUsed (stub liveSlots m) Nothing m
          stub liveSlots m rst subarea@(a, off, w) =
            if elemSlot liveSlots subarea then rst
            else let store = mkStore (CmmStackSlot a off)
                                     (stackStubExpr (widthFromBytes w))
                 in case rst of Nothing -> Just (mkMiddle m <*> store)
                                Just g  -> Just (g <*> store)