% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The Code Generator This module says how things get going at the top level. @codeGen@ is the interface to the outside world. The \tr{cgTop*} functions drive the mangling of top-level bindings. \begin{code}
module CodeGen ( codeGen ) where

#include "HsVersions.h"

-- Kludge (??) so that CgExpr is reached via at least one non-SOURCE
-- import.  Before, that wasn't the case, and CM therefore didn't 
-- bother to compile it.
import CgExpr           ( {-NOTHING!-} )	-- DO NOT DELETE THIS IMPORT
import CgProf
import CgMonad
import CgBindery
import CgClosure
import CgCon
import CgUtils
import CgHpc

import CLabel
import Cmm
import CmmUtils
import PprCmm

import StgSyn
import PrelNames
import DynFlags
import StaticFlags

import HscTypes
import CostCentre
import Id
import Name
import TyCon
import Module
import ErrUtils
import Panic
\end{code} \begin{code}
codeGen :: DynFlags
	-> Module
	-> [TyCon]
	-> [Module]		-- directly-imported modules
	-> CollectedCCs		-- (Local/global) cost-centres needing declaring/registering.
	-> [(StgBinding,[(Id,[Id])])]	-- Bindings to convert, with SRTs
	-> HpcInfo
	-> IO [Cmm]		-- Output

                -- N.B. returning '[Cmm]' and not 'Cmm' here makes it
                -- possible for object splitting to split up the
                -- pieces later.

codeGen dflags this_mod data_tycons imported_mods 
	cost_centre_info stg_binds hpc_info
  = do	
  { showPass dflags "CodeGen"

-- Why?
--   ; mapM_ (\x -> seq x (return ())) data_tycons

  ; code_stuff <- initC dflags this_mod $ do 
		{ cmm_binds  <- mapM (getCmm . cgTopBinding dflags) stg_binds
		; cmm_tycons <- mapM cgTyCon data_tycons
		; cmm_init   <- getCmm (mkModuleInit dflags cost_centre_info 
					     this_mod imported_mods hpc_info)
		; return (cmm_binds ++ concat cmm_tycons ++ [cmm_init])
		}
		-- Put datatype_stuff after code_stuff, because the
		-- datatype closure table (for enumeration types) to
		-- (say) PrelBase_True_closure, which is defined in
		-- code_stuff

  ; dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (pprCmms code_stuff)

  ; return code_stuff }
\end{code} %************************************************************************ %* * \subsection[codegen-init]{Module initialisation code} %* * %************************************************************************ /* ----------------------------------------------------------------------------- Module initialisation The module initialisation code looks like this, roughly: FN(__stginit_Foo) { JMP_(__stginit_Foo_1_p) } FN(__stginit_Foo_1_p) { ... } We have one version of the init code with a module version and the 'way' attached to it. The version number helps to catch cases where modules are not compiled in dependency order before being linked: if a module has been compiled since any modules which depend on it, then the latter modules will refer to a different version in their init blocks and a link error will ensue. The 'way' suffix helps to catch cases where modules compiled in different ways are linked together (eg. profiled and non-profiled). We provide a plain, unadorned, version of the module init code which just jumps to the version with the label and way attached. The reason for this is that when using foreign exports, the caller of startupHaskell() must supply the name of the init function for the "top" module in the program, and we don't want to require that this name has the version and way info appended to it. -------------------------------------------------------------------------- */ We initialise the module tree by keeping a work-stack, * pointed to by Sp * that grows downward * Sp points to the last occupied slot \begin{code}
mkModuleInit 
        :: DynFlags
	-> CollectedCCs         -- cost centre info
	-> Module
	-> [Module]
	-> HpcInfo
	-> Code
mkModuleInit dflags cost_centre_info this_mod imported_mods hpc_info
  = do	{ -- Allocate the static boolean that records if this
          -- module has been registered already
	  emitData Data [CmmDataLabel moduleRegdLabel, 
		         CmmStaticLit zeroCLit]

        ; whenC (opt_Hpc) $
              hpcTable this_mod hpc_info

          -- we emit a recursive descent module search for all modules
	  -- and *choose* to chase it in :Main, below.
          -- In this way, Hpc enabled modules can interact seamlessly with
	  -- not Hpc enabled moduled, provided Main is compiled with Hpc.

        ; emitSimpleProc real_init_lbl $ do
                       { ret_blk <- forkLabelledCode ret_code

                        ; init_blk <- forkLabelledCode $ do
                                        { mod_init_code; stmtC (CmmBranch ret_blk) }
                                    
                        ; stmtC (CmmCondBranch (cmmNeWord (CmmLit zeroCLit) mod_reg_val)
                                    ret_blk)
                        ; stmtC (CmmBranch init_blk)	    
                        }

 	    -- Make the "plain" procedure jump to the "real" init procedure
	; emitSimpleProc plain_init_lbl jump_to_init

	-- When compiling the module in which the 'main' function lives,
	-- (that is, this_mod == main_mod)
	-- we inject an extra stg_init procedure for stg_init_ZCMain, for the 
	-- RTS to invoke.  We must consult the -main-is flag in case the
	-- user specified a different function to Main.main
 
        -- Notice that the recursive descent is optional, depending on what options
	-- are enabled.

	; whenC (this_mod == main_mod)
		(emitSimpleProc plain_main_init_lbl rec_descent_init)
    }
  where
    -- The way string we attach to the __stginit label to catch
    -- accidental linking of modules compiled in different ways.  We
    -- omit "dyn" from this way, because we want to be able to load
    -- both dynamic and non-dynamic modules into a dynamic GHC.
    way = mkBuildTag (filter want_way (ways dflags))
    want_way w = not (wayRTSOnly w) && wayName w /= WayDyn

    main_mod = mainModIs dflags

    plain_init_lbl = mkPlainModuleInitLabel this_mod
    real_init_lbl  = mkModuleInitLabel this_mod way
    plain_main_init_lbl = mkPlainModuleInitLabel rOOT_MAIN

    jump_to_init = stmtC (CmmJump (mkLblExpr real_init_lbl) [])

    mod_reg_val = CmmLoad (mkLblExpr moduleRegdLabel) bWord

    -- Main refers to GHC.TopHandler.runIO, so make sure we call the
    -- init function for GHC.TopHandler.
    extra_imported_mods
	| this_mod == main_mod = [gHC_TOP_HANDLER]
	| otherwise	       = []

    mod_init_code = do
	{ 	-- Set mod_reg to 1 to record that we've been here
	  stmtC (CmmStore (mkLblExpr moduleRegdLabel) (CmmLit (mkIntCLit 1)))

        ; whenC (opt_SccProfilingOn) $ do 
	    initCostCentres cost_centre_info

        ; whenC (opt_Hpc) $
            initHpc this_mod hpc_info
         
	; mapCs (registerModuleImport way)
		(imported_mods++extra_imported_mods)

	} 

                    -- The return-code pops the work stack by 
                    -- incrementing Sp, and then jumpd to the popped item
    ret_code = stmtsC [ CmmAssign spReg (cmmRegOffW spReg 1)
                      , CmmJump (CmmLoad (cmmRegOffW spReg (-1)) bWord) [] ]


    rec_descent_init = if opt_SccProfilingOn || isHpcUsed hpc_info
		       then jump_to_init
		       else ret_code

-----------------------
registerModuleImport :: String -> Module -> Code
registerModuleImport way mod
  | mod == gHC_PRIM
  = nopC 
  | otherwise 	-- Push the init procedure onto the work stack
  = stmtsC [ CmmAssign spReg (cmmRegOffW spReg (-1))
	   , CmmStore (CmmReg spReg) (mkLblExpr (mkModuleInitLabel mod way)) ]
\end{code} Cost-centre profiling: Besides the usual stuff, we must produce declarations for the cost-centres defined in this module; (The local cost-centres involved in this are passed into the code-generator.) \begin{code}
initCostCentres :: CollectedCCs -> Code
-- Emit the declarations, and return code to register them
initCostCentres (local_CCs, ___extern_CCs, singleton_CCSs)
  | not opt_SccProfilingOn = nopC
  | otherwise
  = do	{ mapM_ emitCostCentreDecl  	 local_CCs
	; mapM_ emitCostCentreStackDecl  singleton_CCSs
	; mapM_ emitRegisterCC           local_CCs
	; mapM_ emitRegisterCCS          singleton_CCSs
	}
\end{code} %************************************************************************ %* * \subsection[codegen-top-bindings]{Converting top-level STG bindings} %* * %************************************************************************ @cgTopBinding@ is only used for top-level bindings, since they need to be allocated statically (not in the heap) and need to be labelled. No unboxed bindings can happen at top level. In the code below, the static bindings are accumulated in the @MkCgState@, and transferred into the ``statics'' slot by @forkStatics@. This is so that we can write the top level processing in a compositional style, with the increasing static environment being plumbed as a state variable. \begin{code}
cgTopBinding :: DynFlags -> (StgBinding,[(Id,[Id])]) -> Code
cgTopBinding dflags (StgNonRec id rhs, srts)
  = do	{ id' <- maybeExternaliseId dflags id
	; mapM_ (mkSRT [id']) srts
	; (id,info) <- cgTopRhs id' rhs
	; addBindC id info 	-- Add the *un-externalised* Id to the envt,
				-- so we find it when we look up occurrences
	}

cgTopBinding dflags (StgRec pairs, srts)
  = do	{ let (bndrs, rhss) = unzip pairs
	; bndrs' <- mapFCs (maybeExternaliseId dflags) bndrs
	; let pairs' = zip bndrs' rhss
	; mapM_ (mkSRT bndrs')  srts
	; _new_binds <- fixC (\ new_binds -> do 
		{ addBindsC new_binds
		; mapFCs ( \ (b,e) -> cgTopRhs b e ) pairs' })
	; nopC }

mkSRT :: [Id] -> (Id,[Id]) -> Code
mkSRT _ (_,[])  = nopC
mkSRT these (id,ids)
  = do	{ ids <- mapFCs remap ids
	; id  <- remap id
	; emitRODataLits "CodeGen.mkSRT" (mkSRTLabel (idName id) (idCafInfo id)) 
	       (map (\id -> CmmLabel $ mkClosureLabel (idName id) (idCafInfo id)) ids)
	}
  where
	-- Sigh, better map all the ids against the environment in 
	-- case they've been externalised (see maybeExternaliseId below).
    remap id = case filter (==id) these of
		(id':_) -> returnFC id'
		[] -> do { info <- getCgIdInfo id; return (cgIdInfoId info) }

-- Urgh!  I tried moving the forkStatics call from the rhss of cgTopRhs
-- to enclose the listFCs in cgTopBinding, but that tickled the
-- statics "error" call in initC.  I DON'T UNDERSTAND WHY!

cgTopRhs :: Id -> StgRhs -> FCode (Id, CgIdInfo)
	-- The Id is passed along for setting up a binding...
	-- It's already been externalised if necessary

cgTopRhs bndr (StgRhsCon _cc con args)
  = forkStatics (cgTopRhsCon bndr con args)

cgTopRhs bndr (StgRhsClosure cc bi fvs upd_flag srt args body)
  = ASSERT(null fvs)    -- There should be no free variables
    setSRTLabel (mkSRTLabel (idName bndr) (idCafInfo bndr)) $
    setSRT srt $
    forkStatics (cgTopRhsClosure bndr cc bi upd_flag args body)
\end{code} %************************************************************************ %* * \subsection{Stuff to support splitting} %* * %************************************************************************ If we're splitting the object, we need to externalise all the top-level names (and then make sure we only use the externalised one in any C label we use which refers to this name). \begin{code}
maybeExternaliseId :: DynFlags -> Id -> FCode Id
maybeExternaliseId dflags id
  | dopt Opt_SplitObjs dflags, 	-- Externalise the name for -split-objs
    isInternalName name = do { mod <- getModuleName
			     ; returnFC (setIdName id (externalise mod)) }
  | otherwise		= returnFC id
  where
    externalise mod = mkExternalName uniq mod new_occ loc
    name    = idName id
    uniq    = nameUnique name
    new_occ = mkLocalOcc uniq (nameOccName name)
    loc     = nameSrcSpan name
	-- We want to conjure up a name that can't clash with any
	-- existing name.  So we generate
	--	Mod_$L243foo
	-- where 243 is the unique.
\end{code}