%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Desugaring arrow commands
\begin{code}
module DsArrows ( dsProcExpr ) where
#include "HsVersions.h"
import Match
import DsUtils
import DsMonad
import HsSyn hiding (collectPatBinders, collectPatsBinders )
import TcHsSyn
import DsExpr ( dsExpr, dsLExpr, dsLocalBinds )
import TcType
import Type
import CoreSyn
import CoreFVs
import CoreUtils
import MkCore
import Name
import Var
import Id
import DataCon
import TysWiredIn
import BasicTypes
import PrelNames
import Outputable
import Bag
import VarSet
import SrcLoc
import Data.List
\end{code}
\begin{code}
data DsCmdEnv = DsCmdEnv {
meth_binds :: [CoreBind],
arr_id, compose_id, first_id, app_id, choice_id, loop_id :: CoreExpr
}
mkCmdEnv :: SyntaxTable Id -> DsM DsCmdEnv
mkCmdEnv ids = do
(meth_binds, ds_meths) <- dsSyntaxTable ids
return $ DsCmdEnv {
meth_binds = meth_binds,
arr_id = Var (lookupEvidence ds_meths arrAName),
compose_id = Var (lookupEvidence ds_meths composeAName),
first_id = Var (lookupEvidence ds_meths firstAName),
app_id = Var (lookupEvidence ds_meths appAName),
choice_id = Var (lookupEvidence ds_meths choiceAName),
loop_id = Var (lookupEvidence ds_meths loopAName)
}
bindCmdEnv :: DsCmdEnv -> CoreExpr -> CoreExpr
bindCmdEnv ids body = foldr Let body (meth_binds ids)
do_arr :: DsCmdEnv -> Type -> Type -> CoreExpr -> CoreExpr
do_arr ids b_ty c_ty f = mkApps (arr_id ids) [Type b_ty, Type c_ty, f]
do_compose :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_compose ids b_ty c_ty d_ty f g
= mkApps (compose_id ids) [Type b_ty, Type c_ty, Type d_ty, f, g]
do_first :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr
do_first ids b_ty c_ty d_ty f
= mkApps (first_id ids) [Type b_ty, Type c_ty, Type d_ty, f]
do_app :: DsCmdEnv -> Type -> Type -> CoreExpr
do_app ids b_ty c_ty = mkApps (app_id ids) [Type b_ty, Type c_ty]
do_choice :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_choice ids b_ty c_ty d_ty f g
= mkApps (choice_id ids) [Type b_ty, Type d_ty, Type c_ty, f, g]
do_loop :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr
do_loop ids b_ty c_ty d_ty f
= mkApps (loop_id ids) [Type b_ty, Type d_ty, Type c_ty, f]
do_map_arrow :: DsCmdEnv -> Type -> Type -> Type ->
CoreExpr -> CoreExpr -> CoreExpr
do_map_arrow ids b_ty c_ty d_ty f c
= do_compose ids b_ty c_ty d_ty (do_arr ids b_ty c_ty f) c
mkFailExpr :: HsMatchContext Id -> Type -> DsM CoreExpr
mkFailExpr ctxt ty
= mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt)
mkSndExpr :: Type -> Type -> DsM CoreExpr
mkSndExpr a_ty b_ty = do
a_var <- newSysLocalDs a_ty
b_var <- newSysLocalDs b_ty
pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty)
return (Lam pair_var
(coreCasePair pair_var a_var b_var (Var b_var)))
\end{code}
Build case analysis of a tuple. This cannot be done in the DsM monad,
because the list of variables is typically not yet defined.
\begin{code}
coreCaseTuple :: UniqSupply -> Id -> [Id] -> CoreExpr -> CoreExpr
coreCaseTuple uniqs scrut_var vars body
= mkTupleCase uniqs vars body scrut_var (Var scrut_var)
coreCasePair :: Id -> Id -> Id -> CoreExpr -> CoreExpr
coreCasePair scrut_var var1 var2 body
= Case (Var scrut_var) scrut_var (exprType body)
[(DataAlt (tupleCon Boxed 2), [var1, var2], body)]
\end{code}
\begin{code}
mkCorePairTy :: Type -> Type -> Type
mkCorePairTy t1 t2 = mkBoxedTupleTy [t1, t2]
mkCorePairExpr :: CoreExpr -> CoreExpr -> CoreExpr
mkCorePairExpr e1 e2 = mkCoreTup [e1, e2]
\end{code}
The input is divided into a local environment, which is a flat tuple
(unless it's too big), and a stack, each element of which is paired
with the environment in turn. In general, the input has the form
(...((x1,...,xn),s1),...sk)
where xi are the environment values, and si the ones on the stack,
with s1 being the "top", the first one to be matched with a lambda.
\begin{code}
envStackType :: [Id] -> [Type] -> Type
envStackType ids stack_tys = foldl mkCorePairTy (mkBigCoreVarTupTy ids) stack_tys
buildEnvStack :: [Id] -> [Id] -> CoreExpr
buildEnvStack env_ids stack_ids
= foldl mkCorePairExpr (mkBigCoreVarTup env_ids) (map Var stack_ids)
matchEnvStack :: [Id]
-> [Id]
-> CoreExpr
-> DsM CoreExpr
matchEnvStack env_ids stack_ids body = do
uniqs <- newUniqueSupply
tup_var <- newSysLocalDs (mkBigCoreVarTupTy env_ids)
matchVarStack tup_var stack_ids
(coreCaseTuple uniqs tup_var env_ids body)
matchVarStack :: Id
-> [Id]
-> CoreExpr
-> DsM CoreExpr
matchVarStack env_id [] body
= return (Lam env_id body)
matchVarStack env_id (stack_id:stack_ids) body = do
pair_id <- newSysLocalDs (mkCorePairTy (idType env_id) (idType stack_id))
matchVarStack pair_id stack_ids
(coreCasePair pair_id env_id stack_id body)
\end{code}
\begin{code}
mkHsEnvStackExpr :: [Id] -> [Id] -> LHsExpr Id
mkHsEnvStackExpr env_ids stack_ids
= foldl (\a b -> mkLHsTupleExpr [a,b])
(mkLHsVarTuple env_ids)
(map nlHsVar stack_ids)
\end{code}
Translation of arrow abstraction
\begin{code}
dsProcExpr
:: LPat Id
-> LHsCmdTop Id
-> DsM CoreExpr
dsProcExpr pat (L _ (HsCmdTop cmd [] cmd_ty ids)) = do
meth_ids <- mkCmdEnv ids
let locals = mkVarSet (collectPatBinders pat)
(core_cmd, _free_vars, env_ids) <- dsfixCmd meth_ids locals [] cmd_ty cmd
let env_ty = mkBigCoreVarTupTy env_ids
fail_expr <- mkFailExpr ProcExpr env_ty
var <- selectSimpleMatchVarL pat
match_code <- matchSimply (Var var) ProcExpr pat (mkBigCoreVarTup env_ids) fail_expr
let pat_ty = hsLPatType pat
proc_code = do_map_arrow meth_ids pat_ty env_ty cmd_ty
(Lam var match_code)
core_cmd
return (bindCmdEnv meth_ids proc_code)
dsProcExpr _ c = pprPanic "dsProcExpr" (ppr c)
\end{code}
Translation of command judgements of the form
A | xs |- c :: [ts] t
\begin{code}
dsLCmd :: DsCmdEnv -> IdSet -> [Id] -> [Type] -> Type -> LHsCmd Id
-> DsM (CoreExpr, IdSet)
dsLCmd ids local_vars env_ids stack res_ty cmd
= dsCmd ids local_vars env_ids stack res_ty (unLoc cmd)
dsCmd :: DsCmdEnv
-> IdSet
-> [Id]
-> [Type]
-> Type
-> HsCmd Id
-> DsM (CoreExpr,
IdSet)
dsCmd ids local_vars env_ids stack res_ty
(HsArrApp arrow arg arrow_ty HsFirstOrderApp _)= do
let
(a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty
(_a_ty, arg_ty) = tcSplitAppTy a_arg_ty
core_arrow <- dsLExpr arrow
core_arg <- dsLExpr arg
stack_ids <- mapM newSysLocalDs stack
core_make_arg <- matchEnvStack env_ids stack_ids
(foldl mkCorePairExpr core_arg (map Var stack_ids))
return (do_map_arrow ids
(envStackType env_ids stack)
arg_ty
res_ty
core_make_arg
core_arrow,
exprFreeVars core_arg `intersectVarSet` local_vars)
dsCmd ids local_vars env_ids stack res_ty
(HsArrApp arrow arg arrow_ty HsHigherOrderApp _) = do
let
(a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty
(_a_ty, arg_ty) = tcSplitAppTy a_arg_ty
core_arrow <- dsLExpr arrow
core_arg <- dsLExpr arg
stack_ids <- mapM newSysLocalDs stack
core_make_pair <- matchEnvStack env_ids stack_ids
(mkCorePairExpr core_arrow
(foldl mkCorePairExpr core_arg (map Var stack_ids)))
return (do_map_arrow ids
(envStackType env_ids stack)
(mkCorePairTy arrow_ty arg_ty)
res_ty
core_make_pair
(do_app ids arg_ty res_ty),
(exprFreeVars core_arrow `unionVarSet` exprFreeVars core_arg)
`intersectVarSet` local_vars)
dsCmd ids local_vars env_ids stack res_ty (HsApp cmd arg) = do
core_arg <- dsLExpr arg
let
arg_ty = exprType core_arg
stack' = arg_ty:stack
(core_cmd, free_vars, env_ids')
<- dsfixCmd ids local_vars stack' res_ty cmd
stack_ids <- mapM newSysLocalDs stack
arg_id <- newSysLocalDs arg_ty
let
core_body = bindNonRec arg_id core_arg
(buildEnvStack env_ids' (arg_id:stack_ids))
core_map <- matchEnvStack env_ids stack_ids core_body
return (do_map_arrow ids
(envStackType env_ids stack)
(envStackType env_ids' stack')
res_ty
core_map
core_cmd,
(exprFreeVars core_arg `intersectVarSet` local_vars)
`unionVarSet` free_vars)
dsCmd ids local_vars env_ids stack res_ty
(HsLam (MatchGroup [L _ (Match pats _ (GRHSs [L _ (GRHS [] body)] _ ))] _)) = do
let
pat_vars = mkVarSet (collectPatsBinders pats)
local_vars' = local_vars `unionVarSet` pat_vars
stack' = drop (length pats) stack
(core_body, free_vars, env_ids') <- dsfixCmd ids local_vars' stack' res_ty body
stack_ids <- mapM newSysLocalDs stack
let
(actual_ids, stack_ids') = splitAt (length pats) stack_ids
core_expr = buildEnvStack env_ids' stack_ids'
in_ty = envStackType env_ids stack
in_ty' = envStackType env_ids' stack'
fail_expr <- mkFailExpr LambdaExpr in_ty'
match_code <- matchSimplys (map Var actual_ids) LambdaExpr pats core_expr fail_expr
select_code <- matchEnvStack env_ids stack_ids match_code
return (do_map_arrow ids in_ty in_ty' res_ty select_code core_body,
free_vars `minusVarSet` pat_vars)
dsCmd ids local_vars env_ids stack res_ty (HsPar cmd)
= dsLCmd ids local_vars env_ids stack res_ty cmd
dsCmd ids local_vars env_ids stack res_ty (HsIf mb_fun cond then_cmd else_cmd) = do
core_cond <- dsLExpr cond
(core_then, fvs_then, then_ids) <- dsfixCmd ids local_vars stack res_ty then_cmd
(core_else, fvs_else, else_ids) <- dsfixCmd ids local_vars stack res_ty else_cmd
stack_ids <- mapM newSysLocalDs stack
either_con <- dsLookupTyCon eitherTyConName
left_con <- dsLookupDataCon leftDataConName
right_con <- dsLookupDataCon rightDataConName
let mk_left_expr ty1 ty2 e = mkConApp left_con [Type ty1, Type ty2, e]
mk_right_expr ty1 ty2 e = mkConApp right_con [Type ty1, Type ty2, e]
in_ty = envStackType env_ids stack
then_ty = envStackType then_ids stack
else_ty = envStackType else_ids stack
sum_ty = mkTyConApp either_con [then_ty, else_ty]
fvs_cond = exprFreeVars core_cond `intersectVarSet` local_vars
core_left = mk_left_expr then_ty else_ty (buildEnvStack then_ids stack_ids)
core_right = mk_right_expr then_ty else_ty (buildEnvStack else_ids stack_ids)
core_if <- case mb_fun of
Just fun -> do { core_fun <- dsExpr fun
; matchEnvStack env_ids stack_ids $
mkCoreApps core_fun [core_cond, core_left, core_right] }
Nothing -> matchEnvStack env_ids stack_ids $
mkIfThenElse core_cond core_left core_right
return (do_map_arrow ids in_ty sum_ty res_ty
core_if
(do_choice ids then_ty else_ty res_ty core_then core_else),
fvs_cond `unionVarSet` fvs_then `unionVarSet` fvs_else)
\end{code}
Case commands are treated in much the same way as if commands
(see above) except that there are more alternatives. For example
case e of { p1 -> c1; p2 -> c2; p3 -> c3 }
is translated to
arr (\ ((xs)*ts) -> case e of
p1 -> (Left (Left (xs1)*ts))
p2 -> Left ((Right (xs2)*ts))
p3 -> Right ((xs3)*ts)) >>>
(c1 ||| c2) ||| c3
The idea is to extract the commands from the case, build a balanced tree
of choices, and replace the commands with expressions that build tagged
tuples, obtaining a case expression that can be desugared normally.
To build all this, we use triples describing segments of the list of
case bodies, containing the following fields:
* a list of expressions of the form (Left|Right)* ((xs)*ts), to be put
into the case replacing the commands
* a sum type that is the common type of these expressions, and also the
input type of the arrow
* a CoreExpr for an arrow built by combining the translated command
bodies with |||.
\begin{code}
dsCmd ids local_vars env_ids stack res_ty (HsCase exp (MatchGroup matches match_ty)) = do
stack_ids <- mapM newSysLocalDs stack
let
leaves = concatMap leavesMatch matches
make_branch (leaf, bound_vars) = do
(core_leaf, _fvs, leaf_ids) <-
dsfixCmd ids (local_vars `unionVarSet` bound_vars) stack res_ty leaf
return ([mkHsEnvStackExpr leaf_ids stack_ids],
envStackType leaf_ids stack,
core_leaf)
branches <- mapM make_branch leaves
either_con <- dsLookupTyCon eitherTyConName
left_con <- dsLookupDataCon leftDataConName
right_con <- dsLookupDataCon rightDataConName
let
left_id = HsVar (dataConWrapId left_con)
right_id = HsVar (dataConWrapId right_con)
left_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) left_id ) e
right_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) right_id) e
merge_branches (builds1, in_ty1, core_exp1)
(builds2, in_ty2, core_exp2)
= (map (left_expr in_ty1 in_ty2) builds1 ++
map (right_expr in_ty1 in_ty2) builds2,
mkTyConApp either_con [in_ty1, in_ty2],
do_choice ids in_ty1 in_ty2 res_ty core_exp1 core_exp2)
(leaves', sum_ty, core_choices) = foldb merge_branches branches
(_, matches') = mapAccumL (replaceLeavesMatch res_ty) leaves' matches
in_ty = envStackType env_ids stack
pat_ty = funArgTy match_ty
match_ty' = mkFunTy pat_ty sum_ty
core_body <- dsExpr (HsCase exp (MatchGroup matches' match_ty'))
core_matches <- matchEnvStack env_ids stack_ids core_body
return (do_map_arrow ids in_ty sum_ty res_ty core_matches core_choices,
exprFreeVars core_body `intersectVarSet` local_vars)
dsCmd ids local_vars env_ids stack res_ty (HsLet binds body) = do
let
defined_vars = mkVarSet (collectLocalBinders binds)
local_vars' = local_vars `unionVarSet` defined_vars
(core_body, _free_vars, env_ids') <- dsfixCmd ids local_vars' stack res_ty body
stack_ids <- mapM newSysLocalDs stack
core_binds <- dsLocalBinds binds (buildEnvStack env_ids' stack_ids)
core_map <- matchEnvStack env_ids stack_ids core_binds
return (do_map_arrow ids
(envStackType env_ids stack)
(envStackType env_ids' stack)
res_ty
core_map
core_body,
exprFreeVars core_binds `intersectVarSet` local_vars)
dsCmd ids local_vars env_ids [] res_ty (HsDo _ctxt stmts body _)
= dsCmdDo ids local_vars env_ids res_ty stmts body
dsCmd _ids local_vars env_ids _stack _res_ty (HsArrForm op _ args) = do
let env_ty = mkBigCoreVarTupTy env_ids
core_op <- dsLExpr op
(core_args, fv_sets) <- mapAndUnzipM (dsTrimCmdArg local_vars env_ids) args
return (mkApps (App core_op (Type env_ty)) core_args,
unionVarSets fv_sets)
dsCmd ids local_vars env_ids stack res_ty (HsTick ix vars expr) = do
(expr1,id_set) <- dsLCmd ids local_vars env_ids stack res_ty expr
expr2 <- mkTickBox ix vars expr1
return (expr2,id_set)
dsCmd _ _ _ _ _ c = pprPanic "dsCmd" (ppr c)
dsTrimCmdArg
:: IdSet
-> [Id]
-> LHsCmdTop Id
-> DsM (CoreExpr,
IdSet)
dsTrimCmdArg local_vars env_ids (L _ (HsCmdTop cmd stack cmd_ty ids)) = do
meth_ids <- mkCmdEnv ids
(core_cmd, free_vars, env_ids') <- dsfixCmd meth_ids local_vars stack cmd_ty cmd
stack_ids <- mapM newSysLocalDs stack
trim_code <- matchEnvStack env_ids stack_ids (buildEnvStack env_ids' stack_ids)
let
in_ty = envStackType env_ids stack
in_ty' = envStackType env_ids' stack
arg_code = if env_ids' == env_ids then core_cmd else
do_map_arrow meth_ids in_ty in_ty' cmd_ty trim_code core_cmd
return (bindCmdEnv meth_ids arg_code, free_vars)
dsfixCmd
:: DsCmdEnv
-> IdSet
-> [Type]
-> Type
-> LHsCmd Id
-> DsM (CoreExpr,
IdSet,
[Id])
dsfixCmd ids local_vars stack cmd_ty cmd
= fixDs (\ ~(_,_,env_ids') -> do
(core_cmd, free_vars) <- dsLCmd ids local_vars env_ids' stack cmd_ty cmd
return (core_cmd, free_vars, varSetElems free_vars))
\end{code}
Translation of command judgements of the form
A | xs |- do { ss } :: [] t
\begin{code}
dsCmdDo :: DsCmdEnv
-> IdSet
-> [Id]
-> Type
-> [LStmt Id]
-> LHsExpr Id
-> DsM (CoreExpr,
IdSet)
dsCmdDo ids local_vars env_ids res_ty [] body
= dsLCmd ids local_vars env_ids [] res_ty body
dsCmdDo ids local_vars env_ids res_ty (stmt:stmts) body = do
let
bound_vars = mkVarSet (collectLStmtBinders stmt)
local_vars' = local_vars `unionVarSet` bound_vars
(core_stmts, _, env_ids') <- fixDs (\ ~(_,_,env_ids') -> do
(core_stmts, fv_stmts) <- dsCmdDo ids local_vars' env_ids' res_ty stmts body
return (core_stmts, fv_stmts, varSetElems fv_stmts))
(core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids env_ids' stmt
return (do_compose ids
(mkBigCoreVarTupTy env_ids)
(mkBigCoreVarTupTy env_ids')
res_ty
core_stmt
core_stmts,
fv_stmt)
\end{code}
A statement maps one local environment to another, and is represented
as an arrow from one tuple type to another. A statement sequence is
translated to a composition of such arrows.
\begin{code}
dsCmdLStmt :: DsCmdEnv -> IdSet -> [Id] -> [Id] -> LStmt Id
-> DsM (CoreExpr, IdSet)
dsCmdLStmt ids local_vars env_ids out_ids cmd
= dsCmdStmt ids local_vars env_ids out_ids (unLoc cmd)
dsCmdStmt
:: DsCmdEnv
-> IdSet
-> [Id]
-> [Id]
-> Stmt Id
-> DsM (CoreExpr,
IdSet)
dsCmdStmt ids local_vars env_ids out_ids (ExprStmt cmd _ c_ty) = do
(core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars [] c_ty cmd
core_mux <- matchEnvStack env_ids []
(mkCorePairExpr (mkBigCoreVarTup env_ids1) (mkBigCoreVarTup out_ids))
let
in_ty = mkBigCoreVarTupTy env_ids
in_ty1 = mkBigCoreVarTupTy env_ids1
out_ty = mkBigCoreVarTupTy out_ids
before_c_ty = mkCorePairTy in_ty1 out_ty
after_c_ty = mkCorePairTy c_ty out_ty
snd_fn <- mkSndExpr c_ty out_ty
return (do_map_arrow ids in_ty before_c_ty out_ty core_mux $
do_compose ids before_c_ty after_c_ty out_ty
(do_first ids in_ty1 c_ty out_ty core_cmd) $
do_arr ids after_c_ty out_ty snd_fn,
extendVarSetList fv_cmd out_ids)
where
dsCmdStmt ids local_vars env_ids out_ids (BindStmt pat cmd _ _) = do
(core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars [] (hsLPatType pat) cmd
let
pat_ty = hsLPatType pat
pat_vars = mkVarSet (collectPatBinders pat)
env_ids2 = varSetElems (mkVarSet out_ids `minusVarSet` pat_vars)
env_ty2 = mkBigCoreVarTupTy env_ids2
core_mux <- matchEnvStack env_ids []
(mkCorePairExpr (mkBigCoreVarTup env_ids1) (mkBigCoreVarTup env_ids2))
env_id <- newSysLocalDs env_ty2
uniqs <- newUniqueSupply
let
after_c_ty = mkCorePairTy pat_ty env_ty2
out_ty = mkBigCoreVarTupTy out_ids
body_expr = coreCaseTuple uniqs env_id env_ids2 (mkBigCoreVarTup out_ids)
fail_expr <- mkFailExpr (StmtCtxt DoExpr) out_ty
pat_id <- selectSimpleMatchVarL pat
match_code <- matchSimply (Var pat_id) (StmtCtxt DoExpr) pat body_expr fail_expr
pair_id <- newSysLocalDs after_c_ty
let
proj_expr = Lam pair_id (coreCasePair pair_id pat_id env_id match_code)
let
in_ty = mkBigCoreVarTupTy env_ids
in_ty1 = mkBigCoreVarTupTy env_ids1
in_ty2 = mkBigCoreVarTupTy env_ids2
before_c_ty = mkCorePairTy in_ty1 in_ty2
return (do_map_arrow ids in_ty before_c_ty out_ty core_mux $
do_compose ids before_c_ty after_c_ty out_ty
(do_first ids in_ty1 pat_ty in_ty2 core_cmd) $
do_arr ids after_c_ty out_ty proj_expr,
fv_cmd `unionVarSet` (mkVarSet out_ids `minusVarSet` pat_vars))
dsCmdStmt ids local_vars env_ids out_ids (LetStmt binds) = do
core_binds <- dsLocalBinds binds (mkBigCoreVarTup out_ids)
core_map <- matchEnvStack env_ids [] core_binds
return (do_arr ids
(mkBigCoreVarTupTy env_ids)
(mkBigCoreVarTupTy out_ids)
core_map,
exprFreeVars core_binds `intersectVarSet` local_vars)
dsCmdStmt ids local_vars env_ids out_ids
(RecStmt { recS_stmts = stmts, recS_later_ids = later_ids, recS_rec_ids = rec_ids
, recS_rec_rets = rhss, recS_dicts = _binds }) = do
let
env2_id_set = mkVarSet out_ids `minusVarSet` mkVarSet later_ids
env2_ids = varSetElems env2_id_set
env2_ty = mkBigCoreVarTupTy env2_ids
uniqs <- newUniqueSupply
env2_id <- newSysLocalDs env2_ty
let
later_ty = mkBigCoreVarTupTy later_ids
post_pair_ty = mkCorePairTy later_ty env2_ty
post_loop_body = coreCaseTuple uniqs env2_id env2_ids (mkBigCoreVarTup out_ids)
post_loop_fn <- matchEnvStack later_ids [env2_id] post_loop_body
(core_loop, env1_id_set, env1_ids)
<- dsRecCmd ids local_vars stmts later_ids rec_ids rhss
let
env1_ty = mkBigCoreVarTupTy env1_ids
pre_pair_ty = mkCorePairTy env1_ty env2_ty
pre_loop_body = mkCorePairExpr (mkBigCoreVarTup env1_ids)
(mkBigCoreVarTup env2_ids)
pre_loop_fn <- matchEnvStack env_ids [] pre_loop_body
let
env_ty = mkBigCoreVarTupTy env_ids
out_ty = mkBigCoreVarTupTy out_ids
core_body = do_map_arrow ids env_ty pre_pair_ty out_ty
pre_loop_fn
(do_compose ids pre_pair_ty post_pair_ty out_ty
(do_first ids env1_ty later_ty env2_ty
core_loop)
(do_arr ids post_pair_ty out_ty
post_loop_fn))
return (core_body, env1_id_set `unionVarSet` env2_id_set)
dsCmdStmt _ _ _ _ s = pprPanic "dsCmdStmt" (ppr s)
dsRecCmd :: DsCmdEnv -> VarSet -> [LStmt Id] -> [Var] -> [Var] -> [HsExpr Id]
-> DsM (CoreExpr, VarSet, [Var])
dsRecCmd ids local_vars stmts later_ids rec_ids rhss = do
let
rec_id_set = mkVarSet rec_ids
out_ids = varSetElems (mkVarSet later_ids `unionVarSet` rec_id_set)
out_ty = mkBigCoreVarTupTy out_ids
local_vars' = local_vars `unionVarSet` rec_id_set
core_rhss <- mapM dsExpr rhss
let
later_tuple = mkBigCoreVarTup later_ids
later_ty = mkBigCoreVarTupTy later_ids
rec_tuple = mkBigCoreTup core_rhss
rec_ty = mkBigCoreVarTupTy rec_ids
out_pair = mkCorePairExpr later_tuple rec_tuple
out_pair_ty = mkCorePairTy later_ty rec_ty
mk_pair_fn <- matchEnvStack out_ids [] out_pair
(core_stmts, fv_stmts, env_ids) <- dsfixCmdStmts ids local_vars' out_ids stmts
rec_id <- newSysLocalDs rec_ty
let
env1_id_set = fv_stmts `minusVarSet` rec_id_set
env1_ids = varSetElems env1_id_set
env1_ty = mkBigCoreVarTupTy env1_ids
in_pair_ty = mkCorePairTy env1_ty rec_ty
core_body = mkBigCoreTup (map selectVar env_ids)
where
selectVar v
| v `elemVarSet` rec_id_set
= mkTupleSelector rec_ids v rec_id (Var rec_id)
| otherwise = Var v
squash_pair_fn <- matchEnvStack env1_ids [rec_id] core_body
let
env_ty = mkBigCoreVarTupTy env_ids
core_loop = do_loop ids env1_ty later_ty rec_ty
(do_map_arrow ids in_pair_ty env_ty out_pair_ty
squash_pair_fn
(do_compose ids env_ty out_ty out_pair_ty
core_stmts
(do_arr ids out_ty out_pair_ty mk_pair_fn)))
return (core_loop, env1_id_set, env1_ids)
\end{code}
A sequence of statements (as in a rec) is desugared to an arrow between
two environments
\begin{code}
dsfixCmdStmts
:: DsCmdEnv
-> IdSet
-> [Id]
-> [LStmt Id]
-> DsM (CoreExpr,
IdSet,
[Id])
dsfixCmdStmts ids local_vars out_ids stmts
= fixDs (\ ~(_,_,env_ids) -> do
(core_stmts, fv_stmts) <- dsCmdStmts ids local_vars env_ids out_ids stmts
return (core_stmts, fv_stmts, varSetElems fv_stmts))
dsCmdStmts
:: DsCmdEnv
-> IdSet
-> [Id]
-> [Id]
-> [LStmt Id]
-> DsM (CoreExpr,
IdSet)
dsCmdStmts ids local_vars env_ids out_ids [stmt]
= dsCmdLStmt ids local_vars env_ids out_ids stmt
dsCmdStmts ids local_vars env_ids out_ids (stmt:stmts) = do
let
bound_vars = mkVarSet (collectLStmtBinders stmt)
local_vars' = local_vars `unionVarSet` bound_vars
(core_stmts, _fv_stmts, env_ids') <- dsfixCmdStmts ids local_vars' out_ids stmts
(core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids env_ids' stmt
return (do_compose ids
(mkBigCoreVarTupTy env_ids)
(mkBigCoreVarTupTy env_ids')
(mkBigCoreVarTupTy out_ids)
core_stmt
core_stmts,
fv_stmt)
dsCmdStmts _ _ _ _ [] = panic "dsCmdStmts []"
\end{code}
Match a list of expressions against a list of patterns, left-to-right.
\begin{code}
matchSimplys :: [CoreExpr]
-> HsMatchContext Name
-> [LPat Id]
-> CoreExpr
-> CoreExpr
-> DsM CoreExpr
matchSimplys [] _ctxt [] result_expr _fail_expr = return result_expr
matchSimplys (exp:exps) ctxt (pat:pats) result_expr fail_expr = do
match_code <- matchSimplys exps ctxt pats result_expr fail_expr
matchSimply exp ctxt pat match_code fail_expr
matchSimplys _ _ _ _ _ = panic "matchSimplys"
\end{code}
List of leaf expressions, with set of variables bound in each
\begin{code}
leavesMatch :: LMatch Id -> [(LHsExpr Id, IdSet)]
leavesMatch (L _ (Match pats _ (GRHSs grhss binds)))
= let
defined_vars = mkVarSet (collectPatsBinders pats)
`unionVarSet`
mkVarSet (collectLocalBinders binds)
in
[(expr,
mkVarSet (collectLStmtsBinders stmts)
`unionVarSet` defined_vars)
| L _ (GRHS stmts expr) <- grhss]
\end{code}
Replace the leaf commands in a match
\begin{code}
replaceLeavesMatch
:: Type
-> [LHsExpr Id]
-> LMatch Id
-> ([LHsExpr Id],
LMatch Id)
replaceLeavesMatch _res_ty leaves (L loc (Match pat mt (GRHSs grhss binds)))
= let
(leaves', grhss') = mapAccumL replaceLeavesGRHS leaves grhss
in
(leaves', L loc (Match pat mt (GRHSs grhss' binds)))
replaceLeavesGRHS
:: [LHsExpr Id]
-> LGRHS Id
-> ([LHsExpr Id],
LGRHS Id)
replaceLeavesGRHS (leaf:leaves) (L loc (GRHS stmts _))
= (leaves, L loc (GRHS stmts leaf))
replaceLeavesGRHS [] _ = panic "replaceLeavesGRHS []"
\end{code}
Balanced fold of a non-empty list.
\begin{code}
foldb :: (a -> a -> a) -> [a] -> a
foldb _ [] = error "foldb of empty list"
foldb _ [x] = x
foldb f xs = foldb f (fold_pairs xs)
where
fold_pairs [] = []
fold_pairs [x] = [x]
fold_pairs (x1:x2:xs) = f x1 x2:fold_pairs xs
\end{code}
Note [Dictionary binders in ConPatOut] See also same Note in HsUtils
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following functions to collect value variables from patterns are
copied from HsUtils, with one change: we also collect the dictionary
bindings (pat_binds) from ConPatOut. We need them for cases like
h :: Arrow a => Int -> a (Int,Int) Int
h x = proc (y,z) -> case compare x y of
GT -> returnA -< z+x
The type checker turns the case into
case compare x y of
GT { p77 = plusInt } -> returnA -< p77 z x
Here p77 is a local binding for the (+) operation.
See comments in HsUtils for why the other version does not include
these bindings.
\begin{code}
collectPatBinders :: LPat Id -> [Id]
collectPatBinders pat = collectl pat []
collectPatsBinders :: [LPat Id] -> [Id]
collectPatsBinders pats = foldr collectl [] pats
collectl :: LPat Id -> [Id] -> [Id]
collectl (L _ pat) bndrs
= go pat
where
go (VarPat var) = var : bndrs
go (VarPatOut var bs) = var : collectEvBinders bs
++ bndrs
go (WildPat _) = bndrs
go (LazyPat pat) = collectl pat bndrs
go (BangPat pat) = collectl pat bndrs
go (AsPat (L _ a) pat) = a : collectl pat bndrs
go (ParPat pat) = collectl pat bndrs
go (ListPat pats _) = foldr collectl bndrs pats
go (PArrPat pats _) = foldr collectl bndrs pats
go (TuplePat pats _ _) = foldr collectl bndrs pats
go (ConPatIn _ ps) = foldr collectl bndrs (hsConPatArgs ps)
go (ConPatOut {pat_args=ps, pat_binds=ds}) =
collectEvBinders ds
++ foldr collectl bndrs (hsConPatArgs ps)
go (LitPat _) = bndrs
go (NPat _ _ _) = bndrs
go (NPlusKPat (L _ n) _ _ _) = n : bndrs
go (SigPatIn pat _) = collectl pat bndrs
go (SigPatOut pat _) = collectl pat bndrs
go (TypePat _) = bndrs
go (CoPat _ pat _) = collectl (noLoc pat) bndrs
go (ViewPat _ pat _) = collectl pat bndrs
go p@(QuasiQuotePat {}) = pprPanic "collectl/go" (ppr p)
collectEvBinders :: TcEvBinds -> [Id]
collectEvBinders (EvBinds bs) = foldrBag add_ev_bndr [] bs
collectEvBinders (TcEvBinds {}) = panic "ToDo: collectEvBinders"
add_ev_bndr :: EvBind -> [Id] -> [Id]
add_ev_bndr (EvBind b _) bs | isId b = b:bs
| otherwise = bs
\end{code}