%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Pattern-matching bindings (HsBinds and MonoBinds)
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
\begin{code}
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
dsHsWrapper, dsTcEvBinds, dsEvBinds, wrapDsEvBinds,
DsEvBind(..), AutoScc(..)
) where
#include "HsVersions.h"
import DsExpr( dsLExpr )
import Match( matchWrapper )
import DsMonad
import DsGRHSs
import DsUtils
import HsSyn
import CoreSyn
import CoreSubst
import MkCore
import CoreUtils
import CoreArity ( etaExpand )
import CoreUnfold
import CoreFVs
import Digraph
import TcType
import Type
import TysPrim ( anyTypeOfKind )
import CostCentre
import Module
import Id
import TyCon ( tyConDataCons )
import Class
import DataCon ( dataConRepType )
import Name ( localiseName )
import MkId ( seqId )
import Var
import VarSet
import Rules
import VarEnv
import Outputable
import SrcLoc
import Maybes
import OrdList
import Bag
import BasicTypes hiding ( TopLevel )
import FastString
import Util
import MonadUtils
\end{code}
%************************************************************************
%* *
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
%* *
%************************************************************************
\begin{code}
dsTopLHsBinds :: AutoScc -> LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds auto_scc binds = ds_lhs_binds auto_scc binds
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
dsLHsBinds binds = do { binds' <- ds_lhs_binds NoSccs binds
; return (fromOL binds') }
ds_lhs_binds :: AutoScc -> LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
ds_lhs_binds auto_scc binds = do { ds_bs <- mapBagM (dsLHsBind auto_scc) binds
; return (foldBag appOL id nilOL ds_bs) }
dsLHsBind :: AutoScc -> LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind auto_scc (L loc bind)
= putSrcSpanDs loc $ dsHsBind auto_scc bind
dsHsBind :: AutoScc -> HsBind Id -> DsM (OrdList (Id,CoreExpr))
dsHsBind _ (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
= do { core_expr <- dsLExpr expr
; core_expr' <- addDictScc var core_expr
; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr'
| otherwise = var
; return (unitOL (var', core_expr')) }
dsHsBind auto_scc (FunBind { fun_id = L _ fun, fun_matches = matches
, fun_co_fn = co_fn, fun_tick = tick
, fun_infix = inf })
= do { (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
; body' <- mkOptTickBox tick body
; wrap_fn' <- dsHsWrapper co_fn
; let rhs = addAutoScc auto_scc fun $ wrap_fn' (mkLams args body')
; return (unitOL (makeCorePair fun False 0 rhs)) }
dsHsBind auto_scc (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty })
= do { body_expr <- dsGuarded grhss ty
; sel_binds <- mkSelectorBinds pat body_expr
; let sel_binds' = [ (v, addAutoScc auto_scc v expr)
| (v, expr) <- sel_binds ]
; return (toOL sel_binds') }
dsHsBind auto_scc (AbsBinds { abs_tvs = all_tyvars, abs_ev_vars = dicts
, abs_exports = [(tyvars, global, local, prags)]
, abs_ev_binds = ev_binds, abs_binds = binds })
= ASSERT( all (`elem` tyvars) all_tyvars )
do { bind_prs <- ds_lhs_binds NoSccs binds
; ds_ev_binds <- dsTcEvBinds ev_binds
; let core_bind = Rec (fromOL bind_prs)
rhs = addAutoScc auto_scc global $
mkLams tyvars $ mkLams dicts $
wrapDsEvBinds ds_ev_binds $
Let core_bind $
Var local
; (spec_binds, rules) <- dsSpecs rhs prags
; let global' = addIdSpecialisations global rules
main_bind = makeCorePair global' (isDefaultMethod prags)
(dictArity dicts) rhs
; return (main_bind `consOL` spec_binds) }
dsHsBind auto_scc (AbsBinds { abs_tvs = all_tyvars, abs_ev_vars = dicts
, abs_exports = exports, abs_ev_binds = ev_binds
, abs_binds = binds })
= do { bind_prs <- ds_lhs_binds NoSccs binds
; ds_ev_binds <- dsTcEvBinds ev_binds
; let env = mkABEnv exports
do_one (lcl_id,rhs) | Just (_, gbl_id, _, _prags) <- lookupVarEnv env lcl_id
= (lcl_id, addAutoScc auto_scc gbl_id rhs)
| otherwise = (lcl_id,rhs)
core_bind = Rec (map do_one (fromOL bind_prs))
tup_expr = mkBigCoreVarTup locals
tup_ty = exprType tup_expr
poly_tup_rhs = mkLams all_tyvars $ mkLams dicts $
wrapDsEvBinds ds_ev_binds $
Let core_bind $
tup_expr
locals = [local | (_, _, local, _) <- exports]
local_tys = map idType locals
; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
; let mk_bind ((tyvars, global, _, spec_prags), n)
=
do { let ty_args = map mk_ty_arg all_tyvars
substitute = substTyWith all_tyvars ty_args
; locals' <- newSysLocalsDs (map substitute local_tys)
; tup_id <- newSysLocalDs (substitute tup_ty)
; let rhs = mkLams tyvars $ mkLams dicts $
mkTupleSelector locals' (locals' !! n) tup_id $
mkVarApps (mkTyApps (Var poly_tup_id) ty_args)
dicts
full_rhs = Let (NonRec poly_tup_id poly_tup_rhs) rhs
; (spec_binds, rules) <- dsSpecs full_rhs spec_prags
; let global' = addIdSpecialisations global rules
; return ((global', rhs) `consOL` spec_binds) }
where
mk_ty_arg all_tyvar
| all_tyvar `elem` tyvars = mkTyVarTy all_tyvar
| otherwise = dsMkArbitraryType all_tyvar
; export_binds_s <- mapM mk_bind (exports `zip` [0..])
; return ((poly_tup_id, poly_tup_rhs) `consOL`
concatOL export_binds_s) }
data DsEvBind
= LetEvBind
CoreBind
| CaseEvBind
DictId
AltCon
[CoreBndr]
wrapDsEvBinds :: [DsEvBind] -> CoreExpr -> CoreExpr
wrapDsEvBinds ds_ev_binds body = foldr wrap_one body ds_ev_binds
where
body_ty = exprType body
wrap_one (LetEvBind b) body = Let b body
wrap_one (CaseEvBind x k xs) body = Case (Var x) x body_ty [(k,xs,body)]
dsTcEvBinds :: TcEvBinds -> DsM [DsEvBind]
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"
dsTcEvBinds (EvBinds bs) = dsEvBinds bs
dsEvBinds :: Bag EvBind -> DsM [DsEvBind]
dsEvBinds bs = return (map dsEvGroup sccs)
where
sccs :: [SCC EvBind]
sccs = stronglyConnCompFromEdgedVertices edges
edges :: [(EvBind, EvVar, [EvVar])]
edges = foldrBag ((:) . mk_node) [] bs
mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
mk_node b@(EvBind var term) = (b, var, free_vars_of term)
free_vars_of :: EvTerm -> [EvVar]
free_vars_of (EvId v) = [v]
free_vars_of (EvCast v co) = v : varSetElems (tyVarsOfType co)
free_vars_of (EvCoercion co) = varSetElems (tyVarsOfType co)
free_vars_of (EvDFunApp _ _ vs) = vs
free_vars_of (EvSuperClass d _) = [d]
dsEvGroup :: SCC EvBind -> DsEvBind
dsEvGroup (AcyclicSCC (EvBind co_var (EvSuperClass dict n)))
| isCoVar co_var
= ASSERT( null other_data_cons )
CaseEvBind dict (DataAlt data_con) bndrs
where
(cls, tys) = getClassPredTys (evVarPred dict)
(data_con:other_data_cons) = tyConDataCons (classTyCon cls)
(ex_tvs, theta, rho) = tcSplitSigmaTy (applyTys (dataConRepType data_con) tys)
(arg_tys, _) = splitFunTys rho
bndrs = ex_tvs ++ map mk_wild_pred (theta `zip` [0..])
++ map mkWildValBinder arg_tys
mk_wild_pred (p, i) | i==n = ASSERT( p `tcEqPred` (coVarPred co_var))
co_var
| otherwise = mkWildEvBinder p
dsEvGroup (AcyclicSCC (EvBind v r))
= LetEvBind (NonRec v (dsEvTerm r))
dsEvGroup (CyclicSCC bs)
= LetEvBind (Rec (map ds_pair bs))
where
ds_pair (EvBind v r) = (v, dsEvTerm r)
dsEvTerm :: EvTerm -> CoreExpr
dsEvTerm (EvId v) = Var v
dsEvTerm (EvCast v co) = Cast (Var v) co
dsEvTerm (EvDFunApp df tys vars) = Var df `mkTyApps` tys `mkVarApps` vars
dsEvTerm (EvCoercion co) = Type co
dsEvTerm (EvSuperClass d n)
= ASSERT( isClassPred (classSCTheta cls !! n) )
Var sc_sel_id `mkTyApps` tys `App` Var d
where
sc_sel_id = classSCSelId cls n
(cls, tys) = getClassPredTys (evVarPred d)
makeCorePair :: Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair gbl_id is_default_method dict_arity rhs
| is_default_method
= (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)
| otherwise
= case inlinePragmaSpec inline_prag of
EmptyInlineSpec -> (gbl_id, rhs)
NoInline -> (gbl_id, rhs)
Inlinable -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
Inline -> inline_pair
where
inline_prag = idInlinePragma gbl_id
inlinable_unf = mkInlinableUnfolding rhs
inline_pair
| Just arity <- inlinePragmaSat inline_prag
, let real_arity = dict_arity + arity
= ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
, etaExpand real_arity rhs)
| otherwise
= pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
(gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
dictArity :: [Var] -> Arity
dictArity dicts = count isId dicts
type AbsBindEnv = VarEnv ([TyVar], Id, Id, TcSpecPrags)
mkABEnv :: [([TyVar], Id, Id, TcSpecPrags)] -> AbsBindEnv
mkABEnv exports = mkVarEnv [ (lcl_id, export) | export@(_, _, lcl_id, _) <- exports]
\end{code}
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
f_lcl = ...f_lcl... -- The "binds" from AbsBinds
M.f = f_lcl -- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is
trivial). That would be ok unless it has RULES, which would
thereby be completely lost. Bad, bad, bad.
Instead we want to generate
M.f = ...f_lcl...
f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
and f_lcl is rapidly inlined away.
This does not happen in the same way to polymorphic binds,
because they desugar to
M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
float the f_lcl binding out and then inline M.f at its call site
Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
AbsBinds [] [] [( ... spec-prag]
{ AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:
class (Real a, Fractional a) => RealFrac a where
round :: (Integral b) => a -> b
instance RealFrac Float where
{-# SPECIALIZE round :: Float -> Int #-}
The top-level AbsBinds for $cround has no tyvars or dicts (because the
instance does not). But the method is locally overloaded!
Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take
AbsBinds [a,b] [ ([a,b], fg, fl, _),
([b], gg, gl, _) ]
{ fl = e1
gl = e2
h = e3 }
and desugar it to
fg = /\ab. let B in e1
gg = /\b. let a = () in let B in S(e2)
h = /\ab. let B in e3
where B is the *non-recursive* binding
fl = fg a b
gl = gg b
h = h a b -- See (b); note shadowing!
Notice (a) g has a different number of type variables to f, so we must
use the mkArbitraryType thing to fill in the gaps.
We use a type-let to do that.
(b) The local variable h isn't in the exports, and rather than
clone a fresh copy we simply replace h by (h a b), where
the two h's have different types! Shadowing happens here,
which looks confusing but works fine.
(c) The result is *still* quadratic-sized if there are a lot of
small bindings. So if there are more than some small
number (10), we filter the binding set B by the free
variables of the particular RHS. Tiresome.
Why got to this trouble? It's a common case, and it removes the
quadratic-sized tuple desugaring. Less clutter, hopefullly faster
compilation, especially in a case where there are a *lot* of
bindings.
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo :: Eq a => a -> a
{-# INLINE foo #-}
foo x = ...
If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!
To avoid this we pre-emptively eta-expand the definition, so that foo
has the arity with which it is declared in the source code. In this
example it has arity 2 (one for the Eq and one for x). Doing this
should mean that (foo d) is a PAP and we don't share it.
Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
For reasons that are not entirely clear, method bindings come out looking like
this:
AbsBinds [] [] [$cfromT <= [] fromT]
$cfromT [InlPrag=INLINE] :: T Bool -> Bool
{ AbsBinds [] [] [fromT <= [] fromT_1]
fromT :: T Bool -> Bool
{ fromT_1 ((TBool b)) = not b } } }
Note the nested AbsBind. The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.
It might be better to have just one level of AbsBinds, but that requires more
thought!
Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
f :: (Eq a, Ix b) => a -> b -> Bool
{-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
f =
From this the typechecker generates
AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds
SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
-> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])
Note that wrap_fn can transform *any* function with the right type prefix
forall ab. (Eq a, Ix b) => XXX
regardless of XXX. It's sort of polymorphic in XXX. This is
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.
From these we generate:
Rule: forall p, q, (dp:Ix p), (dq:Ix q).
f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq
Spec bind: f_spec = wrap_fn
Note that
* The LHS of the rule may mention dictionary *expressions* (eg
$dfIxPair dp dq), and that is essential because the dp, dq are
needed on the RHS.
* The RHS of f_spec, has a *copy* of 'binds', so that it
can fully specialise it.
\begin{code}
dsSpecs :: CoreExpr
-> TcSpecPrags
-> DsM ( OrdList (Id,CoreExpr)
, [CoreRule] )
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
= do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
; let (spec_binds_s, rules) = unzip pairs
; return (concatOL spec_binds_s, rules) }
dsSpec :: Maybe CoreExpr
-> Located TcSpecPrag
-> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
= putSrcSpanDs loc $
do { let poly_name = idName poly_id
; spec_name <- newLocalName poly_name
; wrap_fn <- dsHsWrapper spec_co
; let (bndrs, ds_lhs) = collectBinders (wrap_fn (Var poly_id))
spec_ty = mkPiTypes bndrs (exprType ds_lhs)
; case decomposeRuleLhs bndrs ds_lhs of {
Left msg -> do { warnDs msg; return Nothing } ;
Right (final_bndrs, _fn, args) -> do
{ (spec_unf, unf_pairs) <- specUnfolding wrap_fn spec_ty (realIdUnfolding poly_id)
; let spec_id = mkLocalId spec_name spec_ty
`setInlinePragma` inl_prag
`setIdUnfolding` spec_unf
inl_prag | isDefaultInlinePragma spec_inl = idInlinePragma poly_id
| otherwise = spec_inl
rule = mkRule False is_local_id
(mkFastString ("SPEC " ++ showSDoc (ppr poly_name)))
AlwaysActive poly_name
final_bndrs args
(mkVarApps (Var spec_id) bndrs)
spec_rhs = wrap_fn poly_rhs
spec_pair = makeCorePair spec_id False (dictArity bndrs) spec_rhs
; return (Just (spec_pair `consOL` unf_pairs, rule))
} } }
where
is_local_id = isJust mb_poly_rhs
poly_rhs | Just rhs <- mb_poly_rhs
= rhs
| Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
= unfolding
| otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
specUnfolding :: (CoreExpr -> CoreExpr) -> Type
-> Unfolding -> DsM (Unfolding, OrdList (Id,CoreExpr))
specUnfolding _ _ _
= return (noUnfolding, nilOL)
dsMkArbitraryType :: TcTyVar -> Type
dsMkArbitraryType tv = anyTypeOfKind (tyVarKind tv)
\end{code}
%************************************************************************
%* *
\subsection{Adding inline pragmas}
%* *
%************************************************************************
\begin{code}
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
decomposeRuleLhs bndrs lhs
=
case collectArgs opt_lhs of
(Var fn, args) -> check_bndrs fn args
(Case scrut bndr ty [(DEFAULT, _, body)], args)
| isDeadBinder bndr
-> check_bndrs seqId (args' ++ args)
where
args' = [Type (idType bndr), Type ty, scrut, body]
_other -> Left bad_shape_msg
where
opt_lhs = simpleOptExpr lhs
check_bndrs fn args
| null (dead_bndrs) = Right (extra_dict_bndrs ++ bndrs, fn, args)
| otherwise = Left (vcat (map dead_msg dead_bndrs))
where
arg_fvs = exprsFreeVars args
dead_bndrs = filterOut (`elemVarSet` arg_fvs) bndrs
extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
| d <- varSetElems (arg_fvs `delVarSetList` bndrs)
, isDictId d]
bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
2 (ppr opt_lhs)
dead_msg bndr = hang (ptext (sLit "Forall'd") <+> pp_bndr bndr
<+> ptext (sLit "is not bound in RULE lhs"))
2 (ppr opt_lhs)
pp_bndr bndr
| isTyVar bndr = ptext (sLit "type variable") <+> ppr bndr
| isCoVar bndr = ptext (sLit "coercion variable") <+> ppr bndr
| isDictId bndr = ptext (sLit "constraint") <+> ppr (get_pred bndr)
| otherwise = ptext (sLit "variable") <+> ppr bndr
get_pred b = ASSERT( isId b ) expectJust "decomposeRuleLhs"
(tcSplitPredTy_maybe (idType b))
\end{code}
Note [Simplifying the left-hand side of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
simpleOptExpr occurrence-analyses and simplifies the lhs
and thereby
(a) sorts dict bindings into NonRecs and inlines them
(b) substitute trivial lets so that they don't get in the way
Note that we substitute the function too; we might
have this as a LHS: let f71 = M.f Int in f71
(c) does eta reduction
For (c) consider the fold/build rule, which without simplification
looked like:
fold k z (build (/\a. g a)) ==> ...
This doesn't match unless you do eta reduction on the build argument.
Similarly for a LHS like
augment g (build h)
we do not want to get
augment (\a. g a) (build h)
otherwise we don't match when given an argument like
augment (\a. h a a) (build h)
NB: tcSimplifyRuleLhs is very careful not to generate complicated
dictionary expressions that we might have to match
Note [Matching seqId]
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
and this code turns it back into an application of seq!
See Note [Rules for seq] in MkId for the details.
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: a -> a
{-# SPECIALISE f :: Eq a => a -> a #-}
It's true that this *is* a more specialised type, but the rule
we get is something like this:
f_spec d = f
RULE: f = f_spec d
Note that the rule is bogus, becuase it mentions a 'd' that is
not bound on the LHS! But it's a silly specialisation anyway, becuase
the constraint is unused. We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake. That's what the isDeadBinder call detects.
Note [Constant rule dicts]
~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too. *Any* dict with that type will do.
So for example when you have
f :: Eq a => a -> a
f =
{-# SPECIALISE f :: Int -> Int #-}
Then we get the SpecPrag
SpecPrag (f Int dInt)
And from that we want the rule
RULE forall dInt. f Int dInt = f_spec
f_spec = let f = in f Int dInt
But be careful! That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused. Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.
%************************************************************************
%* *
\subsection[addAutoScc]{Adding automatic sccs}
%* *
%************************************************************************
\begin{code}
data AutoScc = NoSccs
| AddSccs Module (Id -> Bool)
addAutoScc :: AutoScc
-> Id
-> CoreExpr
-> CoreExpr
addAutoScc NoSccs _ rhs
= rhs
addAutoScc _ id rhs | isInlinePragma (idInlinePragma id)
= rhs
addAutoScc (AddSccs mod add_scc) id rhs
| add_scc id = mkSCC (mkAutoCC id mod NotCafCC) rhs
| otherwise = rhs
\end{code}
If profiling and dealing with a dict binding,
wrap the dict in @_scc_ DICT @:
\begin{code}
addDictScc :: Id -> CoreExpr -> DsM CoreExpr
addDictScc _ rhs = return rhs
\end{code}
%************************************************************************
%* *
Desugaring coercions
%* *
%************************************************************************
\begin{code}
dsHsWrapper :: HsWrapper -> DsM (CoreExpr -> CoreExpr)
dsHsWrapper WpHole = return (\e -> e)
dsHsWrapper (WpTyApp ty) = return (\e -> App e (Type ty))
dsHsWrapper (WpLet ev_binds) = do { ds_ev_binds <- dsTcEvBinds ev_binds
; return (wrapDsEvBinds ds_ev_binds) }
dsHsWrapper (WpCompose c1 c2) = do { k1 <- dsHsWrapper c1
; k2 <- dsHsWrapper c2
; return (k1 . k2) }
dsHsWrapper (WpCast co) = return (\e -> Cast e co)
dsHsWrapper (WpEvLam ev) = return (\e -> Lam ev e)
dsHsWrapper (WpTyLam tv) = return (\e -> Lam tv e)
dsHsWrapper (WpEvApp evtrm) = return (\e -> App e (dsEvTerm evtrm))
\end{code}