{-# OPTIONS -fno-warn-missing-signatures #-}
-- | Clean out unneeded spill\/reload instrs
--
-- * Handling of join points
--
--   B1:                          B2:
--    ...                          ...
--       RELOAD SLOT(0), %r1          RELOAD SLOT(0), %r1
--       ... A ...                    ... B ...
--       jump B3                      jump B3
--
--                B3: ... C ...
--                    RELOAD SLOT(0), %r1
--                    ...
--
-- the plan:
--	So long as %r1 hasn't been written to in A, B or C then we don't need the
--	reload in B3.
--
--	What we really care about here is that on the entry to B3, %r1 will always
--	have the same value that is in SLOT(0) (ie, %r1 is _valid_)
--
--	This also works if the reloads in B1\/B2 were spills instead, because
--	spilling %r1 to a slot makes that slot have the same value as %r1.
--
module RegAlloc.Graph.SpillClean (
	cleanSpills
)
where

import RegAlloc.Liveness
import Instruction
import Reg

import BlockId
import Cmm
import UniqSet
import UniqFM
import Unique
import State
import Outputable

import Data.List
import Data.Maybe
import Data.Map			(Map)
import Data.Set			(Set)
import qualified Data.Map	as Map
import qualified Data.Set	as Set


--
type Slot = Int


-- | Clean out unneeded spill\/reloads from this top level thing.
cleanSpills 
	:: Instruction instr
	=> LiveCmmTop instr -> LiveCmmTop instr

cleanSpills cmm
	= evalState (cleanSpin 0 cmm) initCleanS

-- | do one pass of cleaning
cleanSpin 
	:: Instruction instr
	=> Int 
	-> LiveCmmTop instr 
	-> CleanM (LiveCmmTop instr)

{-
cleanSpin spinCount code
 = do	jumpValid	<- gets sJumpValid
	pprTrace "cleanSpin"
	 	(  int spinCount
		$$ text "--- code"
		$$ ppr code
		$$ text "--- joins"
		$$ ppr jumpValid)
	 $ cleanSpin' spinCount code
-}

cleanSpin spinCount code
 = do
 	-- init count of cleaned spills\/reloads
	modify $ \s -> s
		{ sCleanedSpillsAcc	= 0
		, sCleanedReloadsAcc	= 0
		, sReloadedBy		= emptyUFM }

 	code_forward	<- mapBlockTopM cleanBlockForward  code
	code_backward	<- cleanTopBackward code_forward
	
	-- During the cleaning of each block we collected information about what regs
	--	were valid across each jump. Based on this, work out whether it will be
	--	safe to erase reloads after join points for the next pass.
	collateJoinPoints

	-- remember how many spills\/reloads we cleaned in this pass
	spills		<- gets sCleanedSpillsAcc
	reloads		<- gets sCleanedReloadsAcc
	modify $ \s -> s
		{ sCleanedCount	= (spills, reloads) : sCleanedCount s }

	-- if nothing was cleaned in this pass or the last one
	--	then we're done and it's time to bail out
	cleanedCount	<- gets sCleanedCount
	if take 2 cleanedCount == [(0, 0), (0, 0)]
	   then return code

	-- otherwise go around again
	   else cleanSpin (spinCount + 1) code_backward


-- | Clean one basic block
cleanBlockForward 
	:: Instruction instr
	=> LiveBasicBlock instr 
	-> CleanM (LiveBasicBlock instr)

cleanBlockForward (BasicBlock blockId instrs)
 = do
 	-- see if we have a valid association for the entry to this block
 	jumpValid	<- gets sJumpValid
 	let assoc	= case lookupUFM jumpValid blockId of
				Just assoc	-> assoc
				Nothing		-> emptyAssoc

 	instrs_reload	<- cleanForward    blockId assoc [] instrs
	return	$ BasicBlock blockId instrs_reload



-- | Clean out unneeded reload instructions.
--	Walking forwards across the code
--	  On a reload, if we know a reg already has the same value as a slot
--	  then we don't need to do the reload.
--
cleanForward
	:: Instruction instr
	=> BlockId			-- ^ the block that we're currently in
	-> Assoc Store	 		-- ^ two store locations are associated if they have the same value
	-> [LiveInstr instr]		-- ^ acc
	-> [LiveInstr instr] 		-- ^ instrs to clean (in backwards order)
	-> CleanM [LiveInstr instr]	-- ^ cleaned instrs  (in forward   order)

cleanForward _ _ acc []
	= return acc

-- write out live range joins via spill slots to just a spill and a reg-reg move
--	hopefully the spill will be also be cleaned in the next pass
--
cleanForward blockId assoc acc (li1 : li2 : instrs)

	| LiveInstr (SPILL  reg1  slot1) _	<- li1
	, LiveInstr (RELOAD slot2 reg2)  _	<- li2
	, slot1 == slot2
	= do
		modify $ \s -> s { sCleanedReloadsAcc = sCleanedReloadsAcc s + 1 }
		cleanForward blockId assoc acc
			(li1 : LiveInstr (mkRegRegMoveInstr reg1 reg2) Nothing : instrs)


cleanForward blockId assoc acc (li@(LiveInstr i1 _) : instrs)
	| Just (r1, r2)	<- takeRegRegMoveInstr i1
	= if r1 == r2
		-- erase any left over nop reg reg moves while we're here
		--	this will also catch any nop moves that the "write out live range joins" case above
		--	happens to add
		then cleanForward blockId assoc acc instrs

		-- if r1 has the same value as some slots and we copy r1 to r2,
		--	then r2 is now associated with those slots instead
		else do	let assoc'	= addAssoc (SReg r1) (SReg r2)
					$ delAssoc (SReg r2)
					$ assoc

			cleanForward blockId assoc' (li : acc) instrs


cleanForward blockId assoc acc (li : instrs)

	-- update association due to the spill
	| LiveInstr (SPILL reg slot) _	<- li
	= let	assoc'	= addAssoc (SReg reg)  (SSlot slot)
			$ delAssoc (SSlot slot)
			$ assoc
	  in	cleanForward blockId assoc' (li : acc) instrs

	-- clean a reload instr
	| LiveInstr (RELOAD{}) _	<- li
	= do	(assoc', mli)	<- cleanReload blockId assoc li
		case mli of
		 Nothing	-> cleanForward blockId assoc' acc 		instrs
		 Just li'	-> cleanForward blockId assoc' (li' : acc)	instrs

	-- remember the association over a jump
	| LiveInstr instr _ 	<- li
	, targets		<- jumpDestsOfInstr instr
	, not $ null targets
	= do	mapM_ (accJumpValid assoc) targets
		cleanForward blockId assoc (li : acc) instrs

	-- writing to a reg changes its value.
	| LiveInstr instr _	<- li
	, RU _ written		<- regUsageOfInstr instr
	= let assoc'	= foldr delAssoc assoc (map SReg $ nub written)
	  in  cleanForward blockId assoc' (li : acc) instrs



-- | Try and rewrite a reload instruction to something more pleasing
--
cleanReload 
	:: Instruction instr
	=> BlockId 
	-> Assoc Store 
	-> LiveInstr instr
	-> CleanM (Assoc Store, Maybe (LiveInstr instr))

cleanReload blockId assoc li@(LiveInstr (RELOAD slot reg) _)

	-- if the reg we're reloading already has the same value as the slot
	--	then we can erase the instruction outright
	| elemAssoc (SSlot slot) (SReg reg) assoc
	= do 	modify 	$ \s -> s { sCleanedReloadsAcc = sCleanedReloadsAcc s + 1 }
	   	return	(assoc, Nothing)

	-- if we can find another reg with the same value as this slot then
	--	do a move instead of a reload.
	| Just reg2	<- findRegOfSlot assoc slot
	= do	modify $ \s -> s { sCleanedReloadsAcc = sCleanedReloadsAcc s + 1 }

		let assoc'	= addAssoc (SReg reg) (SReg reg2)
				$ delAssoc (SReg reg)
				$ assoc

		return	(assoc', Just $ LiveInstr (mkRegRegMoveInstr reg2 reg) Nothing)

	-- gotta keep this instr
	| otherwise
	= do	-- update the association
		let assoc'	= addAssoc (SReg reg)  (SSlot slot)	-- doing the reload makes reg and slot the same value
				$ delAssoc (SReg reg)			-- reg value changes on reload
				$ assoc

		-- remember that this block reloads from this slot
		accBlockReloadsSlot blockId slot

	    	return	(assoc', Just li)

cleanReload _ _ _
	= panic "RegSpillClean.cleanReload: unhandled instr"


-- | Clean out unneeded spill instructions.
--
--	 If there were no reloads from a slot between a spill and the last one
--	 then the slot was never read and we don't need the spill.
--
--	SPILL   r0 -> s1
--	RELOAD  s1 -> r2
--	SPILL   r3 -> s1	<--- don't need this spill
--	SPILL   r4 -> s1
--	RELOAD  s1 -> r5
--
--	Maintain a set of
--		"slots which were spilled to but not reloaded from yet"
--
--	Walking backwards across the code:
--	 a) On a reload from a slot, remove it from the set.
--
--	 a) On a spill from a slot
--		If the slot is in set then we can erase the spill,
--			because it won't be reloaded from until after the next spill.
--
--		otherwise
--			keep the spill and add the slot to the set
--
-- TODO: This is mostly inter-block
--	 we should really be updating the noReloads set as we cross jumps also.
--
-- TODO: generate noReloads from liveSlotsOnEntry
-- 
cleanTopBackward
	:: Instruction instr
	=> LiveCmmTop instr
	-> CleanM (LiveCmmTop instr)

cleanTopBackward cmm
 = case cmm of
	CmmData{}
	 -> return cmm
	
	CmmProc info label params sccs
	 | LiveInfo _ _ _ liveSlotsOnEntry <- info
	 -> do	sccs'	<- mapM (mapSCCM (cleanBlockBackward liveSlotsOnEntry)) sccs
		return	$ CmmProc info label params sccs' 


cleanBlockBackward 
	:: Instruction instr
	=> Map BlockId (Set Int)
	-> LiveBasicBlock instr 
	-> CleanM (LiveBasicBlock instr)

cleanBlockBackward liveSlotsOnEntry (BasicBlock blockId instrs)
 = do	instrs_spill	<- cleanBackward liveSlotsOnEntry  emptyUniqSet  [] instrs
	return	$ BasicBlock blockId instrs_spill



cleanBackward
	:: Instruction instr
	=> Map BlockId (Set Int)	-- ^ Slots live on entry to each block
	-> UniqSet Int 			-- ^ slots that have been spilled, but not reloaded from
	-> [LiveInstr instr]		-- ^ acc
	-> [LiveInstr instr]		-- ^ instrs to clean (in forwards order)
	-> CleanM [LiveInstr instr]	-- ^ cleaned instrs  (in backwards order)


cleanBackward liveSlotsOnEntry noReloads acc lis
 = do	reloadedBy	<- gets sReloadedBy
 	cleanBackward' liveSlotsOnEntry reloadedBy noReloads acc lis

cleanBackward' _ _ _      acc []
	= return  acc

cleanBackward' liveSlotsOnEntry reloadedBy noReloads acc (li : instrs)

	-- if nothing ever reloads from this slot then we don't need the spill
	| LiveInstr (SPILL _ slot) _	<- li
	, Nothing	<- lookupUFM reloadedBy (SSlot slot)
	= do	modify $ \s -> s { sCleanedSpillsAcc = sCleanedSpillsAcc s + 1 }
		cleanBackward liveSlotsOnEntry noReloads acc instrs

	| LiveInstr (SPILL _ slot) _	<- li
	= if elementOfUniqSet slot noReloads

	   -- we can erase this spill because the slot won't be read until after the next one
	   then do
		modify $ \s -> s { sCleanedSpillsAcc = sCleanedSpillsAcc s + 1 }
	   	cleanBackward liveSlotsOnEntry noReloads acc instrs

	   else do
		-- this slot is being spilled to, but we haven't seen any reloads yet.
		let noReloads'	= addOneToUniqSet noReloads slot
	   	cleanBackward liveSlotsOnEntry noReloads' (li : acc) instrs

	-- if we reload from a slot then it's no longer unused
	| LiveInstr (RELOAD slot _) _	<- li
	, noReloads'		<- delOneFromUniqSet noReloads slot
	= cleanBackward liveSlotsOnEntry noReloads' (li : acc) instrs

	-- If a slot is live in a jump target then assume it's reloaded there.
	-- TODO: A real dataflow analysis would do a better job here.
	--       If the target block _ever_ used the slot then we assume it always does,
	--       but if those reloads are cleaned the slot liveness map doesn't get updated.
	| LiveInstr instr _ 	<- li
	, targets		<- jumpDestsOfInstr instr
	= do	
		let slotsReloadedByTargets
				= Set.unions
				$ catMaybes
				$ map (flip Map.lookup liveSlotsOnEntry) 
				$ targets
		
		let noReloads'	= foldl' delOneFromUniqSet noReloads 
				$ Set.toList slotsReloadedByTargets
		
		cleanBackward liveSlotsOnEntry noReloads' (li : acc) instrs

	-- some other instruction
	| otherwise
	= cleanBackward liveSlotsOnEntry noReloads (li : acc) instrs


-- collateJoinPoints:
--
-- | combine the associations from all the inward control flow edges.
--
collateJoinPoints :: CleanM ()
collateJoinPoints
 = modify $ \s -> s
 	{ sJumpValid	= mapUFM intersects (sJumpValidAcc s)
	, sJumpValidAcc	= emptyUFM }

intersects :: [Assoc Store]	-> Assoc Store
intersects []		= emptyAssoc
intersects assocs	= foldl1' intersectAssoc assocs


-- | See if we have a reg with the same value as this slot in the association table.
findRegOfSlot :: Assoc Store -> Int -> Maybe Reg
findRegOfSlot assoc slot
	| close			<- closeAssoc (SSlot slot) assoc
	, Just (SReg reg)	<- find isStoreReg $ uniqSetToList close
	= Just reg

	| otherwise
	= Nothing


---------------
type CleanM = State CleanS
data CleanS
	= CleanS
	{ -- regs which are valid at the start of each block.
	  sJumpValid		:: UniqFM (Assoc Store)

 	  -- collecting up what regs were valid across each jump.
	  --	in the next pass we can collate these and write the results
	  --	to sJumpValid.
	, sJumpValidAcc		:: UniqFM [Assoc Store]

	  -- map of (slot -> blocks which reload from this slot)
	  --	used to decide if whether slot spilled to will ever be
	  --	reloaded from on this path.
	, sReloadedBy		:: UniqFM [BlockId]

	  -- spills\/reloads cleaned each pass (latest at front)
	, sCleanedCount		:: [(Int, Int)]

	  -- spills\/reloads that have been cleaned in this pass so far.
	, sCleanedSpillsAcc	:: Int
	, sCleanedReloadsAcc	:: Int }

initCleanS :: CleanS
initCleanS
	= CleanS
	{ sJumpValid		= emptyUFM
	, sJumpValidAcc		= emptyUFM

	, sReloadedBy		= emptyUFM

	, sCleanedCount		= []

	, sCleanedSpillsAcc	= 0
	, sCleanedReloadsAcc	= 0 }


-- | Remember the associations before a jump
accJumpValid :: Assoc Store -> BlockId -> CleanM ()
accJumpValid assocs target
 = modify $ \s -> s {
	sJumpValidAcc = addToUFM_C (++)
				(sJumpValidAcc s)
				target
				[assocs] }


accBlockReloadsSlot :: BlockId -> Slot -> CleanM ()
accBlockReloadsSlot blockId slot
 = modify $ \s -> s {
 	sReloadedBy = addToUFM_C (++)
				(sReloadedBy s)
				(SSlot slot)
				[blockId] }


--------------
-- A store location can be a stack slot or a register
--
data Store
	= SSlot Int
	| SReg  Reg

-- | Check if this is a reg store
isStoreReg :: Store -> Bool
isStoreReg ss
 = case ss of
 	SSlot _	-> False
	SReg  _	-> True

-- spill cleaning is only done once all virtuals have been allocated to realRegs
--
instance Uniquable Store where
    getUnique (SReg  r)
	| RegReal (RealRegSingle i)	<- r
	= mkRegSingleUnique i

	| RegReal (RealRegPair r1 r2)	<- r
	= mkRegPairUnique (r1 * 65535 + r2)

	| otherwise
	= error "RegSpillClean.getUnique: found virtual reg during spill clean, only real regs expected."

    getUnique (SSlot i)	= mkRegSubUnique i    -- [SLPJ] I hope "SubUnique" is ok

instance Outputable Store where
	ppr (SSlot i)	= text "slot" <> int i
	ppr (SReg  r)	= ppr r


--------------
-- Association graphs.
--	In the spill cleaner, two store locations are associated if they are known
--	to hold the same value.
--
type Assoc a	= UniqFM (UniqSet a)

-- | an empty association
emptyAssoc :: Assoc a
emptyAssoc	= emptyUFM


-- | add an association between these two things
addAssoc :: Uniquable a
	 => a -> a -> Assoc a -> Assoc a

addAssoc a b m
 = let	m1	= addToUFM_C unionUniqSets m  a (unitUniqSet b)
 	m2	= addToUFM_C unionUniqSets m1 b (unitUniqSet a)
   in	m2


-- | delete all associations to a node
delAssoc :: (Outputable a, Uniquable a)
 	 => a -> Assoc a -> Assoc a

delAssoc a m
	| Just aSet	<- lookupUFM  m a
	, m1		<- delFromUFM m a
	= foldUniqSet (\x m -> delAssoc1 x a m) m1 aSet

	| otherwise	= m


-- | delete a single association edge (a -> b)
delAssoc1 :: Uniquable a
	=> a -> a -> Assoc a -> Assoc a

delAssoc1 a b m
	| Just aSet	<- lookupUFM m a
	= addToUFM m a (delOneFromUniqSet aSet b)

	| otherwise	= m


-- | check if these two things are associated
elemAssoc :: (Outputable a, Uniquable a)
	  => a -> a -> Assoc a -> Bool

elemAssoc a b m
	= elementOfUniqSet b (closeAssoc a m)

-- | find the refl. trans. closure of the association from this point
closeAssoc :: (Outputable a, Uniquable a)
	=> a -> Assoc a -> UniqSet a

closeAssoc a assoc
 = 	closeAssoc' assoc emptyUniqSet (unitUniqSet a)
 where
	closeAssoc' assoc visited toVisit
	 = case uniqSetToList toVisit of

		-- nothing else to visit, we're done
	 	[]	-> visited

		(x:_)

		 -- we've already seen this node
		 |  elementOfUniqSet x visited
		 -> closeAssoc' assoc visited (delOneFromUniqSet toVisit x)

		 -- haven't seen this node before,
		 --	remember to visit all its neighbors
		 |  otherwise
		 -> let neighbors
		 	 = case lookupUFM assoc x of
				Nothing		-> emptyUniqSet
				Just set	-> set

		   in closeAssoc' assoc
			(addOneToUniqSet visited x)
			(unionUniqSets   toVisit neighbors)

-- | intersect
intersectAssoc
	:: Uniquable a
	=> Assoc a -> Assoc a -> Assoc a

intersectAssoc a b
 	= intersectUFM_C (intersectUniqSets) a b