{-# OPTIONS -fno-warn-unused-binds #-}

module RegAlloc.Graph.TrivColorable (
	trivColorable,
)

where

#include "HsVersions.h"

import RegClass
import Reg

import GraphBase

import UniqFM
import FastTypes


-- trivColorable ---------------------------------------------------------------

-- trivColorable function for the graph coloring allocator
--
--	This gets hammered by scanGraph during register allocation,
--	so needs to be fairly efficient.
--
--	NOTE: 	This only works for arcitectures with just RcInteger and RcDouble
--		(which are disjoint) ie. x86, x86_64 and ppc
--
-- 	The number of allocatable regs is hard coded here so we can do a fast
-- 		comparision in trivColorable. 
--
-- 	It's ok if these numbers are _less_ than the actual number of free regs, 
--		but they can't be more or the register conflict graph won't color.
--
-- 	If the graph doesn't color then the allocator will panic, but it won't 
--		generate bad object code or anything nasty like that.
--
-- 	There is an allocatableRegsInClass :: RegClass -> Int, but doing the unboxing
-- 	is too slow for us here.
--
-- 	Look at includes/stg/MachRegs.h to get these numbers.
--

#if i386_TARGET_ARCH
#define ALLOCATABLE_REGS_INTEGER (_ILIT(3))
#define ALLOCATABLE_REGS_DOUBLE  (_ILIT(6))
#define ALLOCATABLE_REGS_FLOAT   (_ILIT(0))
#define ALLOCATABLE_REGS_SSE     (_ILIT(8))


#elif x86_64_TARGET_ARCH
#define ALLOCATABLE_REGS_INTEGER (_ILIT(5))
#define ALLOCATABLE_REGS_DOUBLE  (_ILIT(0))
#define ALLOCATABLE_REGS_FLOAT   (_ILIT(0))
#define ALLOCATABLE_REGS_SSE     (_ILIT(10))

#elif powerpc_TARGET_ARCH
#define ALLOCATABLE_REGS_INTEGER (_ILIT(16))
#define ALLOCATABLE_REGS_DOUBLE  (_ILIT(26))
#define ALLOCATABLE_REGS_FLOAT   (_ILIT(0))
#define ALLOCATABLE_REGS_SSE     (_ILIT(0))


#elif sparc_TARGET_ARCH
#define ALLOCATABLE_REGS_INTEGER (_ILIT(14))
#define ALLOCATABLE_REGS_DOUBLE  (_ILIT(11))
#define ALLOCATABLE_REGS_FLOAT   (_ILIT(22))
#define ALLOCATABLE_REGS_SSE     (_ILIT(0))


#else
#error ToDo: choose which trivColorable function to use for this architecture.
#endif



-- Disjoint registers ----------------------------------------------------------
--	
--	The definition has been unfolded into individual cases for speed.
-- 	Each architecture has a different register setup, so we use a
--	different regSqueeze function for each.
--
accSqueeze 
	:: FastInt 
	-> FastInt
	-> (reg -> FastInt) 
	-> UniqFM reg
	-> FastInt

accSqueeze count maxCount squeeze ufm = acc count (eltsUFM ufm)
  where acc count [] = count
        acc count _ | count >=# maxCount = count
        acc count (r:rs) = acc (count +# squeeze r) rs

{- Note [accSqueeze]
~~~~~~~~~~~~~~~~~~~~
BL 2007/09
Doing a nice fold over the UniqSet makes trivColorable use
32% of total compile time and 42% of total alloc when compiling SHA1.lhs from darcs.
Therefore the UniqFM is made non-abstract and we use custom fold.

MS 2010/04
When converting UniqFM to use Data.IntMap, the fold cannot use UniqFM internal
representation any more. But it is imperative that the assSqueeze stops
the folding if the count gets greater or equal to maxCount. We thus convert
UniqFM to a (lazy) list, do the fold and stops if necessary, which was
the most efficient variant tried. Benchmark compiling 10-times SHA1.lhs follows.
(original = previous implementation, folding = fold of the whole UFM,
 lazyFold = the current implementation,
 hackFold = using internal representation of Data.IntMap)

                                 original  folding   hackFold  lazyFold
 -O -fasm (used everywhere)      31.509s   30.387s   30.791s   30.603s
                                 100.00%   96.44%    97.72%    97.12%
 -fregs-graph                    67.938s   74.875s   62.673s   64.679s
                                 100.00%   110.21%   92.25%    95.20%
 -fregs-iterative                89.761s   143.913s  81.075s   86.912s
                                 100.00%   160.33%   90.32%    96.83%
 -fnew-codegen                   38.225s   37.142s   37.551s   37.119s
                                 100.00%   97.17%    98.24%    97.11%
 -fnew-codegen -fregs-graph      91.786s   91.51s    87.368s   86.88s
                                 100.00%   99.70%    95.19%    94.65%
 -fnew-codegen -fregs-iterative  206.72s   343.632s  194.694s  208.677s
                                 100.00%   166.23%   94.18%    100.95%
-}

trivColorable
	:: (RegClass -> VirtualReg -> FastInt)
	-> (RegClass -> RealReg    -> FastInt)
	-> Triv VirtualReg RegClass RealReg

trivColorable virtualRegSqueeze realRegSqueeze RcInteger conflicts exclusions
	| count2	<- accSqueeze (_ILIT(0)) ALLOCATABLE_REGS_INTEGER 
				(virtualRegSqueeze RcInteger)
				conflicts
				
	, count3	<- accSqueeze  count2    ALLOCATABLE_REGS_INTEGER
				(realRegSqueeze   RcInteger)
				exclusions

	= count3 <# ALLOCATABLE_REGS_INTEGER

trivColorable virtualRegSqueeze realRegSqueeze RcFloat conflicts exclusions
	| count2	<- accSqueeze (_ILIT(0)) ALLOCATABLE_REGS_FLOAT
				(virtualRegSqueeze RcFloat)
				conflicts
				
	, count3	<- accSqueeze  count2    ALLOCATABLE_REGS_FLOAT
				(realRegSqueeze   RcFloat)
				exclusions

	= count3 <# ALLOCATABLE_REGS_FLOAT

trivColorable virtualRegSqueeze realRegSqueeze RcDouble conflicts exclusions
	| count2	<- accSqueeze (_ILIT(0)) ALLOCATABLE_REGS_DOUBLE
				(virtualRegSqueeze RcDouble)
				conflicts
				
	, count3	<- accSqueeze  count2    ALLOCATABLE_REGS_DOUBLE
				(realRegSqueeze   RcDouble)
				exclusions

	= count3 <# ALLOCATABLE_REGS_DOUBLE

trivColorable virtualRegSqueeze realRegSqueeze RcDoubleSSE conflicts exclusions
	| count2	<- accSqueeze (_ILIT(0)) ALLOCATABLE_REGS_SSE
				(virtualRegSqueeze RcDoubleSSE)
				conflicts
				
	, count3	<- accSqueeze  count2    ALLOCATABLE_REGS_SSE
				(realRegSqueeze   RcDoubleSSE)
				exclusions

	= count3 <# ALLOCATABLE_REGS_SSE


-- Specification Code ----------------------------------------------------------
--
--	The trivColorable function for each particular architecture should
--	implement the following function, but faster.
--

{-
trivColorable :: RegClass -> UniqSet Reg -> UniqSet Reg -> Bool
trivColorable classN conflicts exclusions
 = let

	acc :: Reg -> (Int, Int) -> (Int, Int)
	acc r (cd, cf)	
	 = case regClass r of
		RcInteger	-> (cd+1, cf)
		RcFloat		-> (cd,   cf+1)
		_		-> panic "Regs.trivColorable: reg class not handled"

	tmp			= foldUniqSet acc (0, 0) conflicts
	(countInt,  countFloat)	= foldUniqSet acc tmp    exclusions

	squeese		= worst countInt   classN RcInteger
			+ worst countFloat classN RcFloat

   in	squeese < allocatableRegsInClass classN

-- | Worst case displacement
--	node N of classN has n neighbors of class C.
--
--	We currently only have RcInteger and RcDouble, which don't conflict at all.
--	This is a bit boring compared to what's in RegArchX86.
--
worst :: Int -> RegClass -> RegClass -> Int
worst n classN classC
 = case classN of
 	RcInteger
	 -> case classC of
	 	RcInteger	-> min n (allocatableRegsInClass RcInteger)
		RcFloat		-> 0
		
	RcDouble
	 -> case classC of
	 	RcFloat		-> min n (allocatableRegsInClass RcFloat)
		RcInteger	-> 0

-- allocatableRegs is allMachRegNos with the fixed-use regs removed.
-- i.e., these are the regs for which we are prepared to allow the
-- register allocator to attempt to map VRegs to.
allocatableRegs :: [RegNo]
allocatableRegs
   = let isFree i = isFastTrue (freeReg i)
     in  filter isFree allMachRegNos


-- | The number of regs in each class.
--	We go via top level CAFs to ensure that we're not recomputing
--	the length of these lists each time the fn is called.
allocatableRegsInClass :: RegClass -> Int
allocatableRegsInClass cls
 = case cls of
 	RcInteger	-> allocatableRegsInteger
	RcFloat		-> allocatableRegsDouble

allocatableRegsInteger :: Int
allocatableRegsInteger	
	= length $ filter (\r -> regClass r == RcInteger) 
		 $ map RealReg allocatableRegs

allocatableRegsFloat :: Int
allocatableRegsFloat
	= length $ filter (\r -> regClass r == RcFloat 
		 $ map RealReg allocatableRegs
-}