\begin{code}
module TcSimplify(
simplifyInfer,
simplifyDefault, simplifyDeriv,
simplifyRule, simplifyTop, simplifyInteractive
) where
#include "HsVersions.h"
import HsSyn
import TcRnMonad
import TcErrors
import TcMType
import TcType
import TcSMonad
import TcInteract
import Inst
import Unify( niFixTvSubst, niSubstTvSet )
import Var
import VarSet
import VarEnv
import TypeRep
import Name
import NameEnv ( emptyNameEnv )
import Bag
import ListSetOps
import Util
import PrelInfo
import PrelNames
import Class ( classKey )
import BasicTypes ( RuleName, TopLevelFlag, isTopLevel )
import Control.Monad ( when )
import Outputable
import FastString
\end{code}
*********************************************************************************
* *
* External interface *
* *
*********************************************************************************
\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
simplifyTop wanteds
= simplifyCheck SimplCheck wanteds
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds
= simplifyCheck SimplInteractive wanteds
simplifyDefault :: ThetaType
-> TcM ()
simplifyDefault theta
= do { wanted <- newFlatWanteds DefaultOrigin theta
; _ignored_ev_binds <- simplifyCheck SimplCheck (mkFlatWC wanted)
; return () }
\end{code}
*********************************************************************************
* *
* Deriving
* *
***********************************************************************************
\begin{code}
simplifyDeriv :: CtOrigin
-> [TyVar]
-> ThetaType
-> TcM ThetaType
simplifyDeriv orig tvs theta
= do { tvs_skols <- tcInstSkolTyVars tvs
; let skol_subst = zipTopTvSubst tvs $ map mkTyVarTy tvs_skols
subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
; wanted <- newFlatWanteds orig (substTheta skol_subst theta)
; traceTc "simplifyDeriv" (ppr tvs $$ ppr theta $$ ppr wanted)
; (residual_wanted, _binds)
<- runTcS SimplInfer NoUntouchables $
solveWanteds emptyInert (mkFlatWC wanted)
; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
get_good :: WantedEvVar -> Either PredType WantedEvVar
get_good wev | validDerivPred p = Left p
| otherwise = Right wev
where p = evVarOfPred wev
; reportUnsolved (residual_wanted { wc_flat = bad })
; let min_theta = mkMinimalBySCs (bagToList good)
; return (substTheta subst_skol min_theta) }
\end{code}
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
data Show a => Show [a] where ..
data Show [Char] where ...
Now a data type with deriving:
data T a = MkT [a] deriving( Show )
We want to get the derived instance
instance Show [a] => Show (T a) where...
and NOT
instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing
It's very like the situation when we're inferring the type
of a function
f x = show [x]
and we want to infer
f :: Show [a] => a -> String
BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
the context for the derived instance.
Hence tcInstSkolTyVars not tcInstSuperSkolTyVars
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context. It's a
bit unclear what rules we should apply for this; the Haskell report is
silent. Obviously, constraints like (Eq a) are fine, but what about
data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint. That's probably fine too.
One could go further: consider
data T a b c = MkT (Foo a b c) deriving( Eq )
instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
Notice that this instance (just) satisfies the Paterson termination
conditions. Then we *could* derive an instance decl like this:
instance (C Int a, Eq b, Eq c) => Eq (T a b c)
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
So for now we simply require that the derived instance context
should have only type-variable constraints.
Here is another example:
data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!
NB: if you want to lift this condition, make sure you still meet the
termination conditions! If not, the deriving mechanism generates
larger and larger constraints. Example:
data Succ a = S a
data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show
Note the lack of a Show instance for Succ. First we'll generate
instance (Show (Succ a), Show a) => Show (Seq a)
and then
instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on. Instead we want to complain of no instance for (Show (Succ a)).
The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.
*********************************************************************************
* *
* Inference
* *
***********************************************************************************
\begin{code}
simplifyInfer :: TopLevelFlag
-> Bool
-> [(Name, TcTauType)]
-> WantedConstraints
-> TcM ([TcTyVar],
[EvVar],
TcEvBinds)
simplifyInfer top_lvl apply_mr name_taus wanteds
| isEmptyWC wanteds
= do { gbl_tvs <- tcGetGlobalTyVars
; zonked_taus <- zonkTcTypes (map snd name_taus)
; let tvs_to_quantify = get_tau_tvs zonked_taus `minusVarSet` gbl_tvs
; qtvs <- zonkQuantifiedTyVars (varSetElems tvs_to_quantify)
; return (qtvs, [], emptyTcEvBinds) }
| otherwise
= do { zonked_wanteds <- zonkWC wanteds
; zonked_taus <- zonkTcTypes (map snd name_taus)
; gbl_tvs <- tcGetGlobalTyVars
; traceTc "simplifyInfer {" $ vcat
[ ptext (sLit "apply_mr =") <+> ppr apply_mr
, ptext (sLit "zonked_taus =") <+> ppr zonked_taus
, ptext (sLit "wanted =") <+> ppr zonked_wanteds
]
; let zonked_tau_tvs = get_tau_tvs zonked_taus
proto_qtvs = growWanteds gbl_tvs zonked_wanteds $
zonked_tau_tvs `minusVarSet` gbl_tvs
(perhaps_bound, surely_free)
= partitionBag (quantifyMe proto_qtvs) (wc_flat zonked_wanteds)
; traceTc "simplifyInfer proto" $ vcat
[ ptext (sLit "zonked_tau_tvs =") <+> ppr zonked_tau_tvs
, ptext (sLit "proto_qtvs =") <+> ppr proto_qtvs
, ptext (sLit "surely_fref =") <+> ppr surely_free
]
; emitFlats surely_free
; traceTc "sinf" $ vcat
[ ptext (sLit "perhaps_bound =") <+> ppr perhaps_bound
, ptext (sLit "surely_free =") <+> ppr surely_free
]
; (simpl_results, tc_binds0)
<- runTcS SimplInfer NoUntouchables $
simplifyWithApprox (zonked_wanteds { wc_flat = perhaps_bound })
; when (insolubleWC simpl_results)
(do { reportUnsolved simpl_results; failM })
; gbl_tvs <- tcGetGlobalTyVars
; zonked_tau_tvs <- zonkTcTyVarsAndFV zonked_tau_tvs
; zonked_simples <- zonkWantedEvVars (wc_flat simpl_results)
; let init_tvs = zonked_tau_tvs `minusVarSet` gbl_tvs
mr_qtvs = init_tvs `minusVarSet` constrained_tvs
constrained_tvs = tyVarsOfEvVarXs zonked_simples
qtvs = growWantedEVs gbl_tvs zonked_simples init_tvs
(final_qtvs, (bound, free))
| apply_mr = (mr_qtvs, (emptyBag, zonked_simples))
| otherwise = (qtvs, partitionBag (quantifyMe qtvs) zonked_simples)
; emitFlats free
; if isEmptyVarSet final_qtvs && isEmptyBag bound
then ASSERT( isEmptyBag (wc_insol simpl_results) )
do { traceTc "} simplifyInfer/no quantification" empty
; emitImplications (wc_impl simpl_results)
; return ([], [], EvBinds tc_binds0) }
else do
{ let minimal_flat_preds = mkMinimalBySCs $ map evVarOfPred $ bagToList bound
; let poly_ids = [ (name, mkSigmaTy [] minimal_flat_preds ty)
| (name, ty) <- name_taus ]
skol_info = InferSkol poly_ids
; gloc <- getCtLoc skol_info
; qtvs_to_return <- zonkQuantifiedTyVars (varSetElems final_qtvs)
; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
; ev_binds_var <- newTcEvBinds
; mapBagM_ (\(EvBind evar etrm) -> addTcEvBind ev_binds_var evar etrm) tc_binds0
; lcl_env <- getLclTypeEnv
; let implic = Implic { ic_untch = NoUntouchables
, ic_env = lcl_env
, ic_skols = mkVarSet qtvs_to_return
, ic_given = minimal_bound_ev_vars
, ic_wanted = simpl_results { wc_flat = bound }
, ic_insol = False
, ic_binds = ev_binds_var
, ic_loc = gloc }
; emitImplication implic
; traceTc "} simplifyInfer/produced residual implication for quantification" $
vcat [ ptext (sLit "implic =") <+> ppr implic
, ptext (sLit "qtvs =") <+> ppr final_qtvs
, ptext (sLit "spb =") <+> ppr zonked_simples
, ptext (sLit "bound =") <+> ppr bound ]
; return (qtvs_to_return, minimal_bound_ev_vars, TcEvBinds ev_binds_var) } }
where
get_tau_tvs | isTopLevel top_lvl = tyVarsOfTypes
| otherwise = exactTyVarsOfTypes
\end{code}
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
\begin{code}
simplifyWithApprox :: WantedConstraints -> TcS WantedConstraints
simplifyWithApprox wanted
= do { traceTcS "simplifyApproxLoop" (ppr wanted)
; results <- solveWanteds emptyInert wanted
; let (residual_implics, floats) = approximateImplications (wc_impl results)
; if insolubleWC results || isEmptyBag floats
then return results
else solveWanteds emptyInert
(WC { wc_flat = floats `unionBags` wc_flat results
, wc_impl = residual_implics
, wc_insol = emptyBag }) }
approximateImplications :: Bag Implication -> (Bag Implication, Bag WantedEvVar)
approximateImplications impls
= do_bag (float_implic emptyVarSet) impls
where
do_bag :: forall a b c. (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
do_bag f = foldrBag (plus . f) (emptyBag, emptyBag)
plus :: forall b c. (Bag b, Bag c) -> (Bag b, Bag c) -> (Bag b, Bag c)
plus (a1,b1) (a2,b2) = (a1 `unionBags` a2, b1 `unionBags` b2)
float_implic :: TyVarSet -> Implication -> (Bag Implication, Bag WantedEvVar)
float_implic skols imp
= (unitBag (imp { ic_wanted = wanted' }), floats)
where
(wanted', floats) = float_wc (skols `unionVarSet` ic_skols imp) (ic_wanted imp)
float_wc skols wc@(WC { wc_flat = flat, wc_impl = implic })
= (wc { wc_flat = flat', wc_impl = implic' }, floats1 `unionBags` floats2)
where
(flat', floats1) = do_bag (float_flat skols) flat
(implic', floats2) = do_bag (float_implic skols) implic
float_flat :: TcTyVarSet -> WantedEvVar -> (Bag WantedEvVar, Bag WantedEvVar)
float_flat skols wev
| tyVarsOfEvVarX wev `disjointVarSet` skols = (emptyBag, unitBag wev)
| otherwise = (unitBag wev, emptyBag)
\end{code}
\begin{code}
growWanteds :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWanteds gbl_tvs wc = fixVarSet (growWC gbl_tvs wc)
growWantedEVs :: TyVarSet -> Bag WantedEvVar -> TyVarSet -> TyVarSet
growWantedEVs gbl_tvs ws tvs
| isEmptyBag ws = tvs
| otherwise = fixVarSet (growPreds gbl_tvs evVarOfPred ws) tvs
growWC :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWC gbl_tvs wc = growImplics gbl_tvs (wc_impl wc) .
growPreds gbl_tvs evVarOfPred (wc_flat wc) .
growPreds gbl_tvs evVarOfPred (wc_insol wc)
growImplics :: TyVarSet -> Bag Implication -> TyVarSet -> TyVarSet
growImplics gbl_tvs implics tvs
= foldrBag grow_implic tvs implics
where
grow_implic implic tvs
= grow tvs `minusVarSet` ic_skols implic
where
grow = growWC gbl_tvs (ic_wanted implic) .
growPreds gbl_tvs evVarPred (listToBag (ic_given implic))
growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
= foldrBag extend tvs items
where
extend item tvs = tvs `unionVarSet`
(growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
quantifyMe :: TyVarSet
-> WantedEvVar
-> Bool
quantifyMe qtvs wev
| isIPPred pred = True
| otherwise = tyVarsOfPred pred `intersectsVarSet` qtvs
where
pred = evVarOfPred wev
\end{code}
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessariliy simplifying class constraints.
Doing so aids sharing, but it also helps with delicate
situations like
instance C t => C [t] where ..
f :: C [t] => ....
f x = let g y = ...(constraint C [t])...
in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t). So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.
This only half-works, but then let-generalisation only half-works.
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
f x = (x::Int) + ?y
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
f :: Int -> Int
(so we get ?y from the context of f's definition), or
f :: (?y::Int) => Int -> Int
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site. But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.
BOTTOM LINE: when *inferring types* you *must* quantify
over implicit parameters. See the predicate isFreeWhenInferring.
*********************************************************************************
* *
* RULES *
* *
***********************************************************************************
Note [Simplifying RULE lhs constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
On the LHS of transformation rules we only simplify only equalities,
but not dictionaries. We want to keep dictionaries unsimplified, to
serve as the available stuff for the RHS of the rule. We *do* want to
simplify equalities, however, to detect ill-typed rules that cannot be
applied.
Implementation: the TcSFlags carried by the TcSMonad controls the
amount of simplification, so simplifyRuleLhs just sets the flag
appropriately.
Example. Consider the following left-hand side of a rule
f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
forall x::a, y::a, z::a, d1::Ord a.
f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want
forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
f ((==) d2 x y) ((>) d1 y z) = ...
Here is another example:
fromIntegral :: (Integral a, Num b) => a -> b
{-# RULES "foo" fromIntegral = id :: Int -> Int #-}
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
forall dIntegralInt.
fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
because the scsel will mess up RULE matching. Instead we want
forall dIntegralInt, dNumInt.
fromIntegral Int Int dIntegralInt dNumInt = id Int
Even if we have
g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
forall x::a, y::a, z::a, d1::Eq a
f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.
HOWEVER, under a nested implication things are different
Consider
f :: (forall a. Eq a => a->a) -> Bool -> ...
{-# RULES "foo" forall (v::forall b. Eq b => b->b).
f b True = ...
#=}
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the agument type of g. So we
revert to SimplCheck when going under an implication.
\begin{code}
simplifyRule :: RuleName
-> [TcTyVar]
-> WantedConstraints
-> WantedConstraints
-> TcM ([EvVar],
TcEvBinds,
TcEvBinds)
simplifyRule name tv_bndrs lhs_wanted rhs_wanted
= do { loc <- getCtLoc (RuleSkol name)
; zonked_lhs <- zonkWC lhs_wanted
; let untch = NoUntouchables
; (lhs_results, lhs_binds)
<- runTcS SimplRuleLhs untch $
solveWanteds emptyInert zonked_lhs
; traceTc "simplifyRule" $
vcat [ text "zonked_lhs" <+> ppr zonked_lhs
, text "lhs_results" <+> ppr lhs_results
, text "lhs_binds" <+> ppr lhs_binds
, text "rhs_wanted" <+> ppr rhs_wanted ]
; let (eqs, dicts) = partitionBag (isEqPred . evVarOfPred)
(wc_flat lhs_results)
lhs_dicts = map evVarOf (bagToList dicts)
; ev_binds_var <- newTcEvBinds
; emitImplication $ Implic { ic_untch = untch
, ic_env = emptyNameEnv
, ic_skols = mkVarSet tv_bndrs
, ic_given = lhs_dicts
, ic_wanted = lhs_results { wc_flat = eqs }
, ic_insol = insolubleWC lhs_results
, ic_binds = ev_binds_var
, ic_loc = loc }
; rhs_binds_var@(EvBindsVar evb_ref _) <- newTcEvBinds
; rhs_binds1 <- simplifyCheck SimplCheck $
WC { wc_flat = emptyBag
, wc_insol = emptyBag
, wc_impl = unitBag $
Implic { ic_untch = NoUntouchables
, ic_env = emptyNameEnv
, ic_skols = mkVarSet tv_bndrs
, ic_given = lhs_dicts
, ic_wanted = rhs_wanted
, ic_insol = insolubleWC rhs_wanted
, ic_binds = rhs_binds_var
, ic_loc = loc } }
; rhs_binds2 <- readTcRef evb_ref
; return ( lhs_dicts
, EvBinds lhs_binds
, EvBinds (rhs_binds1 `unionBags` evBindMapBinds rhs_binds2)) }
\end{code}
*********************************************************************************
* *
* Main Simplifier *
* *
***********************************************************************************
\begin{code}
simplifyCheck :: SimplContext
-> WantedConstraints
-> TcM (Bag EvBind)
simplifyCheck ctxt wanteds
= do { wanteds <- zonkWC wanteds
; traceTc "simplifyCheck {" (vcat
[ ptext (sLit "wanted =") <+> ppr wanteds ])
; (unsolved, ev_binds) <- runTcS ctxt NoUntouchables $
solveWanteds emptyInert wanteds
; traceTc "simplifyCheck }" $
ptext (sLit "unsolved =") <+> ppr unsolved
; reportUnsolved unsolved
; return ev_binds }
solveWanteds :: InertSet
-> WantedConstraints
-> TcS WantedConstraints
solveWanteds inert wanted
= do { (unsolved_flats, unsolved_implics, insols)
<- solve_wanteds inert wanted
; return (WC { wc_flat = keepWanted unsolved_flats
, wc_impl = unsolved_implics
, wc_insol = insols }) }
solve_wanteds :: InertSet
-> WantedConstraints
-> TcS (Bag FlavoredEvVar, Bag Implication, Bag FlavoredEvVar)
solve_wanteds inert wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols })
= do { traceTcS "solveWanteds {" (ppr wanted)
; let all_flats = flats `unionBags` keepWanted insols
; inert1 <- solveInteractWanted inert (bagToList all_flats)
; (unsolved_flats, unsolved_implics) <- simpl_loop 1 inert1 implics
; bb <- getTcEvBindsBag
; tb <- getTcSTyBindsMap
; traceTcS "solveWanteds }" $
vcat [ text "unsolved_flats =" <+> ppr unsolved_flats
, text "unsolved_implics =" <+> ppr unsolved_implics
, text "current evbinds =" <+> vcat (map ppr (varEnvElts bb))
, text "current tybinds =" <+> vcat (map ppr (varEnvElts tb))
]
; (subst, remaining_flats) <- solveCTyFunEqs unsolved_flats
; let (insoluble_flats, unsolved_flats) = partitionBag isCFrozenErr remaining_flats
; return ( mapBag (substFlavoredEvVar subst . deCanonicalise) unsolved_flats
, mapBag (substImplication subst) unsolved_implics
, mapBag (substFlavoredEvVar subst . deCanonicalise) insoluble_flats ) }
where
simpl_loop :: Int
-> InertSet
-> Bag Implication
-> TcS (CanonicalCts, Bag Implication)
simpl_loop n inert implics
| n>10
= trace "solveWanteds: loop" $
do { traceTcS "solveWanteds: loop" (ppr inert)
; let (_, unsolved_cans) = extractUnsolved inert
; return (unsolved_cans, implics) }
| otherwise
= do { traceTcS "solveWanteds: simpl_loop start {" $
vcat [ text "n =" <+> ppr n
, text "implics =" <+> ppr implics
, text "inert =" <+> ppr inert ]
; let (just_given_inert, unsolved_cans) = extractUnsolved inert
; (implic_eqs, unsolved_implics)
<- solveNestedImplications just_given_inert unsolved_cans implics
; improve_eqs <- if not (isEmptyBag implic_eqs)
then return implic_eqs
else applyDefaultingRules just_given_inert unsolved_cans
; traceTcS "solveWanteds: simpl_loop end }" $
vcat [ text "improve_eqs =" <+> ppr improve_eqs
, text "unsolved_flats =" <+> ppr unsolved_cans
, text "unsolved_implics =" <+> ppr unsolved_implics ]
; (improve_eqs_already_in_inert, inert_with_improvement)
<- solveInteract inert improve_eqs
; if improve_eqs_already_in_inert then
return (unsolved_cans, unsolved_implics)
else
simpl_loop (n+1) inert_with_improvement
unsolved_implics
}
givensFromWanteds :: CanonicalCts -> Bag FlavoredEvVar
givensFromWanteds = foldrBag getWanted emptyBag
where
getWanted :: CanonicalCt -> Bag FlavoredEvVar -> Bag FlavoredEvVar
getWanted cc givens
| not (isCFrozenErr cc)
, Wanted loc <- cc_flavor cc
, let given = mkEvVarX (cc_id cc) (Given (setCtLocOrigin loc UnkSkol))
= given `consBag` givens
| otherwise
= givens
solveNestedImplications :: InertSet -> CanonicalCts
-> Bag Implication
-> TcS (Bag FlavoredEvVar, Bag Implication)
solveNestedImplications just_given_inert unsolved_cans implics
| isEmptyBag implics
= return (emptyBag, emptyBag)
| otherwise
= do {
traceTcS "solveWanteds: preparing inerts for implications {" empty
; let pushed_givens = givensFromWanteds unsolved_cans
tcs_untouchables = filterVarSet isFlexiTcsTv $
tyVarsOfEvVarXs pushed_givens
; (_, inert_for_implics) <- solveInteract just_given_inert pushed_givens
; traceTcS "solveWanteds: } now doing nested implications {" $
vcat [ text "inerts_for_implics =" <+> ppr inert_for_implics
, text "implics =" <+> ppr implics ]
; (implic_eqs, unsolved_implics)
<- flatMapBagPairM (solveImplication tcs_untouchables inert_for_implics) implics
; traceTcS "solveWanteds: done nested implications }" $
vcat [ text "implic_eqs =" <+> ppr implic_eqs
, text "unsolved_implics =" <+> ppr unsolved_implics ]
; return (implic_eqs, unsolved_implics) }
solveImplication :: TcTyVarSet
-> InertSet
-> Implication
-> TcS (Bag FlavoredEvVar,
Bag Implication)
solveImplication tcs_untouchables inert
imp@(Implic { ic_untch = untch
, ic_binds = ev_binds
, ic_skols = skols
, ic_given = givens
, ic_wanted = wanteds
, ic_loc = loc })
= nestImplicTcS ev_binds (untch, tcs_untouchables) $
recoverTcS (return (emptyBag, emptyBag)) $
do { traceTcS "solveImplication {" (ppr imp)
; given_inert <- solveInteractGiven inert loc givens
; (unsolved_flats, unsolved_implics, insols)
<- solve_wanteds given_inert wanteds
; let (res_flat_free, res_flat_bound)
= floatEqualities skols givens unsolved_flats
final_flat = keepWanted res_flat_bound
; let res_wanted = WC { wc_flat = final_flat
, wc_impl = unsolved_implics
, wc_insol = insols }
res_implic = unitImplication $
imp { ic_wanted = res_wanted
, ic_insol = insolubleWC res_wanted }
; traceTcS "solveImplication end }" $ vcat
[ text "res_flat_free =" <+> ppr res_flat_free
, text "res_implic =" <+> ppr res_implic ]
; return (res_flat_free, res_implic) }
floatEqualities :: TcTyVarSet -> [EvVar]
-> Bag FlavoredEvVar -> (Bag FlavoredEvVar, Bag FlavoredEvVar)
floatEqualities skols can_given wantders
| hasEqualities can_given = (emptyBag, wantders)
| otherwise = partitionBag is_floatable wantders
where is_floatable :: FlavoredEvVar -> Bool
is_floatable (EvVarX cv _fl)
| isCoVar cv = skols `disjointVarSet` predTvs_under_fsks (coVarPred cv)
is_floatable _flev = False
tvs_under_fsks :: Type -> TyVarSet
tvs_under_fsks (TyVarTy tv)
| not (isTcTyVar tv) = unitVarSet tv
| FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
| otherwise = unitVarSet tv
tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
tvs_under_fsks (PredTy sty) = predTvs_under_fsks sty
tvs_under_fsks (FunTy arg res) = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
tvs_under_fsks (AppTy fun arg) = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
tvs_under_fsks (ForAllTy tv ty)
| isTyVar tv = inner_tvs `delVarSet` tv
| otherwise =
inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
where
inner_tvs = tvs_under_fsks ty
predTvs_under_fsks :: PredType -> TyVarSet
predTvs_under_fsks (IParam _ ty) = tvs_under_fsks ty
predTvs_under_fsks (ClassP _ tys) = unionVarSets (map tvs_under_fsks tys)
predTvs_under_fsks (EqPred ty1 ty2) = tvs_under_fsks ty1 `unionVarSet` tvs_under_fsks ty2
\end{code}
Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we convert any unsolved flat wanteds
to givens, and add them to the inert set. Reasons:
a) In checking mode, suppresses unnecessary errors. We already have
on unsolved-wanted error; adding it to the givens prevents any
consequential errors from showing up
b) More importantly, in inference mode, we are going to quantify over this
constraint, and we *don't* want to quantify over any constraints that
are deducible from it.
c) Flattened type-family equalities must be exposed to the nested
constraints. Consider
F b ~ alpha, (forall c. F b ~ alpha)
Obviously this is soluble with [alpha := F b]. But the
unification is only done by solveCTyFunEqs, right at the end of
solveWanteds, and if we aren't careful we'll end up with an
unsolved goal inside the implication. We need to "push" the
as-yes-unsolved (F b ~ alpha) inwards, as a *given*, so that it
can be used to solve the inner (F b
~ alpha). See Trac #4935.
d) There are other cases where interactions between wanteds that can help
to solve a constraint. For example
class C a b | a -> b
(C Int alpha), (forall d. C d blah => C Int a)
If we push the (C Int alpha) inwards, as a given, it can produce
a fundep (alpha~a) and this can float out again and be used to
fix alpha. (In general we can't float class constraints out just
in case (C d blah) might help to solve (C Int a).)
The unsolved wanteds are *canonical* but they may not be *inert*,
because when made into a given they might interact with other givens.
Hence the call to solveInteract. Example:
Original inert set = (d :_g D a) /\ (co :_w a ~ [beta])
We were not able to solve (a ~w [beta]) but we can't just assume it as
given because the resulting set is not inert. Hence we have to do a
'solveInteract' step first.
Note [Extra TcsTv untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Furthemore, we record the inert set simplifier-generated unification
variables of the TcsTv kind (such as variables from instance that have
been applied, or unification flattens). These variables must be passed
to the implications as extra untouchable variables. Otherwise we have
the danger of double unifications. Example (from trac ticket #4494):
(F Int ~ uf) /\ (forall a. C a => F Int ~ beta)
In this example, beta is touchable inside the implication. The first
solveInteract step leaves 'uf' ununified. Then we move inside the
implication where a new constraint
uf ~ beta
emerges. We may spontaneously solve it to get uf := beta, so the whole
implication disappears but when we pop out again we are left with (F
Int ~ uf) which will be unified by our final solveCTyFunEqs stage and
uf will get unified *once more* to (F Int).
The solution is to record the TcsTvs (i.e. the simplifier-generated
unification variables) that are generated when solving the flats, and
make them untouchables for the nested implication. In the example
above uf would become untouchable, so beta would be forced to be
unified as beta := uf.
NB: A consequence is that every simplifier-generated TcsTv variable
that gets floated out of an implication becomes now untouchable
next time we go inside that implication to solve any residual
constraints. In effect, by floating an equality out of the
implication we are committing to have it solved in the outside.
NB: A consequence is that every simplifier-generated TcsTv variable that gets floated out
of an implication becomes now untouchable next time we go inside that implication to
solve any residual constraints. In effect, by floating an equality out of the implication
we are committing to have it solved in the outside.
\begin{code}
solveCTyFunEqs :: CanonicalCts -> TcS (TvSubst, CanonicalCts)
solveCTyFunEqs cts
= do { untch <- getUntouchables
; let (unsolved_can_cts, (ni_subst, cv_binds))
= getSolvableCTyFunEqs untch cts
; traceTcS "defaultCTyFunEqs" (vcat [text "Trying to default family equations:"
, ppr ni_subst, ppr cv_binds
])
; mapM_ solve_one cv_binds
; return (niFixTvSubst ni_subst, unsolved_can_cts) }
where
solve_one (cv,tv,ty) = setWantedTyBind tv ty >> setCoBind cv ty
type FunEqBinds = (TvSubstEnv, [(CoVar, TcTyVar, TcType)])
emptyFunEqBinds :: FunEqBinds
emptyFunEqBinds = (emptyVarEnv, [])
extendFunEqBinds :: FunEqBinds -> CoVar -> TcTyVar -> TcType -> FunEqBinds
extendFunEqBinds (tv_subst, cv_binds) cv tv ty
= (extendVarEnv tv_subst tv ty, (cv, tv, ty):cv_binds)
getSolvableCTyFunEqs :: TcsUntouchables
-> CanonicalCts
-> (CanonicalCts, FunEqBinds)
getSolvableCTyFunEqs untch cts
= Bag.foldlBag dflt_funeq (emptyCCan, emptyFunEqBinds) cts
where
dflt_funeq :: (CanonicalCts, FunEqBinds) -> CanonicalCt
-> (CanonicalCts, FunEqBinds)
dflt_funeq (cts_in, feb@(tv_subst, _))
(CFunEqCan { cc_id = cv
, cc_flavor = fl
, cc_fun = tc
, cc_tyargs = xis
, cc_rhs = xi })
| Just tv <- tcGetTyVar_maybe xi
, isTouchableMetaTyVar_InRange untch tv
, typeKind xi `isSubKind` tyVarKind tv
, not (tv `elemVarEnv` tv_subst)
, not (tv `elemVarSet` niSubstTvSet tv_subst (tyVarsOfTypes xis))
= ASSERT ( not (isGiven fl) )
(cts_in, extendFunEqBinds feb cv tv (mkTyConApp tc xis))
dflt_funeq (cts_in, fun_eq_binds) ct
= (cts_in `extendCCans` ct, fun_eq_binds)
\end{code}
Note [Solving Family Equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After we are done with simplification we may be left with constraints of the form:
[Wanted] F xis ~ beta
If 'beta' is a touchable unification variable not already bound in the TyBinds
then we'd like to create a binding for it, effectively "defaulting" it to be 'F xis'.
When is it ok to do so?
1) 'beta' must not already be defaulted to something. Example:
[Wanted] F Int ~ beta <~ Will default [beta := F Int]
[Wanted] F Char ~ beta <~ Already defaulted, can't default again. We
have to report this as unsolved.
2) However, we must still do an occurs check when defaulting (F xis ~ beta), to
set [beta := F xis] only if beta is not among the free variables of xis.
3) Notice that 'beta' can't be bound in ty binds already because we rewrite RHS
of type family equations. See Inert Set invariants in TcInteract.
*********************************************************************************
* *
* Defaulting and disamgiguation *
* *
*********************************************************************************
Basic plan behind applyDefaulting rules:
Step 1:
Split wanteds into defaultable groups, `groups' and the rest `rest_wanted'
For each defaultable group, do:
For each possible substitution for [alpha |-> tau] where `alpha' is the
group's variable, do:
1) Make up new TcEvBinds
2) Extend TcS with (groupVariable
3) given_inert <- solveOne inert (given : a ~ tau)
4) (final_inert,unsolved) <- solveWanted (given_inert) (group_constraints)
5) if unsolved == empty then
sneakyUnify a |-> tau
write the evidence bins
return (final_inert ++ group_constraints,[])
-- will contain the info (alpha |-> tau)!!
goto next defaultable group
if unsolved <> empty then
throw away evidence binds
try next substitution
If you've run out of substitutions for this group, too bad, you failed
return (inert,group)
goto next defaultable group
Step 2:
Collect all the (canonical-cts, wanteds) gathered this way.
- Do a solveGiven over the canonical-cts to make sure they are inert
------------------------------------------------------------------------------------------
\begin{code}
applyDefaultingRules :: InertSet
-> CanonicalCts
-> TcS (Bag FlavoredEvVar)
applyDefaultingRules inert wanteds
| isEmptyBag wanteds
= return emptyBag
| otherwise
= do { untch <- getUntouchables
; tv_cts <- mapM (defaultTyVar untch) $
varSetElems (tyVarsOfCDicts wanteds)
; info@(_, default_tys, _) <- getDefaultInfo
; let groups = findDefaultableGroups info untch wanteds
; deflt_cts <- mapM (disambigGroup default_tys inert) groups
; traceTcS "deflt2" (vcat [ text "Tyvar defaults =" <+> ppr tv_cts
, text "Type defaults =" <+> ppr deflt_cts])
; return (unionManyBags deflt_cts `unionBags` unionManyBags tv_cts) }
defaultTyVar :: TcsUntouchables -> TcTyVar -> TcS (Bag FlavoredEvVar)
defaultTyVar untch the_tv
| isTouchableMetaTyVar_InRange untch the_tv
, not (k `eqKind` default_k)
= do { ev <- TcSMonad.newKindConstraint the_tv default_k
; let loc = CtLoc DefaultOrigin (getSrcSpan the_tv) []
; return (unitBag (mkEvVarX ev (Wanted loc))) }
| otherwise
= return emptyBag
where
k = tyVarKind the_tv
default_k = defaultKind k
findDefaultableGroups
:: ( SimplContext
, [Type]
, (Bool,Bool) )
-> TcsUntouchables
-> CanonicalCts
-> [[(CanonicalCt,TcTyVar)]]
findDefaultableGroups (ctxt, default_tys, (ovl_strings, extended_defaults))
untch wanteds
| not (performDefaulting ctxt) = []
| null default_tys = []
| otherwise = filter is_defaultable_group (equivClasses cmp_tv unaries)
where
unaries :: [(CanonicalCt, TcTyVar)]
non_unaries :: [CanonicalCt]
(unaries, non_unaries) = partitionWith find_unary (bagToList wanteds)
find_unary cc@(CDictCan { cc_tyargs = [ty] })
| Just tv <- tcGetTyVar_maybe ty
= Left (cc, tv)
find_unary cc = Right cc
bad_tvs :: TcTyVarSet
bad_tvs = foldr (unionVarSet . tyVarsOfCanonical) emptyVarSet non_unaries
cmp_tv (_,tv1) (_,tv2) = tv1 `compare` tv2
is_defaultable_group ds@((_,tv):_)
= isTyConableTyVar tv
&& not (tv `elemVarSet` bad_tvs)
&& isTouchableMetaTyVar_InRange untch tv
&& defaultable_classes [cc_class cc | (cc,_) <- ds]
is_defaultable_group [] = panic "defaultable_group"
defaultable_classes clss
| extended_defaults = any isInteractiveClass clss
| otherwise = all is_std_class clss && (any is_num_class clss)
isInteractiveClass cls
= is_num_class cls || (classKey cls `elem` [showClassKey, eqClassKey, ordClassKey])
is_num_class cls = isNumericClass cls || (ovl_strings && (cls `hasKey` isStringClassKey))
is_std_class cls = isStandardClass cls || (ovl_strings && (cls `hasKey` isStringClassKey))
disambigGroup :: [Type]
-> InertSet
-> [(CanonicalCt, TcTyVar)]
-> TcS (Bag FlavoredEvVar)
disambigGroup [] _inert _grp
= return emptyBag
disambigGroup (default_ty:default_tys) inert group
= do { traceTcS "disambigGroup" (ppr group $$ ppr default_ty)
; ev <- TcSMonad.newCoVar (mkTyVarTy the_tv) default_ty
; let der_flav = mk_derived_flavor (cc_flavor the_ct)
derived_eq = mkEvVarX ev der_flav
; success <- tryTcS $
do { (_,final_inert) <- solveInteract inert $ listToBag $
derived_eq : wanted_ev_vars
; let (_, unsolved) = extractUnsolved final_inert
; let wanted_unsolved = filterBag isWantedCt unsolved
; return (isEmptyBag wanted_unsolved) }
; case success of
True ->
do { wrapWarnTcS $ warnDefaulting wanted_ev_vars default_ty
; traceTcS "disambigGroup succeeded" (ppr default_ty)
; return (unitBag derived_eq) }
False ->
do { traceTcS "disambigGroup failed, will try other default types"
(ppr default_ty)
; disambigGroup default_tys inert group } }
where
((the_ct,the_tv):_) = group
wanteds = map fst group
wanted_ev_vars :: [FlavoredEvVar]
wanted_ev_vars = map deCanonicalise wanteds
mk_derived_flavor :: CtFlavor -> CtFlavor
mk_derived_flavor (Wanted loc) = Derived loc
mk_derived_flavor _ = panic "Asked to disambiguate given or derived!"
\end{code}
Note [Avoiding spurious errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When doing the unification for defaulting, we check for skolem
type variables, and simply don't default them. For example:
f = (*) -- Monomorphic
g :: Num a => a -> a
g x = f x x
Here, we get a complaint when checking the type signature for g,
that g isn't polymorphic enough; but then we get another one when
dealing with the (Num a) context arising from f's definition;
we try to unify a with Int (to default it), but find that it's
already been unified with the rigid variable from g's type sig
*********************************************************************************
* *
* Utility functions
* *
*********************************************************************************
\begin{code}
newFlatWanteds :: CtOrigin -> ThetaType -> TcM (Bag WantedEvVar)
newFlatWanteds orig theta
= do { loc <- getCtLoc orig
; evs <- newWantedEvVars theta
; return (listToBag [EvVarX w loc | w <- evs]) }
\end{code}