{- (c) The AQUA Project, Glasgow University, 1993-1998 \section{Common subexpression} -} {-# LANGUAGE CPP #-} module CSE (cseProgram) where #include "HsVersions.h" import CoreSubst import Var ( Var ) import Id ( Id, idType, idInlineActivation, zapIdOccInfo ) import CoreUtils ( mkAltExpr , exprIsTrivial , stripTicks, stripTicksTopE, mkTick, mkTicks ) import Type ( tyConAppArgs ) import CoreSyn import Outputable import BasicTypes ( isAlwaysActive ) import TrieMap import Data.List {- Simple common sub-expression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we see x1 = C a b x2 = C x1 b we build up a reverse mapping: C a b -> x1 C x1 b -> x2 and apply that to the rest of the program. When we then see y1 = C a b y2 = C y1 b we replace the C a b with x1. But then we *dont* want to add x1 -> y1 to the mapping. Rather, we want the reverse, y1 -> x1 so that a subsequent binding y2 = C y1 b will get transformed to C x1 b, and then to x2. So we carry an extra var->var substitution which we apply *before* looking up in the reverse mapping. Note [Shadowing] ~~~~~~~~~~~~~~~~ We have to be careful about shadowing. For example, consider f = \x -> let y = x+x in h = \x -> x+x in ... Here we must *not* do CSE on the inner x+x! The simplifier used to guarantee no shadowing, but it doesn't any more (it proved too hard), so we clone as we go. We can simply add clones to the substitution already described. Note [Case binders 1] ~~~~~~~~~~~~~~~~~~~~~~ Consider f = \x -> case x of wild { (a:as) -> case a of wild1 { (p,q) -> ...(wild1:as)... Here, (wild1:as) is morally the same as (a:as) and hence equal to wild. But that's not quite obvious. In general we want to keep it as (wild1:as), but for CSE purpose that's a bad idea. So we add the binding (wild1 -> a) to the extra var->var mapping. Notice this is exactly backwards to what the simplifier does, which is to try to replaces uses of 'a' with uses of 'wild1' Note [Case binders 2] ~~~~~~~~~~~~~~~~~~~~~~ Consider case (h x) of y -> ...(h x)... We'd like to replace (h x) in the alternative, by y. But because of the preceding [Note: case binders 1], we only want to add the mapping scrutinee -> case binder to the reverse CSE mapping if the scrutinee is a non-trivial expression. (If the scrutinee is a simple variable we want to add the mapping case binder -> scrutinee to the substitution Note [CSE for INLINE and NOINLINE] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are some subtle interactions of CSE with functions that the user has marked as INLINE or NOINLINE. (Examples from Roman Leshchinskiy.) Consider yes :: Int {-# NOINLINE yes #-} yes = undefined no :: Int {-# NOINLINE no #-} no = undefined foo :: Int -> Int -> Int {-# NOINLINE foo #-} foo m n = n {-# RULES "foo/no" foo no = id #-} bar :: Int -> Int bar = foo yes We do not expect the rule to fire. But if we do CSE, then we risk getting yes=no, and the rule does fire. Actually, it won't because NOINLINE means that 'yes' will never be inlined, not even if we have yes=no. So that's fine (now; perhaps in the olden days, yes=no would have substituted even if 'yes' was NOINLINE. But we do need to take care. Consider {-# NOINLINE bar #-} bar = <rhs> -- Same rhs as foo foo = <rhs> If CSE produces foo = bar then foo will never be inlined to <rhs> (when it should be, if <rhs> is small). The conclusion here is this: We should not add <rhs> :-> bar to the CSEnv if 'bar' has any constraints on when it can inline; that is, if its 'activation' not always active. Otherwise we might replace <rhs> by 'bar', and then later be unable to see that it really was <rhs>. Note that we do not (currently) do CSE on the unfolding stored inside an Id, even if is a 'stable' unfolding. That means that when an unfolding happens, it is always faithful to what the stable unfolding originally was. Note [CSE for case expressions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider case f x of y { pat -> ...let y = f x in ... } Then we can CSE the inner (f x) to y. In fact 'case' is like a strict let-binding, and we can use cseRhs for dealing with the scrutinee. ************************************************************************ * * \section{Common subexpression} * * ************************************************************************ -} cseProgram :: CoreProgram -> CoreProgram cseProgram binds = snd (mapAccumL cseBind emptyCSEnv binds) cseBind :: CSEnv -> CoreBind -> (CSEnv, CoreBind) cseBind env (NonRec b e) = (env2, NonRec b' e') where (env1, b') = addBinder env b (env2, e') = cseRhs env1 (b',e) cseBind env (Rec pairs) = (env2, Rec (bs' `zip` es')) where (bs,es) = unzip pairs (env1, bs') = addRecBinders env bs (env2, es') = mapAccumL cseRhs env1 (bs' `zip` es) cseRhs :: CSEnv -> (OutBndr, InExpr) -> (CSEnv, OutExpr) cseRhs env (id',rhs) = case lookupCSEnv env rhs'' of Nothing | always_active -> (extendCSEnv env rhs' id', rhs') | otherwise -> (env, rhs') Just id | always_active -> (extendCSSubst env id' id, mkTicks ticks $ Var id) | otherwise -> (env, mkTicks ticks $ Var id) -- In the Just case, we have -- x = rhs -- ... -- x' = rhs -- We are replacing the second binding with x'=x -- and so must record that in the substitution so -- that subsequent uses of x' are replaced with x, -- See Trac #5996 where rhs' = cseExpr env rhs (ticks, rhs'') = stripTicks tickishFloatable rhs' -- We don't want to lose the source notes when a common sub -- expression gets eliminated. Hence we push all (!) of them on -- top of the replaced sub-expression. This is probably not too -- useful in practice, but upholds our semantics. always_active = isAlwaysActive (idInlineActivation id') -- See Note [CSE for INLINE and NOINLINE] tryForCSE :: CSEnv -> InExpr -> OutExpr tryForCSE env expr | exprIsTrivial expr' = expr' -- No point | Just smaller <- lookupCSEnv env expr'' = foldr mkTick (Var smaller) ticks | otherwise = expr' where expr' = cseExpr env expr (ticks, expr'') = stripTicks tickishFloatable expr' cseExpr :: CSEnv -> InExpr -> OutExpr cseExpr env (Type t) = Type (substTy (csEnvSubst env) t) cseExpr env (Coercion c) = Coercion (substCo (csEnvSubst env) c) cseExpr _ (Lit lit) = Lit lit cseExpr env (Var v) = lookupSubst env v cseExpr env (App f a) = App (cseExpr env f) (tryForCSE env a) cseExpr env (Tick t e) = Tick t (cseExpr env e) cseExpr env (Cast e co) = Cast (cseExpr env e) (substCo (csEnvSubst env) co) cseExpr env (Lam b e) = let (env', b') = addBinder env b in Lam b' (cseExpr env' e) cseExpr env (Let bind e) = let (env', bind') = cseBind env bind in Let bind' (cseExpr env' e) cseExpr env (Case scrut bndr ty alts) = Case scrut' bndr'' ty alts' where alts' = cseAlts env2 scrut' bndr bndr'' alts (env1, bndr') = addBinder env bndr bndr'' = zapIdOccInfo bndr' -- The swizzling from Note [Case binders 2] may -- cause a dead case binder to be alive, so we -- play safe here and bring them all to life (env2, scrut') = cseRhs env1 (bndr'', scrut) -- Note [CSE for case expressions] cseAlts :: CSEnv -> OutExpr -> InBndr -> InBndr -> [InAlt] -> [OutAlt] cseAlts env scrut' bndr bndr' alts = map cse_alt alts where scrut'' = stripTicksTopE tickishFloatable scrut' (con_target, alt_env) = case scrut'' of Var v' -> (v', extendCSSubst env bndr v') -- See Note [Case binders 1] -- map: bndr -> v' _ -> (bndr', extendCSEnv env scrut' bndr') -- See Note [Case binders 2] -- map: scrut' -> bndr' arg_tys = tyConAppArgs (idType bndr) cse_alt (DataAlt con, args, rhs) | not (null args) -- Don't try CSE if there are no args; it just increases the number -- of live vars. E.g. -- case x of { True -> ....True.... } -- Don't replace True by x! -- Hence the 'null args', which also deal with literals and DEFAULT = (DataAlt con, args', tryForCSE new_env rhs) where (env', args') = addBinders alt_env args new_env = extendCSEnv env' con_expr con_target con_expr = mkAltExpr (DataAlt con) args' arg_tys cse_alt (con, args, rhs) = (con, args', tryForCSE env' rhs) where (env', args') = addBinders alt_env args {- ************************************************************************ * * \section{The CSE envt} * * ************************************************************************ -} type InExpr = CoreExpr -- Pre-cloning type InBndr = CoreBndr type InAlt = CoreAlt type OutExpr = CoreExpr -- Post-cloning type OutBndr = CoreBndr type OutAlt = CoreAlt data CSEnv = CS { cs_map :: CoreMap (OutExpr, Id) -- Key, value , cs_subst :: Subst } emptyCSEnv :: CSEnv emptyCSEnv = CS { cs_map = emptyCoreMap, cs_subst = emptySubst } lookupCSEnv :: CSEnv -> OutExpr -> Maybe Id lookupCSEnv (CS { cs_map = csmap }) expr = case lookupCoreMap csmap expr of Just (_,e) -> Just e Nothing -> Nothing extendCSEnv :: CSEnv -> OutExpr -> Id -> CSEnv extendCSEnv cse expr id = cse { cs_map = extendCoreMap (cs_map cse) sexpr (sexpr,id) } where (_, sexpr) = stripTicks tickishFloatable expr csEnvSubst :: CSEnv -> Subst csEnvSubst = cs_subst lookupSubst :: CSEnv -> Id -> OutExpr lookupSubst (CS { cs_subst = sub}) x = lookupIdSubst (text "CSE.lookupSubst") sub x extendCSSubst :: CSEnv -> Id -> Id -> CSEnv extendCSSubst cse x y = cse { cs_subst = extendIdSubst (cs_subst cse) x (Var y) } addBinder :: CSEnv -> Var -> (CSEnv, Var) addBinder cse v = (cse { cs_subst = sub' }, v') where (sub', v') = substBndr (cs_subst cse) v addBinders :: CSEnv -> [Var] -> (CSEnv, [Var]) addBinders cse vs = (cse { cs_subst = sub' }, vs') where (sub', vs') = substBndrs (cs_subst cse) vs addRecBinders :: CSEnv -> [Id] -> (CSEnv, [Id]) addRecBinders cse vs = (cse { cs_subst = sub' }, vs') where (sub', vs') = substRecBndrs (cs_subst cse) vs