{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ {-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-} #endif #if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE TypeFamilies #-} #endif #include "containers.h" ----------------------------------------------------------------------------- -- | -- Module : Data.Map.Base -- Copyright : (c) Daan Leijen 2002 -- (c) Andriy Palamarchuk 2008 -- License : BSD-style -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- An efficient implementation of maps from keys to values (dictionaries). -- -- Since many function names (but not the type name) clash with -- "Prelude" names, this module is usually imported @qualified@, e.g. -- -- > import Data.Map (Map) -- > import qualified Data.Map as Map -- -- The implementation of 'Map' is based on /size balanced/ binary trees (or -- trees of /bounded balance/) as described by: -- -- * Stephen Adams, \"/Efficient sets: a balancing act/\", -- Journal of Functional Programming 3(4):553-562, October 1993, -- <http://www.swiss.ai.mit.edu/~adams/BB/>. -- -- * J. Nievergelt and E.M. Reingold, -- \"/Binary search trees of bounded balance/\", -- SIAM journal of computing 2(1), March 1973. -- -- Note that the implementation is /left-biased/ -- the elements of a -- first argument are always preferred to the second, for example in -- 'union' or 'insert'. -- -- Operation comments contain the operation time complexity in -- the Big-O notation <http://en.wikipedia.org/wiki/Big_O_notation>. ----------------------------------------------------------------------------- -- [Note: Using INLINABLE] -- ~~~~~~~~~~~~~~~~~~~~~~~ -- It is crucial to the performance that the functions specialize on the Ord -- type when possible. GHC 7.0 and higher does this by itself when it sees th -- unfolding of a function -- that is why all public functions are marked -- INLINABLE (that exposes the unfolding). -- [Note: Using INLINE] -- ~~~~~~~~~~~~~~~~~~~~ -- For other compilers and GHC pre 7.0, we mark some of the functions INLINE. -- We mark the functions that just navigate down the tree (lookup, insert, -- delete and similar). That navigation code gets inlined and thus specialized -- when possible. There is a price to pay -- code growth. The code INLINED is -- therefore only the tree navigation, all the real work (rebalancing) is not -- INLINED by using a NOINLINE. -- -- All methods marked INLINE have to be nonrecursive -- a 'go' function doing -- the real work is provided. -- [Note: Type of local 'go' function] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- If the local 'go' function uses an Ord class, it sometimes heap-allocates -- the Ord dictionary when the 'go' function does not have explicit type. -- In that case we give 'go' explicit type. But this slightly decrease -- performance, as the resulting 'go' function can float out to top level. -- [Note: Local 'go' functions and capturing] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- As opposed to IntMap, when 'go' function captures an argument, increased -- heap-allocation can occur: sometimes in a polymorphic function, the 'go' -- floats out of its enclosing function and then it heap-allocates the -- dictionary and the argument. Maybe it floats out too late and strictness -- analyzer cannot see that these could be passed on stack. -- -- For example, change 'member' so that its local 'go' function is not passing -- argument k and then look at the resulting code for hedgeInt. -- [Note: Order of constructors] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- The order of constructors of Map matters when considering performance. -- Currently in GHC 7.0, when type has 2 constructors, a forward conditional -- jump is made when successfully matching second constructor. Successful match -- of first constructor results in the forward jump not taken. -- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip -- improves the benchmark by up to 10% on x86. module Data.Map.Base ( -- * Map type Map(..) -- instance Eq,Show,Read -- * Operators , (!), (\\) -- * Query , null , size , member , notMember , lookup , findWithDefault , lookupLT , lookupGT , lookupLE , lookupGE -- * Construction , empty , singleton -- ** Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter -- * Combine -- ** Union , union , unionWith , unionWithKey , unions , unionsWith -- ** Difference , difference , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- ** Universal combining function , mergeWithKey -- * Traversal -- ** Map , map , mapWithKey , traverseWithKey , mapAccum , mapAccumWithKey , mapAccumRWithKey , mapKeys , mapKeysWith , mapKeysMonotonic -- * Folds , foldr , foldl , foldrWithKey , foldlWithKey , foldMapWithKey -- ** Strict folds , foldr' , foldl' , foldrWithKey' , foldlWithKey' -- * Conversion , elems , keys , assocs , keysSet , fromSet -- ** Lists , toList , fromList , fromListWith , fromListWithKey -- ** Ordered lists , toAscList , toDescList , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList -- * Filter , filter , filterWithKey , partition , partitionWithKey , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey , split , splitLookup , splitRoot -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Indexed , lookupIndex , findIndex , elemAt , updateAt , deleteAt -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey , minView , maxView , minViewWithKey , maxViewWithKey -- * Debugging , showTree , showTreeWith , valid -- Used by the strict version , bin , balance , balanced , balanceL , balanceR , delta , link , insertMax , merge , glue , trim , trimLookupLo , MaybeS(..) , filterGt , filterLt ) where import Control.Applicative (Applicative(..), (<$>)) import Control.DeepSeq (NFData(rnf)) import Data.Bits (shiftL, shiftR) import qualified Data.Foldable as Foldable import Data.Monoid (Monoid(..)) import Data.Traversable (Traversable(traverse)) import Data.Typeable import Prelude hiding (lookup, map, filter, foldr, foldl, null) import qualified Data.Set.Base as Set import Data.Utils.StrictFold import Data.Utils.StrictPair #if __GLASGOW_HASKELL__ import GHC.Exts ( build ) #if __GLASGOW_HASKELL__ >= 708 import qualified GHC.Exts as GHCExts #endif import Text.Read import Data.Data #endif #if __GLASGOW_HASKELL__ >= 709 import Data.Coerce #endif {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 !,\\ -- -- | /O(log n)/. Find the value at a key. -- Calls 'error' when the element can not be found. -- -- > fromList [(5,'a'), (3,'b')] ! 1 Error: element not in the map -- > fromList [(5,'a'), (3,'b')] ! 5 == 'a' (!) :: Ord k => Map k a -> k -> a m ! k = find k m #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE (!) #-} #endif -- | Same as 'difference'. (\\) :: Ord k => Map k a -> Map k b -> Map k a m1 \\ m2 = difference m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE (\\) #-} #endif {-------------------------------------------------------------------- Size balanced trees. --------------------------------------------------------------------} -- | A Map from keys @k@ to values @a@. -- See Note: Order of constructors data Map k a = Bin {-# UNPACK #-} !Size !k a !(Map k a) !(Map k a) | Tip type Size = Int #if __GLASGOW_HASKELL__ >= 708 type role Map nominal representational #endif instance (Ord k) => Monoid (Map k v) where mempty = empty mappend = union mconcat = unions #if __GLASGOW_HASKELL__ {-------------------------------------------------------------------- A Data instance --------------------------------------------------------------------} -- This instance preserves data abstraction at the cost of inefficiency. -- We provide limited reflection services for the sake of data abstraction. instance (Data k, Data a, Ord k) => Data (Map k a) where gfoldl f z m = z fromList `f` toList m toConstr _ = fromListConstr gunfold k z c = case constrIndex c of 1 -> k (z fromList) _ -> error "gunfold" dataTypeOf _ = mapDataType dataCast2 f = gcast2 f fromListConstr :: Constr fromListConstr = mkConstr mapDataType "fromList" [] Prefix mapDataType :: DataType mapDataType = mkDataType "Data.Map.Base.Map" [fromListConstr] #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is the map empty? -- -- > Data.Map.null (empty) == True -- > Data.Map.null (singleton 1 'a') == False null :: Map k a -> Bool null Tip = True null (Bin {}) = False {-# INLINE null #-} -- | /O(1)/. The number of elements in the map. -- -- > size empty == 0 -- > size (singleton 1 'a') == 1 -- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3 size :: Map k a -> Int size Tip = 0 size (Bin sz _ _ _ _) = sz {-# INLINE size #-} -- | /O(log n)/. Lookup the value at a key in the map. -- -- The function will return the corresponding value as @('Just' value)@, -- or 'Nothing' if the key isn't in the map. -- -- An example of using @lookup@: -- -- > import Prelude hiding (lookup) -- > import Data.Map -- > -- > employeeDept = fromList([("John","Sales"), ("Bob","IT")]) -- > deptCountry = fromList([("IT","USA"), ("Sales","France")]) -- > countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")]) -- > -- > employeeCurrency :: String -> Maybe String -- > employeeCurrency name = do -- > dept <- lookup name employeeDept -- > country <- lookup dept deptCountry -- > lookup country countryCurrency -- > -- > main = do -- > putStrLn $ "John's currency: " ++ (show (employeeCurrency "John")) -- > putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete")) -- -- The output of this program: -- -- > John's currency: Just "Euro" -- > Pete's currency: Nothing lookup :: Ord k => k -> Map k a -> Maybe a lookup = go where STRICT_1_OF_2(go) go _ Tip = Nothing go k (Bin _ kx x l r) = case compare k kx of LT -> go k l GT -> go k r EQ -> Just x #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookup #-} #else {-# INLINE lookup #-} #endif -- | /O(log n)/. Is the key a member of the map? See also 'notMember'. -- -- > member 5 (fromList [(5,'a'), (3,'b')]) == True -- > member 1 (fromList [(5,'a'), (3,'b')]) == False member :: Ord k => k -> Map k a -> Bool member = go where STRICT_1_OF_2(go) go _ Tip = False go k (Bin _ kx _ l r) = case compare k kx of LT -> go k l GT -> go k r EQ -> True #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE member #-} #else {-# INLINE member #-} #endif -- | /O(log n)/. Is the key not a member of the map? See also 'member'. -- -- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False -- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True notMember :: Ord k => k -> Map k a -> Bool notMember k m = not $ member k m #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE notMember #-} #else {-# INLINE notMember #-} #endif -- | /O(log n)/. Find the value at a key. -- Calls 'error' when the element can not be found. find :: Ord k => k -> Map k a -> a find = go where STRICT_1_OF_2(go) go _ Tip = error "Map.!: given key is not an element in the map" go k (Bin _ kx x l r) = case compare k kx of LT -> go k l GT -> go k r EQ -> x #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE find #-} #else {-# INLINE find #-} #endif -- | /O(log n)/. The expression @('findWithDefault' def k map)@ returns -- the value at key @k@ or returns default value @def@ -- when the key is not in the map. -- -- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' -- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a' findWithDefault :: Ord k => a -> k -> Map k a -> a findWithDefault = go where STRICT_2_OF_3(go) go def _ Tip = def go def k (Bin _ kx x l r) = case compare k kx of LT -> go def k l GT -> go def k r EQ -> x #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE findWithDefault #-} #else {-# INLINE findWithDefault #-} #endif -- | /O(log n)/. Find largest key smaller than the given one and return the -- corresponding (key, value) pair. -- -- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing -- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') lookupLT :: Ord k => k -> Map k v -> Maybe (k, v) lookupLT = goNothing where STRICT_1_OF_2(goNothing) goNothing _ Tip = Nothing goNothing k (Bin _ kx x l r) | k <= kx = goNothing k l | otherwise = goJust k kx x r STRICT_1_OF_4(goJust) goJust _ kx' x' Tip = Just (kx', x') goJust k kx' x' (Bin _ kx x l r) | k <= kx = goJust k kx' x' l | otherwise = goJust k kx x r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookupLT #-} #else {-# INLINE lookupLT #-} #endif -- | /O(log n)/. Find smallest key greater than the given one and return the -- corresponding (key, value) pair. -- -- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') -- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing lookupGT :: Ord k => k -> Map k v -> Maybe (k, v) lookupGT = goNothing where STRICT_1_OF_2(goNothing) goNothing _ Tip = Nothing goNothing k (Bin _ kx x l r) | k < kx = goJust k kx x l | otherwise = goNothing k r STRICT_1_OF_4(goJust) goJust _ kx' x' Tip = Just (kx', x') goJust k kx' x' (Bin _ kx x l r) | k < kx = goJust k kx x l | otherwise = goJust k kx' x' r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookupGT #-} #else {-# INLINE lookupGT #-} #endif -- | /O(log n)/. Find largest key smaller or equal to the given one and return -- the corresponding (key, value) pair. -- -- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing -- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') -- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') lookupLE :: Ord k => k -> Map k v -> Maybe (k, v) lookupLE = goNothing where STRICT_1_OF_2(goNothing) goNothing _ Tip = Nothing goNothing k (Bin _ kx x l r) = case compare k kx of LT -> goNothing k l EQ -> Just (kx, x) GT -> goJust k kx x r STRICT_1_OF_4(goJust) goJust _ kx' x' Tip = Just (kx', x') goJust k kx' x' (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx' x' l EQ -> Just (kx, x) GT -> goJust k kx x r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookupLE #-} #else {-# INLINE lookupLE #-} #endif -- | /O(log n)/. Find smallest key greater or equal to the given one and return -- the corresponding (key, value) pair. -- -- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') -- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') -- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing lookupGE :: Ord k => k -> Map k v -> Maybe (k, v) lookupGE = goNothing where STRICT_1_OF_2(goNothing) goNothing _ Tip = Nothing goNothing k (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx x l EQ -> Just (kx, x) GT -> goNothing k r STRICT_1_OF_4(goJust) goJust _ kx' x' Tip = Just (kx', x') goJust k kx' x' (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx x l EQ -> Just (kx, x) GT -> goJust k kx' x' r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookupGE #-} #else {-# INLINE lookupGE #-} #endif {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. The empty map. -- -- > empty == fromList [] -- > size empty == 0 empty :: Map k a empty = Tip {-# INLINE empty #-} -- | /O(1)/. A map with a single element. -- -- > singleton 1 'a' == fromList [(1, 'a')] -- > size (singleton 1 'a') == 1 singleton :: k -> a -> Map k a singleton k x = Bin 1 k x Tip Tip {-# INLINE singleton #-} {-------------------------------------------------------------------- Insertion --------------------------------------------------------------------} -- | /O(log n)/. Insert a new key and value in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value. 'insert' is equivalent to -- @'insertWith' 'const'@. -- -- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] -- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] -- > insert 5 'x' empty == singleton 5 'x' -- See Note: Type of local 'go' function insert :: Ord k => k -> a -> Map k a -> Map k a insert = go where go :: Ord k => k -> a -> Map k a -> Map k a STRICT_1_OF_3(go) go kx x Tip = singleton kx x go kx x (Bin sz ky y l r) = case compare kx ky of LT -> balanceL ky y (go kx x l) r GT -> balanceR ky y l (go kx x r) EQ -> Bin sz kx x l r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE insert #-} #else {-# INLINE insert #-} #endif -- Insert a new key and value in the map if it is not already present. -- Used by `union`. -- See Note: Type of local 'go' function insertR :: Ord k => k -> a -> Map k a -> Map k a insertR = go where go :: Ord k => k -> a -> Map k a -> Map k a STRICT_1_OF_3(go) go kx x Tip = singleton kx x go kx x t@(Bin _ ky y l r) = case compare kx ky of LT -> balanceL ky y (go kx x l) r GT -> balanceR ky y l (go kx x r) EQ -> t #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE insertR #-} #else {-# INLINE insertR #-} #endif -- | /O(log n)/. Insert with a function, combining new value and old value. -- @'insertWith' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key, f new_value old_value)@. -- -- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] -- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx" insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a insertWith f = insertWithKey (\_ x' y' -> f x' y') #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE insertWith #-} #else {-# INLINE insertWith #-} #endif -- | /O(log n)/. Insert with a function, combining key, new value and old value. -- @'insertWithKey' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key,f key new_value old_value)@. -- Note that the key passed to f is the same key passed to 'insertWithKey'. -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] -- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx" -- See Note: Type of local 'go' function insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a insertWithKey = go where go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a STRICT_2_OF_4(go) go _ kx x Tip = singleton kx x go f kx x (Bin sy ky y l r) = case compare kx ky of LT -> balanceL ky y (go f kx x l) r GT -> balanceR ky y l (go f kx x r) EQ -> Bin sy kx (f kx x y) l r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE insertWithKey #-} #else {-# INLINE insertWithKey #-} #endif -- | /O(log n)/. Combines insert operation with old value retrieval. -- The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) -- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) -- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx") -- -- This is how to define @insertLookup@ using @insertLookupWithKey@: -- -- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t -- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) -- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")]) -- See Note: Type of local 'go' function insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a) insertLookupWithKey = go where go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a) STRICT_2_OF_4(go) go _ kx x Tip = (Nothing, singleton kx x) go f kx x (Bin sy ky y l r) = case compare kx ky of LT -> let (found, l') = go f kx x l in (found, balanceL ky y l' r) GT -> let (found, r') = go f kx x r in (found, balanceR ky y l r') EQ -> (Just y, Bin sy kx (f kx x y) l r) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE insertLookupWithKey #-} #else {-# INLINE insertLookupWithKey #-} #endif {-------------------------------------------------------------------- Deletion --------------------------------------------------------------------} -- | /O(log n)/. Delete a key and its value from the map. When the key is not -- a member of the map, the original map is returned. -- -- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > delete 5 empty == empty -- See Note: Type of local 'go' function delete :: Ord k => k -> Map k a -> Map k a delete = go where go :: Ord k => k -> Map k a -> Map k a STRICT_1_OF_2(go) go _ Tip = Tip go k (Bin _ kx x l r) = case compare k kx of LT -> balanceR kx x (go k l) r GT -> balanceL kx x l (go k r) EQ -> glue l r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE delete #-} #else {-# INLINE delete #-} #endif -- | /O(log n)/. Update a value at a specific key with the result of the provided function. -- When the key is not -- a member of the map, the original map is returned. -- -- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjust ("new " ++) 7 empty == empty adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a adjust f = adjustWithKey (\_ x -> f x) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE adjust #-} #else {-# INLINE adjust #-} #endif -- | /O(log n)/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > let f key x = (show key) ++ ":new " ++ x -- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjustWithKey f 7 empty == empty adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a adjustWithKey f = updateWithKey (\k' x' -> Just (f k' x')) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE adjustWithKey #-} #else {-# INLINE adjustWithKey #-} #endif -- | /O(log n)/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a update f = updateWithKey (\_ x -> f x) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE update #-} #else {-# INLINE update #-} #endif -- | /O(log n)/. The expression (@'updateWithKey' f k map@) updates the -- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing', -- the element is deleted. If it is (@'Just' y@), the key @k@ is bound -- to the new value @y@. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- See Note: Type of local 'go' function updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a updateWithKey = go where go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a STRICT_2_OF_3(go) go _ _ Tip = Tip go f k(Bin sx kx x l r) = case compare k kx of LT -> balanceR kx x (go f k l) r GT -> balanceL kx x l (go f k r) EQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE updateWithKey #-} #else {-# INLINE updateWithKey #-} #endif -- | /O(log n)/. Lookup and update. See also 'updateWithKey'. -- The function returns changed value, if it is updated. -- Returns the original key value if the map entry is deleted. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")]) -- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") -- See Note: Type of local 'go' function updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a) updateLookupWithKey = go where go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a) STRICT_2_OF_3(go) go _ _ Tip = (Nothing,Tip) go f k (Bin sx kx x l r) = case compare k kx of LT -> let (found,l') = go f k l in (found,balanceR kx x l' r) GT -> let (found,r') = go f k r in (found,balanceL kx x l r') EQ -> case f kx x of Just x' -> (Just x',Bin sx kx x' l r) Nothing -> (Just x,glue l r) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE updateLookupWithKey #-} #else {-# INLINE updateLookupWithKey #-} #endif -- | /O(log n)/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in a 'Map'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. -- -- > let f _ = Nothing -- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > -- > let f _ = Just "c" -- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")] -- > alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")] -- See Note: Type of local 'go' function alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a alter = go where go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a STRICT_2_OF_3(go) go f k Tip = case f Nothing of Nothing -> Tip Just x -> singleton k x go f k (Bin sx kx x l r) = case compare k kx of LT -> balance kx x (go f k l) r GT -> balance kx x l (go f k r) EQ -> case f (Just x) of Just x' -> Bin sx kx x' l r Nothing -> glue l r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE alter #-} #else {-# INLINE alter #-} #endif {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Return the /index/ of a key, which is its zero-based index in -- the sequence sorted by keys. The index is a number from /0/ up to, but not -- including, the 'size' of the map. Calls 'error' when the key is not -- a 'member' of the map. -- -- > findIndex 2 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map -- > findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0 -- > findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1 -- > findIndex 6 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map -- See Note: Type of local 'go' function findIndex :: Ord k => k -> Map k a -> Int findIndex = go 0 where go :: Ord k => Int -> k -> Map k a -> Int STRICT_1_OF_3(go) STRICT_2_OF_3(go) go _ _ Tip = error "Map.findIndex: element is not in the map" go idx k (Bin _ kx _ l r) = case compare k kx of LT -> go idx k l GT -> go (idx + size l + 1) k r EQ -> idx + size l #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE findIndex #-} #endif -- | /O(log n)/. Lookup the /index/ of a key, which is its zero-based index in -- the sequence sorted by keys. The index is a number from /0/ up to, but not -- including, the 'size' of the map. -- -- > isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")])) == False -- > fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0 -- > fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1 -- > isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")])) == False -- See Note: Type of local 'go' function lookupIndex :: Ord k => k -> Map k a -> Maybe Int lookupIndex = go 0 where go :: Ord k => Int -> k -> Map k a -> Maybe Int STRICT_1_OF_3(go) STRICT_2_OF_3(go) go _ _ Tip = Nothing go idx k (Bin _ kx _ l r) = case compare k kx of LT -> go idx k l GT -> go (idx + size l + 1) k r EQ -> Just $! idx + size l #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE lookupIndex #-} #endif -- | /O(log n)/. Retrieve an element by its /index/, i.e. by its zero-based -- index in the sequence sorted by keys. If the /index/ is out of range (less -- than zero, greater or equal to 'size' of the map), 'error' is called. -- -- > elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b") -- > elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a") -- > elemAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range elemAt :: Int -> Map k a -> (k,a) STRICT_1_OF_2(elemAt) elemAt _ Tip = error "Map.elemAt: index out of range" elemAt i (Bin _ kx x l r) = case compare i sizeL of LT -> elemAt i l GT -> elemAt (i-sizeL-1) r EQ -> (kx,x) where sizeL = size l -- | /O(log n)/. Update the element at /index/, i.e. by its zero-based index in -- the sequence sorted by keys. If the /index/ is out of range (less than zero, -- greater or equal to 'size' of the map), 'error' is called. -- -- > updateAt (\ _ _ -> Just "x") 0 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")] -- > updateAt (\ _ _ -> Just "x") 1 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")] -- > updateAt (\ _ _ -> Just "x") 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\_ _ -> Nothing) 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- > updateAt (\_ _ -> Nothing) 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > updateAt (\_ _ -> Nothing) 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > updateAt (\_ _ -> Nothing) (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a updateAt f i t = i `seq` case t of Tip -> error "Map.updateAt: index out of range" Bin sx kx x l r -> case compare i sizeL of LT -> balanceR kx x (updateAt f i l) r GT -> balanceL kx x l (updateAt f (i-sizeL-1) r) EQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r where sizeL = size l -- | /O(log n)/. Delete the element at /index/, i.e. by its zero-based index in -- the sequence sorted by keys. If the /index/ is out of range (less than zero, -- greater or equal to 'size' of the map), 'error' is called. -- -- > deleteAt 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- > deleteAt 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > deleteAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range -- > deleteAt (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range deleteAt :: Int -> Map k a -> Map k a deleteAt i t = i `seq` case t of Tip -> error "Map.deleteAt: index out of range" Bin _ kx x l r -> case compare i sizeL of LT -> balanceR kx x (deleteAt i l) r GT -> balanceL kx x l (deleteAt (i-sizeL-1) r) EQ -> glue l r where sizeL = size l {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. The minimal key of the map. Calls 'error' if the map is empty. -- -- > findMin (fromList [(5,"a"), (3,"b")]) == (3,"b") -- > findMin empty Error: empty map has no minimal element findMin :: Map k a -> (k,a) findMin (Bin _ kx x Tip _) = (kx,x) findMin (Bin _ _ _ l _) = findMin l findMin Tip = error "Map.findMin: empty map has no minimal element" -- | /O(log n)/. The maximal key of the map. Calls 'error' if the map is empty. -- -- > findMax (fromList [(5,"a"), (3,"b")]) == (5,"a") -- > findMax empty Error: empty map has no maximal element findMax :: Map k a -> (k,a) findMax (Bin _ kx x _ Tip) = (kx,x) findMax (Bin _ _ _ _ r) = findMax r findMax Tip = error "Map.findMax: empty map has no maximal element" -- | /O(log n)/. Delete the minimal key. Returns an empty map if the map is empty. -- -- > deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")] -- > deleteMin empty == empty deleteMin :: Map k a -> Map k a deleteMin (Bin _ _ _ Tip r) = r deleteMin (Bin _ kx x l r) = balanceR kx x (deleteMin l) r deleteMin Tip = Tip -- | /O(log n)/. Delete the maximal key. Returns an empty map if the map is empty. -- -- > deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")] -- > deleteMax empty == empty deleteMax :: Map k a -> Map k a deleteMax (Bin _ _ _ l Tip) = l deleteMax (Bin _ kx x l r) = balanceL kx x l (deleteMax r) deleteMax Tip = Tip -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] -- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMin :: (a -> Maybe a) -> Map k a -> Map k a updateMin f m = updateMinWithKey (\_ x -> f x) m -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] -- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMax :: (a -> Maybe a) -> Map k a -> Map k a updateMax f m = updateMaxWithKey (\_ x -> f x) m -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] -- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMinWithKey _ Tip = Tip updateMinWithKey f (Bin sx kx x Tip r) = case f kx x of Nothing -> r Just x' -> Bin sx kx x' Tip r updateMinWithKey f (Bin _ kx x l r) = balanceR kx x (updateMinWithKey f l) r -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] -- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMaxWithKey _ Tip = Tip updateMaxWithKey f (Bin sx kx x l Tip) = case f kx x of Nothing -> l Just x' -> Bin sx kx x' l Tip updateMaxWithKey f (Bin _ kx x l r) = balanceL kx x l (updateMaxWithKey f r) -- | /O(log n)/. Retrieves the minimal (key,value) pair of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. -- -- > minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a") -- > minViewWithKey empty == Nothing minViewWithKey :: Map k a -> Maybe ((k,a), Map k a) minViewWithKey Tip = Nothing minViewWithKey x = Just (deleteFindMin x) -- | /O(log n)/. Retrieves the maximal (key,value) pair of the map, and -- the map stripped of that element, or 'Nothing' if passed an empty map. -- -- > maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b") -- > maxViewWithKey empty == Nothing maxViewWithKey :: Map k a -> Maybe ((k,a), Map k a) maxViewWithKey Tip = Nothing maxViewWithKey x = Just (deleteFindMax x) -- | /O(log n)/. Retrieves the value associated with minimal key of the -- map, and the map stripped of that element, or 'Nothing' if passed an -- empty map. -- -- > minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a") -- > minView empty == Nothing minView :: Map k a -> Maybe (a, Map k a) minView Tip = Nothing minView x = Just (first snd $ deleteFindMin x) -- | /O(log n)/. Retrieves the value associated with maximal key of the -- map, and the map stripped of that element, or 'Nothing' if passed an -- empty map. -- -- > maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b") -- > maxView empty == Nothing maxView :: Map k a -> Maybe (a, Map k a) maxView Tip = Nothing maxView x = Just (first snd $ deleteFindMax x) -- Update the 1st component of a tuple (special case of Control.Arrow.first) first :: (a -> b) -> (a,c) -> (b,c) first f (x,y) = (f x, y) {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} -- | The union of a list of maps: -- (@'unions' == 'Prelude.foldl' 'union' 'empty'@). -- -- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "b"), (5, "a"), (7, "C")] -- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])] -- > == fromList [(3, "B3"), (5, "A3"), (7, "C")] unions :: Ord k => [Map k a] -> Map k a unions ts = foldlStrict union empty ts #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE unions #-} #endif -- | The union of a list of maps, with a combining operation: -- (@'unionsWith' f == 'Prelude.foldl' ('unionWith' f) 'empty'@). -- -- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")] unionsWith :: Ord k => (a->a->a) -> [Map k a] -> Map k a unionsWith f ts = foldlStrict (unionWith f) empty ts #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE unionsWith #-} #endif -- | /O(n+m)/. -- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@. -- It prefers @t1@ when duplicate keys are encountered, -- i.e. (@'union' == 'unionWith' 'const'@). -- The implementation uses the efficient /hedge-union/ algorithm. -- -- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")] union :: Ord k => Map k a -> Map k a -> Map k a union Tip t2 = t2 union t1 Tip = t1 union t1 t2 = hedgeUnion NothingS NothingS t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE union #-} #endif -- left-biased hedge union hedgeUnion :: Ord a => MaybeS a -> MaybeS a -> Map a b -> Map a b -> Map a b hedgeUnion _ _ t1 Tip = t1 hedgeUnion blo bhi Tip (Bin _ kx x l r) = link kx x (filterGt blo l) (filterLt bhi r) hedgeUnion _ _ t1 (Bin _ kx x Tip Tip) = insertR kx x t1 -- According to benchmarks, this special case increases -- performance up to 30%. It does not help in difference or intersection. hedgeUnion blo bhi (Bin _ kx x l r) t2 = link kx x (hedgeUnion blo bmi l (trim blo bmi t2)) (hedgeUnion bmi bhi r (trim bmi bhi t2)) where bmi = JustS kx #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE hedgeUnion #-} #endif {-------------------------------------------------------------------- Union with a combining function --------------------------------------------------------------------} -- | /O(n+m)/. Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm. -- -- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")] unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a unionWith f m1 m2 = unionWithKey (\_ x y -> f x y) m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE unionWith #-} #endif -- | /O(n+m)/. -- Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm. -- -- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value -- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")] unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a unionWithKey f t1 t2 = mergeWithKey (\k x1 x2 -> Just $ f k x1 x2) id id t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE unionWithKey #-} #endif {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference of two maps. -- Return elements of the first map not existing in the second map. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. -- -- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b" difference :: Ord k => Map k a -> Map k b -> Map k a difference Tip _ = Tip difference t1 Tip = t1 difference t1 t2 = hedgeDiff NothingS NothingS t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE difference #-} #endif hedgeDiff :: Ord a => MaybeS a -> MaybeS a -> Map a b -> Map a c -> Map a b hedgeDiff _ _ Tip _ = Tip hedgeDiff blo bhi (Bin _ kx x l r) Tip = link kx x (filterGt blo l) (filterLt bhi r) hedgeDiff blo bhi t (Bin _ kx _ l r) = merge (hedgeDiff blo bmi (trim blo bmi t) l) (hedgeDiff bmi bhi (trim bmi bhi t) r) where bmi = JustS kx #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE hedgeDiff #-} #endif -- | /O(n+m)/. Difference with a combining function. -- When two equal keys are -- encountered, the combining function is applied to the values of these keys. -- If it returns 'Nothing', the element is discarded (proper set difference). If -- it returns (@'Just' y@), the element is updated with a new value @y@. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. -- -- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing -- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) -- > == singleton 3 "b:B" differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a differenceWith f m1 m2 = differenceWithKey (\_ x y -> f x y) m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE differenceWith #-} #endif -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns 'Nothing', the element is discarded (proper set difference). If -- it returns (@'Just' y@), the element is updated with a new value @y@. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. -- -- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing -- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) -- > == singleton 3 "3:b|B" differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a differenceWithKey f t1 t2 = mergeWithKey f id (const Tip) t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE differenceWithKey #-} #endif {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(n+m)/. Intersection of two maps. -- Return data in the first map for the keys existing in both maps. -- (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@). -- The implementation uses an efficient /hedge/ algorithm comparable with -- /hedge-union/. -- -- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a" intersection :: Ord k => Map k a -> Map k b -> Map k a intersection Tip _ = Tip intersection _ Tip = Tip intersection t1 t2 = hedgeInt NothingS NothingS t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE intersection #-} #endif hedgeInt :: Ord k => MaybeS k -> MaybeS k -> Map k a -> Map k b -> Map k a hedgeInt _ _ _ Tip = Tip hedgeInt _ _ Tip _ = Tip hedgeInt blo bhi (Bin _ kx x l r) t2 = let l' = hedgeInt blo bmi l (trim blo bmi t2) r' = hedgeInt bmi bhi r (trim bmi bhi t2) in if kx `member` t2 then link kx x l' r' else merge l' r' where bmi = JustS kx #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE hedgeInt #-} #endif -- | /O(n+m)/. Intersection with a combining function. The implementation uses -- an efficient /hedge/ algorithm comparable with /hedge-union/. -- -- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA" intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c intersectionWith f m1 m2 = intersectionWithKey (\_ x y -> f x y) m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE intersectionWith #-} #endif -- | /O(n+m)/. Intersection with a combining function. The implementation uses -- an efficient /hedge/ algorithm comparable with /hedge-union/. -- -- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar -- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A" intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c intersectionWithKey f t1 t2 = mergeWithKey (\k x1 x2 -> Just $ f k x1 x2) (const Tip) (const Tip) t1 t2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE intersectionWithKey #-} #endif {-------------------------------------------------------------------- MergeWithKey --------------------------------------------------------------------} -- | /O(n+m)/. A high-performance universal combining function. This function -- is used to define 'unionWith', 'unionWithKey', 'differenceWith', -- 'differenceWithKey', 'intersectionWith', 'intersectionWithKey' and can be -- used to define other custom combine functions. -- -- Please make sure you know what is going on when using 'mergeWithKey', -- otherwise you can be surprised by unexpected code growth or even -- corruption of the data structure. -- -- When 'mergeWithKey' is given three arguments, it is inlined to the call -- site. You should therefore use 'mergeWithKey' only to define your custom -- combining functions. For example, you could define 'unionWithKey', -- 'differenceWithKey' and 'intersectionWithKey' as -- -- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 -- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 -- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2 -- -- When calling @'mergeWithKey' combine only1 only2@, a function combining two -- 'IntMap's is created, such that -- -- * if a key is present in both maps, it is passed with both corresponding -- values to the @combine@ function. Depending on the result, the key is either -- present in the result with specified value, or is left out; -- -- * a nonempty subtree present only in the first map is passed to @only1@ and -- the output is added to the result; -- -- * a nonempty subtree present only in the second map is passed to @only2@ and -- the output is added to the result. -- -- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/. -- The values can be modified arbitrarily. Most common variants of @only1@ and -- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or -- @'filterWithKey' f@ could be used for any @f@. mergeWithKey :: Ord k => (k -> a -> b -> Maybe c) -> (Map k a -> Map k c) -> (Map k b -> Map k c) -> Map k a -> Map k b -> Map k c mergeWithKey f g1 g2 = go where go Tip t2 = g2 t2 go t1 Tip = g1 t1 go t1 t2 = hedgeMerge NothingS NothingS t1 t2 hedgeMerge _ _ t1 Tip = g1 t1 hedgeMerge blo bhi Tip (Bin _ kx x l r) = g2 $ link kx x (filterGt blo l) (filterLt bhi r) hedgeMerge blo bhi (Bin _ kx x l r) t2 = let l' = hedgeMerge blo bmi l (trim blo bmi t2) (found, trim_t2) = trimLookupLo kx bhi t2 r' = hedgeMerge bmi bhi r trim_t2 in case found of Nothing -> case g1 (singleton kx x) of Tip -> merge l' r' (Bin _ _ x' Tip Tip) -> link kx x' l' r' _ -> error "mergeWithKey: Given function only1 does not fulfil required conditions (see documentation)" Just x2 -> case f kx x x2 of Nothing -> merge l' r' Just x' -> link kx x' l' r' where bmi = JustS kx {-# INLINE mergeWithKey #-} {-------------------------------------------------------------------- Submap --------------------------------------------------------------------} -- | /O(n+m)/. -- This function is defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@). -- isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool isSubmapOf m1 m2 = isSubmapOfBy (==) m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE isSubmapOf #-} #endif {- | /O(n+m)/. The expression (@'isSubmapOfBy' f t1 t2@) returns 'True' if all keys in @t1@ are in tree @t2@, and when @f@ returns 'True' when applied to their respective values. For example, the following expressions are all 'True': > isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)]) But the following are all 'False': > isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)]) > isSubmapOfBy (<) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)]) -} isSubmapOfBy :: Ord k => (a->b->Bool) -> Map k a -> Map k b -> Bool isSubmapOfBy f t1 t2 = (size t1 <= size t2) && (submap' f t1 t2) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE isSubmapOfBy #-} #endif submap' :: Ord a => (b -> c -> Bool) -> Map a b -> Map a c -> Bool submap' _ Tip _ = True submap' _ _ Tip = False submap' f (Bin _ kx x l r) t = case found of Nothing -> False Just y -> f x y && submap' f l lt && submap' f r gt where (lt,found,gt) = splitLookup kx t #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE submap' #-} #endif -- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). -- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@). isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool isProperSubmapOf m1 m2 = isProperSubmapOfBy (==) m1 m2 #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE isProperSubmapOf #-} #endif {- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal). The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when @m1@ and @m2@ are not equal, all keys in @m1@ are in @m2@, and when @f@ returns 'True' when applied to their respective values. For example, the following expressions are all 'True': > isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) But the following are all 'False': > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) > isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) -} isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool isProperSubmapOfBy f t1 t2 = (size t1 < size t2) && (submap' f t1 t2) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE isProperSubmapOfBy #-} #endif {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all values that satisfy the predicate. -- -- > filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- > filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty -- > filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty filter :: (a -> Bool) -> Map k a -> Map k a filter p m = filterWithKey (\_ x -> p x) m -- | /O(n)/. Filter all keys\/values that satisfy the predicate. -- -- > filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a filterWithKey _ Tip = Tip filterWithKey p (Bin _ kx x l r) | p kx x = link kx x (filterWithKey p l) (filterWithKey p r) | otherwise = merge (filterWithKey p l) (filterWithKey p r) -- | /O(n)/. Partition the map according to a predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. -- -- > partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") -- > partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) -- > partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")]) partition :: (a -> Bool) -> Map k a -> (Map k a,Map k a) partition p m = partitionWithKey (\_ x -> p x) m -- | /O(n)/. Partition the map according to a predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. -- -- > partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b") -- > partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) -- > partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")]) partitionWithKey :: (k -> a -> Bool) -> Map k a -> (Map k a,Map k a) partitionWithKey p0 t0 = toPair $ go p0 t0 where go _ Tip = (Tip :*: Tip) go p (Bin _ kx x l r) | p kx x = link kx x l1 r1 :*: merge l2 r2 | otherwise = merge l1 r1 :*: link kx x l2 r2 where (l1 :*: l2) = go p l (r1 :*: r2) = go p r -- | /O(n)/. Map values and collect the 'Just' results. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a" mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b mapMaybe f = mapMaybeWithKey (\_ x -> f x) -- | /O(n)/. Map keys\/values and collect the 'Just' results. -- -- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing -- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3" mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b mapMaybeWithKey _ Tip = Tip mapMaybeWithKey f (Bin _ kx x l r) = case f kx x of Just y -> link kx y (mapMaybeWithKey f l) (mapMaybeWithKey f r) Nothing -> merge (mapMaybeWithKey f l) (mapMaybeWithKey f r) -- | /O(n)/. Map values and separate the 'Left' and 'Right' results. -- -- > let f a = if a < "c" then Left a else Right a -- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) -- > -- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c) mapEither f m = mapEitherWithKey (\_ x -> f x) m -- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results. -- -- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) -- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) -- > -- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")]) mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c) mapEitherWithKey f0 t0 = toPair $ go f0 t0 where go _ Tip = (Tip :*: Tip) go f (Bin _ kx x l r) = case f kx x of Left y -> link kx y l1 r1 :*: merge l2 r2 Right z -> merge l1 r1 :*: link kx z l2 r2 where (l1 :*: l2) = go f l (r1 :*: r2) = go f r {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. -- -- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")] map :: (a -> b) -> Map k a -> Map k b map _ Tip = Tip map f (Bin sx kx x l r) = Bin sx kx (f x) (map f l) (map f r) #ifdef __GLASGOW_HASKELL__ {-# NOINLINE [1] map #-} {-# RULES "map/map" forall f g xs . map f (map g xs) = map (f . g) xs #-} #endif #if __GLASGOW_HASKELL__ >= 709 -- Safe coercions were introduced in 7.8, but did not work well with RULES yet. {-# RULES "map/coerce" map coerce = coerce #-} #endif -- | /O(n)/. Map a function over all values in the map. -- -- > let f key x = (show key) ++ ":" ++ x -- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")] mapWithKey :: (k -> a -> b) -> Map k a -> Map k b mapWithKey _ Tip = Tip mapWithKey f (Bin sx kx x l r) = Bin sx kx (f kx x) (mapWithKey f l) (mapWithKey f r) #ifdef __GLASGOW_HASKELL__ {-# NOINLINE [1] mapWithKey #-} {-# RULES "mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) = mapWithKey (\k a -> f k (g k a)) xs "mapWithKey/map" forall f g xs . mapWithKey f (map g xs) = mapWithKey (\k a -> f k (g a)) xs "map/mapWithKey" forall f g xs . map f (mapWithKey g xs) = mapWithKey (\k a -> f (g k a)) xs #-} #endif -- | /O(n)/. -- @'traverseWithKey' f s == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@ -- That is, behaves exactly like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value. -- -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b) traverseWithKey f = go where go Tip = pure Tip go (Bin 1 k v _ _) = (\v' -> Bin 1 k v' Tip Tip) <$> f k v go (Bin s k v l r) = flip (Bin s k) <$> go l <*> f k v <*> go r {-# INLINE traverseWithKey #-} -- | /O(n)/. The function 'mapAccum' threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a b = (a ++ b, b ++ "X") -- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")]) mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccum f a m = mapAccumWithKey (\a' _ x' -> f a' x') a m -- | /O(n)/. The function 'mapAccumWithKey' threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") -- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")]) mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumWithKey f a t = mapAccumL f a t -- | /O(n)/. The function 'mapAccumL' threads an accumulating -- argument through the map in ascending order of keys. mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumL _ a Tip = (a,Tip) mapAccumL f a (Bin sx kx x l r) = let (a1,l') = mapAccumL f a l (a2,x') = f a1 kx x (a3,r') = mapAccumL f a2 r in (a3,Bin sx kx x' l' r') -- | /O(n)/. The function 'mapAccumR' threads an accumulating -- argument through the map in descending order of keys. mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumRWithKey _ a Tip = (a,Tip) mapAccumRWithKey f a (Bin sx kx x l r) = let (a1,r') = mapAccumRWithKey f a r (a2,x') = f a1 kx x (a3,l') = mapAccumRWithKey f a2 l in (a3,Bin sx kx x' l' r') -- | /O(n*log n)/. -- @'mapKeys' f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the value at the greatest of the -- original keys is retained. -- -- > mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")] -- > mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c" -- > mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c" mapKeys :: Ord k2 => (k1->k2) -> Map k1 a -> Map k2 a mapKeys f = fromList . foldrWithKey (\k x xs -> (f k, x) : xs) [] #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE mapKeys #-} #endif -- | /O(n*log n)/. -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. -- -- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" -- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab" mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) [] #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE mapKeysWith #-} #endif -- | /O(n)/. -- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@ -- is strictly monotonic. -- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapKeysMonotonic f s == mapKeys f s -- > where ls = keys s -- -- This means that @f@ maps distinct original keys to distinct resulting keys. -- This function has better performance than 'mapKeys'. -- -- > mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")] -- > valid (mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")])) == True -- > valid (mapKeysMonotonic (\ _ -> 1) (fromList [(5,"a"), (3,"b")])) == False mapKeysMonotonic :: (k1->k2) -> Map k1 a -> Map k2 a mapKeysMonotonic _ Tip = Tip mapKeysMonotonic f (Bin sz k x l r) = Bin sz (f k) x (mapKeysMonotonic f l) (mapKeysMonotonic f r) {-------------------------------------------------------------------- Folds --------------------------------------------------------------------} -- | /O(n)/. Fold the values in the map using the given right-associative -- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@. -- -- For example, -- -- > elems map = foldr (:) [] map -- -- > let f a len = len + (length a) -- > foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4 foldr :: (a -> b -> b) -> b -> Map k a -> b foldr f z = go z where go z' Tip = z' go z' (Bin _ _ x l r) = go (f x (go z' r)) l {-# INLINE foldr #-} -- | /O(n)/. A strict version of 'foldr'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldr' :: (a -> b -> b) -> b -> Map k a -> b foldr' f z = go z where STRICT_1_OF_2(go) go z' Tip = z' go z' (Bin _ _ x l r) = go (f x (go z' r)) l {-# INLINE foldr' #-} -- | /O(n)/. Fold the values in the map using the given left-associative -- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@. -- -- For example, -- -- > elems = reverse . foldl (flip (:)) [] -- -- > let f len a = len + (length a) -- > foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4 foldl :: (a -> b -> a) -> a -> Map k b -> a foldl f z = go z where go z' Tip = z' go z' (Bin _ _ x l r) = go (f (go z' l) x) r {-# INLINE foldl #-} -- | /O(n)/. A strict version of 'foldl'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldl' :: (a -> b -> a) -> a -> Map k b -> a foldl' f z = go z where STRICT_1_OF_2(go) go z' Tip = z' go z' (Bin _ _ x l r) = go (f (go z' l) x) r {-# INLINE foldl' #-} -- | /O(n)/. Fold the keys and values in the map using the given right-associative -- binary operator, such that -- @'foldrWithKey' f z == 'Prelude.foldr' ('uncurry' f) z . 'toAscList'@. -- -- For example, -- -- > keys map = foldrWithKey (\k x ks -> k:ks) [] map -- -- > let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" -- > foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)" foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b foldrWithKey f z = go z where go z' Tip = z' go z' (Bin _ kx x l r) = go (f kx x (go z' r)) l {-# INLINE foldrWithKey #-} -- | /O(n)/. A strict version of 'foldrWithKey'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldrWithKey' :: (k -> a -> b -> b) -> b -> Map k a -> b foldrWithKey' f z = go z where STRICT_1_OF_2(go) go z' Tip = z' go z' (Bin _ kx x l r) = go (f kx x (go z' r)) l {-# INLINE foldrWithKey' #-} -- | /O(n)/. Fold the keys and values in the map using the given left-associative -- binary operator, such that -- @'foldlWithKey' f z == 'Prelude.foldl' (\\z' (kx, x) -> f z' kx x) z . 'toAscList'@. -- -- For example, -- -- > keys = reverse . foldlWithKey (\ks k x -> k:ks) [] -- -- > let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" -- > foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)" foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a foldlWithKey f z = go z where go z' Tip = z' go z' (Bin _ kx x l r) = go (f (go z' l) kx x) r {-# INLINE foldlWithKey #-} -- | /O(n)/. A strict version of 'foldlWithKey'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldlWithKey' :: (a -> k -> b -> a) -> a -> Map k b -> a foldlWithKey' f z = go z where STRICT_1_OF_2(go) go z' Tip = z' go z' (Bin _ kx x l r) = go (f (go z' l) kx x) r {-# INLINE foldlWithKey' #-} -- | /O(n)/. Fold the keys and values in the map using the given monoid, such that -- -- @'foldMapWithKey' f = 'Prelude.fold' . 'mapWithKey' f@ -- -- This can be an asymptotically faster than 'foldrWithKey' or 'foldlWithKey' for some monoids. foldMapWithKey :: Monoid m => (k -> a -> m) -> Map k a -> m foldMapWithKey f = go where go Tip = mempty go (Bin 1 k v _ _) = f k v go (Bin _ k v l r) = go l `mappend` (f k v `mappend` go r) {-# INLINE foldMapWithKey #-} {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(n)/. -- Return all elements of the map in the ascending order of their keys. -- Subject to list fusion. -- -- > elems (fromList [(5,"a"), (3,"b")]) == ["b","a"] -- > elems empty == [] elems :: Map k a -> [a] elems = foldr (:) [] -- | /O(n)/. Return all keys of the map in ascending order. Subject to list -- fusion. -- -- > keys (fromList [(5,"a"), (3,"b")]) == [3,5] -- > keys empty == [] keys :: Map k a -> [k] keys = foldrWithKey (\k _ ks -> k : ks) [] -- | /O(n)/. An alias for 'toAscList'. Return all key\/value pairs in the map -- in ascending key order. Subject to list fusion. -- -- > assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] -- > assocs empty == [] assocs :: Map k a -> [(k,a)] assocs m = toAscList m -- | /O(n)/. The set of all keys of the map. -- -- > keysSet (fromList [(5,"a"), (3,"b")]) == Data.Set.fromList [3,5] -- > keysSet empty == Data.Set.empty keysSet :: Map k a -> Set.Set k keysSet Tip = Set.Tip keysSet (Bin sz kx _ l r) = Set.Bin sz kx (keysSet l) (keysSet r) -- | /O(n)/. Build a map from a set of keys and a function which for each key -- computes its value. -- -- > fromSet (\k -> replicate k 'a') (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] -- > fromSet undefined Data.Set.empty == empty fromSet :: (k -> a) -> Set.Set k -> Map k a fromSet _ Set.Tip = Tip fromSet f (Set.Bin sz x l r) = Bin sz x (f x) (fromSet f l) (fromSet f r) {-------------------------------------------------------------------- Lists use [foldlStrict] to reduce demand on the control-stack --------------------------------------------------------------------} #if __GLASGOW_HASKELL__ >= 708 instance (Ord k) => GHCExts.IsList (Map k v) where type Item (Map k v) = (k,v) fromList = fromList toList = toList #endif -- | /O(n*log n)/. Build a map from a list of key\/value pairs. See also 'fromAscList'. -- If the list contains more than one value for the same key, the last value -- for the key is retained. -- -- If the keys of the list are ordered, linear-time implementation is used, -- with the performance equal to 'fromDistinctAscList'. -- -- > fromList [] == empty -- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] -- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")] -- For some reason, when 'singleton' is used in fromList or in -- create, it is not inlined, so we inline it manually. fromList :: Ord k => [(k,a)] -> Map k a fromList [] = Tip fromList [(kx, x)] = Bin 1 kx x Tip Tip fromList ((kx0, x0) : xs0) | not_ordered kx0 xs0 = fromList' (Bin 1 kx0 x0 Tip Tip) xs0 | otherwise = go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0 where not_ordered _ [] = False not_ordered kx ((ky,_) : _) = kx >= ky {-# INLINE not_ordered #-} fromList' t0 xs = foldlStrict ins t0 xs where ins t (k,x) = insert k x t STRICT_1_OF_3(go) go _ t [] = t go _ t [(kx, x)] = insertMax kx x t go s l xs@((kx, x) : xss) | not_ordered kx xss = fromList' l xs | otherwise = case create s xss of (r, ys, []) -> go (s `shiftL` 1) (link kx x l r) ys (r, _, ys) -> fromList' (link kx x l r) ys -- The create is returning a triple (tree, xs, ys). Both xs and ys -- represent not yet processed elements and only one of them can be nonempty. -- If ys is nonempty, the keys in ys are not ordered with respect to tree -- and must be inserted using fromList'. Otherwise the keys have been -- ordered so far. STRICT_1_OF_2(create) create _ [] = (Tip, [], []) create s xs@(xp : xss) | s == 1 = case xp of (kx, x) | not_ordered kx xss -> (Bin 1 kx x Tip Tip, [], xss) | otherwise -> (Bin 1 kx x Tip Tip, xss, []) | otherwise = case create (s `shiftR` 1) xs of res@(_, [], _) -> res (l, [(ky, y)], zs) -> (insertMax ky y l, [], zs) (l, ys@((ky, y):yss), _) | not_ordered ky yss -> (l, [], ys) | otherwise -> case create (s `shiftR` 1) yss of (r, zs, ws) -> (link ky y l r, zs, ws) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromList #-} #endif -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'. -- -- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] -- > fromListWith (++) [] == empty fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a fromListWith f xs = fromListWithKey (\_ x y -> f x y) xs #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromListWith #-} #endif -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWithKey'. -- -- > let f k a1 a2 = (show k) ++ a1 ++ a2 -- > fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")] -- > fromListWithKey f [] == empty fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromListWithKey f xs = foldlStrict ins empty xs where ins t (k,x) = insertWithKey f k x t #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromListWithKey #-} #endif -- | /O(n)/. Convert the map to a list of key\/value pairs. Subject to list fusion. -- -- > toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] -- > toList empty == [] toList :: Map k a -> [(k,a)] toList = toAscList -- | /O(n)/. Convert the map to a list of key\/value pairs where the keys are -- in ascending order. Subject to list fusion. -- -- > toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] toAscList :: Map k a -> [(k,a)] toAscList = foldrWithKey (\k x xs -> (k,x):xs) [] -- | /O(n)/. Convert the map to a list of key\/value pairs where the keys -- are in descending order. Subject to list fusion. -- -- > toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")] toDescList :: Map k a -> [(k,a)] toDescList = foldlWithKey (\xs k x -> (k,x):xs) [] -- List fusion for the list generating functions. #if __GLASGOW_HASKELL__ -- The foldrFB and foldlFB are fold{r,l}WithKey equivalents, used for list fusion. -- They are important to convert unfused methods back, see mapFB in prelude. foldrFB :: (k -> a -> b -> b) -> b -> Map k a -> b foldrFB = foldrWithKey {-# INLINE[0] foldrFB #-} foldlFB :: (a -> k -> b -> a) -> a -> Map k b -> a foldlFB = foldlWithKey {-# INLINE[0] foldlFB #-} -- Inline assocs and toList, so that we need to fuse only toAscList. {-# INLINE assocs #-} {-# INLINE toList #-} -- The fusion is enabled up to phase 2 included. If it does not succeed, -- convert in phase 1 the expanded elems,keys,to{Asc,Desc}List calls back to -- elems,keys,to{Asc,Desc}List. In phase 0, we inline fold{lr}FB (which were -- used in a list fusion, otherwise it would go away in phase 1), and let compiler -- do whatever it wants with elems,keys,to{Asc,Desc}List -- it was forbidden to -- inline it before phase 0, otherwise the fusion rules would not fire at all. {-# NOINLINE[0] elems #-} {-# NOINLINE[0] keys #-} {-# NOINLINE[0] toAscList #-} {-# NOINLINE[0] toDescList #-} {-# RULES "Map.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-} {-# RULES "Map.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-} {-# RULES "Map.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-} {-# RULES "Map.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-} {-# RULES "Map.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-} {-# RULES "Map.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-} {-# RULES "Map.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-} {-# RULES "Map.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-} #endif {-------------------------------------------------------------------- Building trees from ascending/descending lists can be done in linear time. Note that if [xs] is ascending that: fromAscList xs == fromList xs fromAscListWith f xs == fromListWith f xs --------------------------------------------------------------------} -- | /O(n)/. Build a map from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")] -- > valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True -- > valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False fromAscList :: Eq k => [(k,a)] -> Map k a fromAscList xs = fromAscListWithKey (\_ x _ -> x) xs #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromAscList #-} #endif -- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] -- > valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True -- > valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a fromAscListWith f xs = fromAscListWithKey (\_ x y -> f x y) xs #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromAscListWith #-} #endif -- | /O(n)/. Build a map from an ascending list in linear time with a -- combining function for equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2 -- > fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")] -- > valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True -- > valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromAscListWithKey f xs = fromDistinctAscList (combineEq f xs) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq _ xs' = case xs' of [] -> [] [x] -> [x] (x:xx) -> combineEq' x xx combineEq' z [] = [z] combineEq' z@(kz,zz) (x@(kx,xx):xs') | kx==kz = let yy = f kx xx zz in combineEq' (kx,yy) xs' | otherwise = z:combineEq' x xs' #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE fromAscListWithKey #-} #endif -- | /O(n)/. Build a map from an ascending list of distinct elements in linear time. -- /The precondition is not checked./ -- -- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > valid (fromDistinctAscList [(3,"b"), (5,"a")]) == True -- > valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False -- For some reason, when 'singleton' is used in fromDistinctAscList or in -- create, it is not inlined, so we inline it manually. fromDistinctAscList :: [(k,a)] -> Map k a fromDistinctAscList [] = Tip fromDistinctAscList ((kx0, x0) : xs0) = go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0 where STRICT_1_OF_3(go) go _ t [] = t go s l ((kx, x) : xs) = case create s xs of (r, ys) -> go (s `shiftL` 1) (link kx x l r) ys STRICT_1_OF_2(create) create _ [] = (Tip, []) create s xs@(x' : xs') | s == 1 = case x' of (kx, x) -> (Bin 1 kx x Tip Tip, xs') | otherwise = case create (s `shiftR` 1) xs of res@(_, []) -> res (l, (ky, y):ys) -> case create (s `shiftR` 1) ys of (r, zs) -> (link ky y l r, zs) {-------------------------------------------------------------------- Utility functions that return sub-ranges of the original tree. Some functions take a `Maybe value` as an argument to allow comparisons against infinite values. These are called `blow` (Nothing is -\infty) and `bhigh` (here Nothing is +\infty). We use MaybeS value, which is a Maybe strict in the Just case. [trim blow bhigh t] A tree that is either empty or where [x > blow] and [x < bhigh] for the value [x] of the root. [filterGt blow t] A tree where for all values [k]. [k > blow] [filterLt bhigh t] A tree where for all values [k]. [k < bhigh] [split k t] Returns two trees [l] and [r] where all keys in [l] are <[k] and all keys in [r] are >[k]. [splitLookup k t] Just like [split] but also returns whether [k] was found in the tree. --------------------------------------------------------------------} data MaybeS a = NothingS | JustS !a {-------------------------------------------------------------------- [trim blo bhi t] trims away all subtrees that surely contain no values between the range [blo] to [bhi]. The returned tree is either empty or the key of the root is between @blo@ and @bhi@. --------------------------------------------------------------------} trim :: Ord k => MaybeS k -> MaybeS k -> Map k a -> Map k a trim NothingS NothingS t = t trim (JustS lk) NothingS t = greater lk t where greater lo (Bin _ k _ _ r) | k <= lo = greater lo r greater _ t' = t' trim NothingS (JustS hk) t = lesser hk t where lesser hi (Bin _ k _ l _) | k >= hi = lesser hi l lesser _ t' = t' trim (JustS lk) (JustS hk) t = middle lk hk t where middle lo hi (Bin _ k _ _ r) | k <= lo = middle lo hi r middle lo hi (Bin _ k _ l _) | k >= hi = middle lo hi l middle _ _ t' = t' #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE trim #-} #endif -- Helper function for 'mergeWithKey'. The @'trimLookupLo' lk hk t@ performs both -- @'trim' (JustS lk) hk t@ and @'lookup' lk t@. -- See Note: Type of local 'go' function trimLookupLo :: Ord k => k -> MaybeS k -> Map k a -> (Maybe a, Map k a) trimLookupLo lk0 mhk0 t0 = toPair $ go lk0 mhk0 t0 where go lk NothingS t = greater lk t where greater :: Ord k => k -> Map k a -> StrictPair (Maybe a) (Map k a) greater lo t'@(Bin _ kx x l r) = case compare lo kx of LT -> lookup lo l :*: t' EQ -> (Just x :*: r) GT -> greater lo r greater _ Tip = (Nothing :*: Tip) go lk (JustS hk) t = middle lk hk t where middle :: Ord k => k -> k -> Map k a -> StrictPair (Maybe a) (Map k a) middle lo hi t'@(Bin _ kx x l r) = case compare lo kx of LT | kx < hi -> lookup lo l :*: t' | otherwise -> middle lo hi l EQ -> Just x :*: lesser hi r GT -> middle lo hi r middle _ _ Tip = (Nothing :*: Tip) lesser :: Ord k => k -> Map k a -> Map k a lesser hi (Bin _ k _ l _) | k >= hi = lesser hi l lesser _ t' = t' #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE trimLookupLo #-} #endif {-------------------------------------------------------------------- [filterGt b t] filter all keys >[b] from tree [t] [filterLt b t] filter all keys <[b] from tree [t] --------------------------------------------------------------------} filterGt :: Ord k => MaybeS k -> Map k v -> Map k v filterGt NothingS t = t filterGt (JustS b) t = filter' b t where filter' _ Tip = Tip filter' b' (Bin _ kx x l r) = case compare b' kx of LT -> link kx x (filter' b' l) r EQ -> r GT -> filter' b' r #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE filterGt #-} #endif filterLt :: Ord k => MaybeS k -> Map k v -> Map k v filterLt NothingS t = t filterLt (JustS b) t = filter' b t where filter' _ Tip = Tip filter' b' (Bin _ kx x l r) = case compare kx b' of LT -> link kx x l (filter' b' r) EQ -> l GT -> filter' b' l #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE filterLt #-} #endif {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@'split' k map@) is a pair @(map1,map2)@ where -- the keys in @map1@ are smaller than @k@ and the keys in @map2@ larger than @k@. -- Any key equal to @k@ is found in neither @map1@ nor @map2@. -- -- > split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")]) -- > split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a") -- > split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") -- > split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty) -- > split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty) split :: Ord k => k -> Map k a -> (Map k a,Map k a) split k0 t0 = k0 `seq` toPair $ go k0 t0 where go k t = case t of Tip -> (Tip :*: Tip) Bin _ kx x l r -> case compare k kx of LT -> let (lt :*: gt) = go k l in lt :*: link kx x gt r GT -> let (lt :*: gt) = go k r in link kx x l lt :*: gt EQ -> (l :*: r) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE split #-} #endif -- | /O(log n)/. The expression (@'splitLookup' k map@) splits a map just -- like 'split' but also returns @'lookup' k map@. -- -- > splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")]) -- > splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a") -- > splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a") -- > splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty) -- > splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty) splitLookup :: Ord k => k -> Map k a -> (Map k a,Maybe a,Map k a) splitLookup k t = k `seq` case t of Tip -> (Tip,Nothing,Tip) Bin _ kx x l r -> case compare k kx of LT -> let (lt,z,gt) = splitLookup k l gt' = link kx x gt r in gt' `seq` (lt,z,gt') GT -> let (lt,z,gt) = splitLookup k r lt' = link kx x l lt in lt' `seq` (lt',z,gt) EQ -> (l,Just x,r) #if __GLASGOW_HASKELL__ >= 700 {-# INLINABLE splitLookup #-} #endif {-------------------------------------------------------------------- Utility functions that maintain the balance properties of the tree. All constructors assume that all values in [l] < [k] and all values in [r] > [k], and that [l] and [r] are valid trees. In order of sophistication: [Bin sz k x l r] The type constructor. [bin k x l r] Maintains the correct size, assumes that both [l] and [r] are balanced with respect to each other. [balance k x l r] Restores the balance and size. Assumes that the original tree was balanced and that [l] or [r] has changed by at most one element. [link k x l r] Restores balance and size. Furthermore, we can construct a new tree from two trees. Both operations assume that all values in [l] < all values in [r] and that [l] and [r] are valid: [glue l r] Glues [l] and [r] together. Assumes that [l] and [r] are already balanced with respect to each other. [merge l r] Merges two trees and restores balance. Note: in contrast to Adam's paper, we use (<=) comparisons instead of (<) comparisons in [link], [merge] and [balance]. Quickcheck (on [difference]) showed that this was necessary in order to maintain the invariants. It is quite unsatisfactory that I haven't been able to find out why this is actually the case! Fortunately, it doesn't hurt to be a bit more conservative. --------------------------------------------------------------------} {-------------------------------------------------------------------- Link --------------------------------------------------------------------} link :: k -> a -> Map k a -> Map k a -> Map k a link kx x Tip r = insertMin kx x r link kx x l Tip = insertMax kx x l link kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz) | delta*sizeL < sizeR = balanceL kz z (link kx x l lz) rz | delta*sizeR < sizeL = balanceR ky y ly (link kx x ry r) | otherwise = bin kx x l r -- insertMin and insertMax don't perform potentially expensive comparisons. insertMax,insertMin :: k -> a -> Map k a -> Map k a insertMax kx x t = case t of Tip -> singleton kx x Bin _ ky y l r -> balanceR ky y l (insertMax kx x r) insertMin kx x t = case t of Tip -> singleton kx x Bin _ ky y l r -> balanceL ky y (insertMin kx x l) r {-------------------------------------------------------------------- [merge l r]: merges two trees. --------------------------------------------------------------------} merge :: Map k a -> Map k a -> Map k a merge Tip r = r merge l Tip = l merge l@(Bin sizeL kx x lx rx) r@(Bin sizeR ky y ly ry) | delta*sizeL < sizeR = balanceL ky y (merge l ly) ry | delta*sizeR < sizeL = balanceR kx x lx (merge rx r) | otherwise = glue l r {-------------------------------------------------------------------- [glue l r]: glues two trees together. Assumes that [l] and [r] are already balanced with respect to each other. --------------------------------------------------------------------} glue :: Map k a -> Map k a -> Map k a glue Tip r = r glue l Tip = l glue l r | size l > size r = let ((km,m),l') = deleteFindMax l in balanceR km m l' r | otherwise = let ((km,m),r') = deleteFindMin r in balanceL km m l r' -- | /O(log n)/. Delete and find the minimal element. -- -- > deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")]) -- > deleteFindMin Error: can not return the minimal element of an empty map deleteFindMin :: Map k a -> ((k,a),Map k a) deleteFindMin t = case t of Bin _ k x Tip r -> ((k,x),r) Bin _ k x l r -> let (km,l') = deleteFindMin l in (km,balanceR k x l' r) Tip -> (error "Map.deleteFindMin: can not return the minimal element of an empty map", Tip) -- | /O(log n)/. Delete and find the maximal element. -- -- > deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")]) -- > deleteFindMax empty Error: can not return the maximal element of an empty map deleteFindMax :: Map k a -> ((k,a),Map k a) deleteFindMax t = case t of Bin _ k x l Tip -> ((k,x),l) Bin _ k x l r -> let (km,r') = deleteFindMax r in (km,balanceL k x l r') Tip -> (error "Map.deleteFindMax: can not return the maximal element of an empty map", Tip) {-------------------------------------------------------------------- [balance l x r] balances two trees with value x. The sizes of the trees should balance after decreasing the size of one of them. (a rotation). [delta] is the maximal relative difference between the sizes of two trees, it corresponds with the [w] in Adams' paper. [ratio] is the ratio between an outer and inner sibling of the heavier subtree in an unbalanced setting. It determines whether a double or single rotation should be performed to restore balance. It is corresponds with the inverse of $\alpha$ in Adam's article. Note that according to the Adam's paper: - [delta] should be larger than 4.646 with a [ratio] of 2. - [delta] should be larger than 3.745 with a [ratio] of 1.534. But the Adam's paper is erroneous: - It can be proved that for delta=2 and delta>=5 there does not exist any ratio that would work. - Delta=4.5 and ratio=2 does not work. That leaves two reasonable variants, delta=3 and delta=4, both with ratio=2. - A lower [delta] leads to a more 'perfectly' balanced tree. - A higher [delta] performs less rebalancing. In the benchmarks, delta=3 is faster on insert operations, and delta=4 has slightly better deletes. As the insert speedup is larger, we currently use delta=3. --------------------------------------------------------------------} delta,ratio :: Int delta = 3 ratio = 2 -- The balance function is equivalent to the following: -- -- balance :: k -> a -> Map k a -> Map k a -> Map k a -- balance k x l r -- | sizeL + sizeR <= 1 = Bin sizeX k x l r -- | sizeR > delta*sizeL = rotateL k x l r -- | sizeL > delta*sizeR = rotateR k x l r -- | otherwise = Bin sizeX k x l r -- where -- sizeL = size l -- sizeR = size r -- sizeX = sizeL + sizeR + 1 -- -- rotateL :: a -> b -> Map a b -> Map a b -> Map a b -- rotateL k x l r@(Bin _ _ _ ly ry) | size ly < ratio*size ry = singleL k x l r -- | otherwise = doubleL k x l r -- -- rotateR :: a -> b -> Map a b -> Map a b -> Map a b -- rotateR k x l@(Bin _ _ _ ly ry) r | size ry < ratio*size ly = singleR k x l r -- | otherwise = doubleR k x l r -- -- singleL, singleR :: a -> b -> Map a b -> Map a b -> Map a b -- singleL k1 x1 t1 (Bin _ k2 x2 t2 t3) = bin k2 x2 (bin k1 x1 t1 t2) t3 -- singleR k1 x1 (Bin _ k2 x2 t1 t2) t3 = bin k2 x2 t1 (bin k1 x1 t2 t3) -- -- doubleL, doubleR :: a -> b -> Map a b -> Map a b -> Map a b -- doubleL k1 x1 t1 (Bin _ k2 x2 (Bin _ k3 x3 t2 t3) t4) = bin k3 x3 (bin k1 x1 t1 t2) (bin k2 x2 t3 t4) -- doubleR k1 x1 (Bin _ k2 x2 t1 (Bin _ k3 x3 t2 t3)) t4 = bin k3 x3 (bin k2 x2 t1 t2) (bin k1 x1 t3 t4) -- -- It is only written in such a way that every node is pattern-matched only once. balance :: k -> a -> Map k a -> Map k a -> Map k a balance k x l r = case l of Tip -> case r of Tip -> Bin 1 k x Tip Tip (Bin _ _ _ Tip Tip) -> Bin 2 k x Tip r (Bin _ rk rx Tip rr@(Bin _ _ _ _ _)) -> Bin 3 rk rx (Bin 1 k x Tip Tip) rr (Bin _ rk rx (Bin _ rlk rlx _ _) Tip) -> Bin 3 rlk rlx (Bin 1 k x Tip Tip) (Bin 1 rk rx Tip Tip) (Bin rs rk rx rl@(Bin rls rlk rlx rll rlr) rr@(Bin rrs _ _ _ _)) | rls < ratio*rrs -> Bin (1+rs) rk rx (Bin (1+rls) k x Tip rl) rr | otherwise -> Bin (1+rs) rlk rlx (Bin (1+size rll) k x Tip rll) (Bin (1+rrs+size rlr) rk rx rlr rr) (Bin ls lk lx ll lr) -> case r of Tip -> case (ll, lr) of (Tip, Tip) -> Bin 2 k x l Tip (Tip, (Bin _ lrk lrx _ _)) -> Bin 3 lrk lrx (Bin 1 lk lx Tip Tip) (Bin 1 k x Tip Tip) ((Bin _ _ _ _ _), Tip) -> Bin 3 lk lx ll (Bin 1 k x Tip Tip) ((Bin lls _ _ _ _), (Bin lrs lrk lrx lrl lrr)) | lrs < ratio*lls -> Bin (1+ls) lk lx ll (Bin (1+lrs) k x lr Tip) | otherwise -> Bin (1+ls) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+size lrr) k x lrr Tip) (Bin rs rk rx rl rr) | rs > delta*ls -> case (rl, rr) of (Bin rls rlk rlx rll rlr, Bin rrs _ _ _ _) | rls < ratio*rrs -> Bin (1+ls+rs) rk rx (Bin (1+ls+rls) k x l rl) rr | otherwise -> Bin (1+ls+rs) rlk rlx (Bin (1+ls+size rll) k x l rll) (Bin (1+rrs+size rlr) rk rx rlr rr) (_, _) -> error "Failure in Data.Map.balance" | ls > delta*rs -> case (ll, lr) of (Bin lls _ _ _ _, Bin lrs lrk lrx lrl lrr) | lrs < ratio*lls -> Bin (1+ls+rs) lk lx ll (Bin (1+rs+lrs) k x lr r) | otherwise -> Bin (1+ls+rs) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+rs+size lrr) k x lrr r) (_, _) -> error "Failure in Data.Map.balance" | otherwise -> Bin (1+ls+rs) k x l r {-# NOINLINE balance #-} -- Functions balanceL and balanceR are specialised versions of balance. -- balanceL only checks whether the left subtree is too big, -- balanceR only checks whether the right subtree is too big. -- balanceL is called when left subtree might have been inserted to or when -- right subtree might have been deleted from. balanceL :: k -> a -> Map k a -> Map k a -> Map k a balanceL k x l r = case r of Tip -> case l of Tip -> Bin 1 k x Tip Tip (Bin _ _ _ Tip Tip) -> Bin 2 k x l Tip (Bin _ lk lx Tip (Bin _ lrk lrx _ _)) -> Bin 3 lrk lrx (Bin 1 lk lx Tip Tip) (Bin 1 k x Tip Tip) (Bin _ lk lx ll@(Bin _ _ _ _ _) Tip) -> Bin 3 lk lx ll (Bin 1 k x Tip Tip) (Bin ls lk lx ll@(Bin lls _ _ _ _) lr@(Bin lrs lrk lrx lrl lrr)) | lrs < ratio*lls -> Bin (1+ls) lk lx ll (Bin (1+lrs) k x lr Tip) | otherwise -> Bin (1+ls) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+size lrr) k x lrr Tip) (Bin rs _ _ _ _) -> case l of Tip -> Bin (1+rs) k x Tip r (Bin ls lk lx ll lr) | ls > delta*rs -> case (ll, lr) of (Bin lls _ _ _ _, Bin lrs lrk lrx lrl lrr) | lrs < ratio*lls -> Bin (1+ls+rs) lk lx ll (Bin (1+rs+lrs) k x lr r) | otherwise -> Bin (1+ls+rs) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+rs+size lrr) k x lrr r) (_, _) -> error "Failure in Data.Map.balanceL" | otherwise -> Bin (1+ls+rs) k x l r {-# NOINLINE balanceL #-} -- balanceR is called when right subtree might have been inserted to or when -- left subtree might have been deleted from. balanceR :: k -> a -> Map k a -> Map k a -> Map k a balanceR k x l r = case l of Tip -> case r of Tip -> Bin 1 k x Tip Tip (Bin _ _ _ Tip Tip) -> Bin 2 k x Tip r (Bin _ rk rx Tip rr@(Bin _ _ _ _ _)) -> Bin 3 rk rx (Bin 1 k x Tip Tip) rr (Bin _ rk rx (Bin _ rlk rlx _ _) Tip) -> Bin 3 rlk rlx (Bin 1 k x Tip Tip) (Bin 1 rk rx Tip Tip) (Bin rs rk rx rl@(Bin rls rlk rlx rll rlr) rr@(Bin rrs _ _ _ _)) | rls < ratio*rrs -> Bin (1+rs) rk rx (Bin (1+rls) k x Tip rl) rr | otherwise -> Bin (1+rs) rlk rlx (Bin (1+size rll) k x Tip rll) (Bin (1+rrs+size rlr) rk rx rlr rr) (Bin ls _ _ _ _) -> case r of Tip -> Bin (1+ls) k x l Tip (Bin rs rk rx rl rr) | rs > delta*ls -> case (rl, rr) of (Bin rls rlk rlx rll rlr, Bin rrs _ _ _ _) | rls < ratio*rrs -> Bin (1+ls+rs) rk rx (Bin (1+ls+rls) k x l rl) rr | otherwise -> Bin (1+ls+rs) rlk rlx (Bin (1+ls+size rll) k x l rll) (Bin (1+rrs+size rlr) rk rx rlr rr) (_, _) -> error "Failure in Data.Map.balanceR" | otherwise -> Bin (1+ls+rs) k x l r {-# NOINLINE balanceR #-} {-------------------------------------------------------------------- The bin constructor maintains the size of the tree --------------------------------------------------------------------} bin :: k -> a -> Map k a -> Map k a -> Map k a bin k x l r = Bin (size l + size r + 1) k x l r {-# INLINE bin #-} {-------------------------------------------------------------------- Eq converts the tree to a list. In a lazy setting, this actually seems one of the faster methods to compare two trees and it is certainly the simplest :-) --------------------------------------------------------------------} instance (Eq k,Eq a) => Eq (Map k a) where t1 == t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2) {-------------------------------------------------------------------- Ord --------------------------------------------------------------------} instance (Ord k, Ord v) => Ord (Map k v) where compare m1 m2 = compare (toAscList m1) (toAscList m2) {-------------------------------------------------------------------- Functor --------------------------------------------------------------------} instance Functor (Map k) where fmap f m = map f m instance Traversable (Map k) where traverse f = traverseWithKey (\_ -> f) {-# INLINE traverse #-} instance Foldable.Foldable (Map k) where fold = go where go Tip = mempty go (Bin 1 _ v _ _) = v go (Bin _ _ v l r) = go l `mappend` (v `mappend` go r) {-# INLINABLE fold #-} foldr = foldr {-# INLINE foldr #-} foldl = foldl {-# INLINE foldl #-} foldMap f t = go t where go Tip = mempty go (Bin 1 _ v _ _) = f v go (Bin _ _ v l r) = go l `mappend` (f v `mappend` go r) {-# INLINE foldMap #-} #if MIN_VERSION_base(4,6,0) foldl' = foldl' {-# INLINE foldl' #-} foldr' = foldr' {-# INLINE foldr' #-} #endif #if MIN_VERSION_base(4,8,0) length = size {-# INLINE length #-} null = null {-# INLINE null #-} toList = elems -- NB: Foldable.toList /= Map.toList {-# INLINE toList #-} elem = go where STRICT_1_OF_2(go) go _ Tip = False go x (Bin _ _ v l r) = x == v || go x l || go x r {-# INLINABLE elem #-} maximum = start where start Tip = error "Map.Foldable.maximum: called with empty map" start (Bin _ _ v l r) = go (go v l) r STRICT_1_OF_2(go) go m Tip = m go m (Bin _ _ v l r) = go (go (max m v) l) r {-# INLINABLE maximum #-} minimum = start where start Tip = error "Map.Foldable.minumum: called with empty map" start (Bin _ _ v l r) = go (go v l) r STRICT_1_OF_2(go) go m Tip = m go m (Bin _ _ v l r) = go (go (min m v) l) r {-# INLINABLE minimum #-} sum = foldl' (+) 0 {-# INLINABLE sum #-} product = foldl' (*) 1 {-# INLINABLE product #-} #endif instance (NFData k, NFData a) => NFData (Map k a) where rnf Tip = () rnf (Bin _ kx x l r) = rnf kx `seq` rnf x `seq` rnf l `seq` rnf r {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance (Ord k, Read k, Read e) => Read (Map k e) where #ifdef __GLASGOW_HASKELL__ readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- readPrec return (fromList xs) readListPrec = readListPrecDefault #else readsPrec p = readParen (p > 10) $ \ r -> do ("fromList",s) <- lex r (xs,t) <- reads s return (fromList xs,t) #endif {-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance (Show k, Show a) => Show (Map k a) where showsPrec d m = showParen (d > 10) $ showString "fromList " . shows (toList m) -- | /O(n)/. Show the tree that implements the map. The tree is shown -- in a compressed, hanging format. See 'showTreeWith'. showTree :: (Show k,Show a) => Map k a -> String showTree m = showTreeWith showElem True False m where showElem k x = show k ++ ":=" ++ show x {- | /O(n)/. The expression (@'showTreeWith' showelem hang wide map@) shows the tree that implements the map. Elements are shown using the @showElem@ function. If @hang@ is 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. > Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]] > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t > (4,()) > +--(2,()) > | +--(1,()) > | +--(3,()) > +--(5,()) > > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True t > (4,()) > | > +--(2,()) > | | > | +--(1,()) > | | > | +--(3,()) > | > +--(5,()) > > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True t > +--(5,()) > | > (4,()) > | > | +--(3,()) > | | > +--(2,()) > | > +--(1,()) -} showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String showTreeWith showelem hang wide t | hang = (showsTreeHang showelem wide [] t) "" | otherwise = (showsTree showelem wide [] [] t) "" showsTree :: (k -> a -> String) -> Bool -> [String] -> [String] -> Map k a -> ShowS showsTree showelem wide lbars rbars t = case t of Tip -> showsBars lbars . showString "|\n" Bin _ kx x Tip Tip -> showsBars lbars . showString (showelem kx x) . showString "\n" Bin _ kx x l r -> showsTree showelem wide (withBar rbars) (withEmpty rbars) r . showWide wide rbars . showsBars lbars . showString (showelem kx x) . showString "\n" . showWide wide lbars . showsTree showelem wide (withEmpty lbars) (withBar lbars) l showsTreeHang :: (k -> a -> String) -> Bool -> [String] -> Map k a -> ShowS showsTreeHang showelem wide bars t = case t of Tip -> showsBars bars . showString "|\n" Bin _ kx x Tip Tip -> showsBars bars . showString (showelem kx x) . showString "\n" Bin _ kx x l r -> showsBars bars . showString (showelem kx x) . showString "\n" . showWide wide bars . showsTreeHang showelem wide (withBar bars) l . showWide wide bars . showsTreeHang showelem wide (withEmpty bars) r showWide :: Bool -> [String] -> String -> String showWide wide bars | wide = showString (concat (reverse bars)) . showString "|\n" | otherwise = id showsBars :: [String] -> ShowS showsBars bars = case bars of [] -> id _ -> showString (concat (reverse (tail bars))) . showString node node :: String node = "+--" withBar, withEmpty :: [String] -> [String] withBar bars = "| ":bars withEmpty bars = " ":bars {-------------------------------------------------------------------- Typeable --------------------------------------------------------------------} INSTANCE_TYPEABLE2(Map,mapTc,"Map") {-------------------------------------------------------------------- Assertions --------------------------------------------------------------------} -- | /O(n)/. Test if the internal map structure is valid. -- -- > valid (fromAscList [(3,"b"), (5,"a")]) == True -- > valid (fromAscList [(5,"a"), (3,"b")]) == False valid :: Ord k => Map k a -> Bool valid t = balanced t && ordered t && validsize t ordered :: Ord a => Map a b -> Bool ordered t = bounded (const True) (const True) t where bounded lo hi t' = case t' of Tip -> True Bin _ kx _ l r -> (lo kx) && (hi kx) && bounded lo (<kx) l && bounded (>kx) hi r -- | Exported only for "Debug.QuickCheck" balanced :: Map k a -> Bool balanced t = case t of Tip -> True Bin _ _ _ l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) && balanced l && balanced r validsize :: Map a b -> Bool validsize t = (realsize t == Just (size t)) where realsize t' = case t' of Tip -> Just 0 Bin sz _ _ l r -> case (realsize l,realsize r) of (Just n,Just m) | n+m+1 == sz -> Just sz _ -> Nothing {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- | /O(1)/. Decompose a map into pieces based on the structure of the underlying -- tree. This function is useful for consuming a map in parallel. -- -- No guarantee is made as to the sizes of the pieces; an internal, but -- deterministic process determines this. However, it is guaranteed that the pieces -- returned will be in ascending order (all elements in the first submap less than all -- elements in the second, and so on). -- -- Examples: -- -- > splitRoot (fromList (zip [1..6] ['a'..])) == -- > [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d')],fromList [(5,'e'),(6,'f')]] -- -- > splitRoot empty == [] -- -- Note that the current implementation does not return more than three submaps, -- but you should not depend on this behaviour because it can change in the -- future without notice. splitRoot :: Map k b -> [Map k b] splitRoot orig = case orig of Tip -> [] Bin _ k v l r -> [l, singleton k v, r] {-# INLINE splitRoot #-}