module Convert( convertToHsExpr, convertToPat, convertToHsDecls,
convertToHsType,
thRdrNameGuesses ) where
import HsSyn as Hs
import HsTypes ( mkHsForAllTy )
import qualified Class
import RdrName
import qualified Name
import Module
import RdrHsSyn
import qualified OccName
import OccName
import SrcLoc
import Type
import qualified Coercion ( Role(..) )
import TysWiredIn
import TysPrim (eqPrimTyCon)
import BasicTypes as Hs
import ForeignCall
import Unique
import ErrUtils
import Bag
import Lexeme
import Util
import FastString
import Outputable
import qualified Data.ByteString as BS
import Control.Monad( unless, liftM, ap )
#if __GLASGOW_HASKELL__ < 709
import Control.Applicative (Applicative(..))
#endif
import Data.Char ( chr )
import Data.Word ( Word8 )
import Data.Maybe( catMaybes )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH
convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either MsgDoc [LHsDecl RdrName]
convertToHsDecls loc ds = initCvt loc (fmap catMaybes (mapM cvt_dec ds))
where
cvt_dec d = wrapMsg "declaration" d (cvtDec d)
convertToHsExpr :: SrcSpan -> TH.Exp -> Either MsgDoc (LHsExpr RdrName)
convertToHsExpr loc e
= initCvt loc $ wrapMsg "expression" e $ cvtl e
convertToPat :: SrcSpan -> TH.Pat -> Either MsgDoc (LPat RdrName)
convertToPat loc p
= initCvt loc $ wrapMsg "pattern" p $ cvtPat p
convertToHsType :: SrcSpan -> TH.Type -> Either MsgDoc (LHsType RdrName)
convertToHsType loc t
= initCvt loc $ wrapMsg "type" t $ cvtType t
newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either MsgDoc (SrcSpan, a) }
instance Functor CvtM where
fmap = liftM
instance Applicative CvtM where
pure = return
(<*>) = ap
instance Monad CvtM where
return x = CvtM $ \loc -> Right (loc,x)
(CvtM m) >>= k = CvtM $ \loc -> case m loc of
Left err -> Left err
Right (loc',v) -> unCvtM (k v) loc'
initCvt :: SrcSpan -> CvtM a -> Either MsgDoc a
initCvt loc (CvtM m) = fmap snd (m loc)
force :: a -> CvtM ()
force a = a `seq` return ()
failWith :: MsgDoc -> CvtM a
failWith m = CvtM (\_ -> Left m)
getL :: CvtM SrcSpan
getL = CvtM (\loc -> Right (loc,loc))
setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ -> Right (loc, ()))
returnL :: a -> CvtM (Located a)
returnL x = CvtM (\loc -> Right (loc, L loc x))
returnJustL :: a -> CvtM (Maybe (Located a))
returnJustL = fmap Just . returnL
wrapParL :: (Located a -> a) -> a -> CvtM a
wrapParL add_par x = CvtM (\loc -> Right (loc, add_par (L loc x)))
wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
wrapMsg what item (CvtM m)
= CvtM (\loc -> case m loc of
Left err -> Left (err $$ getPprStyle msg)
Right v -> Right v)
where
msg sty = hang (ptext (sLit "When splicing a TH") <+> text what <> colon)
2 (if debugStyle sty
then text (show item)
else text (pprint item))
wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM (\loc -> case m loc of
Left err -> Left err
Right (loc',v) -> Right (loc',L loc v))
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl RdrName]
cvtDecs = fmap catMaybes . mapM cvtDec
cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl RdrName))
cvtDec (TH.ValD pat body ds)
| TH.VarP s <- pat
= do { s' <- vNameL s
; cl' <- cvtClause (Clause [] body ds)
; returnJustL $ Hs.ValD $ mkFunBind s' [cl'] }
| otherwise
= do { pat' <- cvtPat pat
; body' <- cvtGuard body
; ds' <- cvtLocalDecs (ptext (sLit "a where clause")) ds
; returnJustL $ Hs.ValD $
PatBind { pat_lhs = pat', pat_rhs = GRHSs body' ds'
, pat_rhs_ty = placeHolderType, bind_fvs = placeHolderNames
, pat_ticks = ([],[]) } }
cvtDec (TH.FunD nm cls)
| null cls
= failWith (ptext (sLit "Function binding for")
<+> quotes (text (TH.pprint nm))
<+> ptext (sLit "has no equations"))
| otherwise
= do { nm' <- vNameL nm
; cls' <- mapM cvtClause cls
; returnJustL $ Hs.ValD $ mkFunBind nm' cls' }
cvtDec (TH.SigD nm typ)
= do { nm' <- vNameL nm
; ty' <- cvtType typ
; returnJustL $ Hs.SigD (TypeSig [nm'] ty' PlaceHolder) }
cvtDec (TH.InfixD fx nm)
= do { nm' <- vcNameL nm
; returnJustL (Hs.SigD (FixSig (FixitySig [nm'] (cvtFixity fx)))) }
cvtDec (PragmaD prag)
= cvtPragmaD prag
cvtDec (TySynD tc tvs rhs)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; rhs' <- cvtType rhs
; returnJustL $ TyClD $
SynDecl { tcdLName = tc'
, tcdTyVars = tvs', tcdFVs = placeHolderNames
, tcdRhs = rhs' } }
cvtDec (DataD ctxt tc tvs constrs derivs)
= do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = Nothing
, dd_cons = cons', dd_derivs = derivs' }
; returnJustL $ TyClD (DataDecl { tcdLName = tc', tcdTyVars = tvs'
, tcdDataDefn = defn
, tcdFVs = placeHolderNames }) }
cvtDec (NewtypeD ctxt tc tvs constr derivs)
= do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = Nothing
, dd_cons = [con']
, dd_derivs = derivs' }
; returnJustL $ TyClD (DataDecl { tcdLName = tc', tcdTyVars = tvs'
, tcdDataDefn = defn
, tcdFVs = placeHolderNames }) }
cvtDec (ClassD ctxt cl tvs fds decs)
= do { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
; fds' <- mapM cvt_fundep fds
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs (ptext (sLit "a class declaration")) decs
; unless (null adts')
(failWith $ (ptext (sLit "Default data instance declarations are not allowed:"))
$$ (Outputable.ppr adts'))
; at_defs <- mapM cvt_at_def ats'
; returnJustL $ TyClD $
ClassDecl { tcdCtxt = cxt', tcdLName = tc', tcdTyVars = tvs'
, tcdFDs = fds', tcdSigs = sigs', tcdMeths = binds'
, tcdATs = fams', tcdATDefs = at_defs, tcdDocs = []
, tcdFVs = placeHolderNames }
}
where
cvt_at_def :: LTyFamInstDecl RdrName -> CvtM (LTyFamDefltEqn RdrName)
cvt_at_def decl = case RdrHsSyn.mkATDefault decl of
Right def -> return def
Left (_, msg) -> failWith msg
cvtDec (InstanceD ctxt ty decs)
= do { let doc = ptext (sLit "an instance declaration")
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
; unless (null fams') (failWith (mkBadDecMsg doc fams'))
; ctxt' <- cvtContext ctxt
; L loc ty' <- cvtType ty
; let inst_ty' = L loc $ mkHsForAllTy Implicit [] ctxt' $ L loc ty'
; returnJustL $ InstD $ ClsInstD $
ClsInstDecl inst_ty' binds' sigs' ats' adts' Nothing }
cvtDec (ForeignD ford)
= do { ford' <- cvtForD ford
; returnJustL $ ForD ford' }
cvtDec (FamilyD flav tc tvs kind)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; kind' <- cvtMaybeKind kind
; returnJustL $ TyClD $ FamDecl $
FamilyDecl (cvtFamFlavour flav) tc' tvs' kind' }
where
cvtFamFlavour TypeFam = OpenTypeFamily
cvtFamFlavour DataFam = DataFamily
cvtDec (DataInstD ctxt tc tys constrs derivs)
= do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = Nothing
, dd_cons = cons', dd_derivs = derivs' }
; returnJustL $ InstD $ DataFamInstD
{ dfid_inst = DataFamInstDecl { dfid_tycon = tc', dfid_pats = typats'
, dfid_defn = defn
, dfid_fvs = placeHolderNames } }}
cvtDec (NewtypeInstD ctxt tc tys constr derivs)
= do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = Nothing
, dd_cons = [con'], dd_derivs = derivs' }
; returnJustL $ InstD $ DataFamInstD
{ dfid_inst = DataFamInstDecl { dfid_tycon = tc', dfid_pats = typats'
, dfid_defn = defn
, dfid_fvs = placeHolderNames } }}
cvtDec (TySynInstD tc eqn)
= do { tc' <- tconNameL tc
; eqn' <- cvtTySynEqn tc' eqn
; returnJustL $ InstD $ TyFamInstD
{ tfid_inst = TyFamInstDecl { tfid_eqn = eqn'
, tfid_fvs = placeHolderNames } } }
cvtDec (ClosedTypeFamilyD tc tyvars mkind eqns)
| not $ null eqns
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tyvars
; mkind' <- cvtMaybeKind mkind
; eqns' <- mapM (cvtTySynEqn tc') eqns
; returnJustL $ TyClD $ FamDecl $
FamilyDecl (ClosedTypeFamily eqns') tc' tvs' mkind' }
| otherwise
= failWith (ptext (sLit "Illegal empty closed type family"))
cvtDec (TH.RoleAnnotD tc roles)
= do { tc' <- tconNameL tc
; let roles' = map (noLoc . cvtRole) roles
; returnJustL $ Hs.RoleAnnotD (RoleAnnotDecl tc' roles') }
cvtDec (TH.StandaloneDerivD cxt ty)
= do { cxt' <- cvtContext cxt
; L loc ty' <- cvtType ty
; let inst_ty' = L loc $ mkHsForAllTy Implicit [] cxt' $ L loc ty'
; returnJustL $ DerivD $
DerivDecl { deriv_type = inst_ty', deriv_overlap_mode = Nothing } }
cvtDec (TH.DefaultSigD nm typ)
= do { nm' <- vNameL nm
; ty' <- cvtType typ
; returnJustL $ Hs.SigD $ GenericSig [nm'] ty' }
cvtTySynEqn :: Located RdrName -> TySynEqn -> CvtM (LTyFamInstEqn RdrName)
cvtTySynEqn tc (TySynEqn lhs rhs)
= do { lhs' <- mapM cvtType lhs
; rhs' <- cvtType rhs
; returnL $ TyFamEqn { tfe_tycon = tc
, tfe_pats = mkHsWithBndrs lhs'
, tfe_rhs = rhs' } }
cvt_ci_decs :: MsgDoc -> [TH.Dec]
-> CvtM (LHsBinds RdrName,
[LSig RdrName],
[LFamilyDecl RdrName],
[LTyFamInstDecl RdrName],
[LDataFamInstDecl RdrName])
cvt_ci_decs doc decs
= do { decs' <- cvtDecs decs
; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
; let (adts', no_ats') = partitionWith is_datafam_inst bind_sig_decs'
; let (sigs', prob_binds') = partitionWith is_sig no_ats'
; let (binds', prob_fams') = partitionWith is_bind prob_binds'
; let (fams', bads) = partitionWith is_fam_decl prob_fams'
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (listToBag binds', sigs', fams', ats', adts') }
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr]
-> CvtM ( LHsContext RdrName
, Located RdrName
, LHsTyVarBndrs RdrName)
cvt_tycl_hdr cxt tc tvs
= do { cxt' <- cvtContext cxt
; tc' <- tconNameL tc
; tvs' <- cvtTvs tvs
; return (cxt', tc', tvs')
}
cvt_tyinst_hdr :: TH.Cxt -> TH.Name -> [TH.Type]
-> CvtM ( LHsContext RdrName
, Located RdrName
, HsWithBndrs RdrName [LHsType RdrName])
cvt_tyinst_hdr cxt tc tys
= do { cxt' <- cvtContext cxt
; tc' <- tconNameL tc
; tys' <- mapM cvtType tys
; return (cxt', tc', mkHsWithBndrs tys') }
is_fam_decl :: LHsDecl RdrName -> Either (LFamilyDecl RdrName) (LHsDecl RdrName)
is_fam_decl (L loc (TyClD (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl
is_tyfam_inst :: LHsDecl RdrName -> Either (LTyFamInstDecl RdrName) (LHsDecl RdrName)
is_tyfam_inst (L loc (Hs.InstD (TyFamInstD { tfid_inst = d }))) = Left (L loc d)
is_tyfam_inst decl = Right decl
is_datafam_inst :: LHsDecl RdrName -> Either (LDataFamInstDecl RdrName) (LHsDecl RdrName)
is_datafam_inst (L loc (Hs.InstD (DataFamInstD { dfid_inst = d }))) = Left (L loc d)
is_datafam_inst decl = Right decl
is_sig :: LHsDecl RdrName -> Either (LSig RdrName) (LHsDecl RdrName)
is_sig (L loc (Hs.SigD sig)) = Left (L loc sig)
is_sig decl = Right decl
is_bind :: LHsDecl RdrName -> Either (LHsBind RdrName) (LHsDecl RdrName)
is_bind (L loc (Hs.ValD bind)) = Left (L loc bind)
is_bind decl = Right decl
mkBadDecMsg :: Outputable a => MsgDoc -> [a] -> MsgDoc
mkBadDecMsg doc bads
= sep [ ptext (sLit "Illegal declaration(s) in") <+> doc <> colon
, nest 2 (vcat (map Outputable.ppr bads)) ]
cvtConstr :: TH.Con -> CvtM (LConDecl RdrName)
cvtConstr (NormalC c strtys)
= do { c' <- cNameL c
; cxt' <- returnL []
; tys' <- mapM cvt_arg strtys
; returnL $ mkSimpleConDecl c' noExistentials cxt' (PrefixCon tys') }
cvtConstr (RecC c varstrtys)
= do { c' <- cNameL c
; cxt' <- returnL []
; args' <- mapM cvt_id_arg varstrtys
; returnL $ mkSimpleConDecl c' noExistentials cxt'
(RecCon (noLoc args')) }
cvtConstr (InfixC st1 c st2)
= do { c' <- cNameL c
; cxt' <- returnL []
; st1' <- cvt_arg st1
; st2' <- cvt_arg st2
; returnL $ mkSimpleConDecl c' noExistentials cxt' (InfixCon st1' st2') }
cvtConstr (ForallC tvs ctxt con)
= do { tvs' <- cvtTvs tvs
; L loc ctxt' <- cvtContext ctxt
; L _ con' <- cvtConstr con
; returnL $ con' { con_qvars = mkHsQTvs (hsQTvBndrs tvs' ++ hsQTvBndrs (con_qvars con'))
, con_cxt = L loc (ctxt' ++ (unLoc $ con_cxt con')) } }
cvt_arg :: (TH.Strict, TH.Type) -> CvtM (LHsType RdrName)
cvt_arg (NotStrict, ty) = cvtType ty
cvt_arg (IsStrict, ty)
= do { ty' <- cvtType ty
; returnL $ HsBangTy (HsSrcBang Nothing Nothing True) ty' }
cvt_arg (Unpacked, ty)
= do { ty' <- cvtType ty
; returnL $ HsBangTy (HsSrcBang Nothing (Just True) True) ty' }
cvt_id_arg :: (TH.Name, TH.Strict, TH.Type) -> CvtM (LConDeclField RdrName)
cvt_id_arg (i, str, ty)
= do { i' <- vNameL i
; ty' <- cvt_arg (str,ty)
; return $ noLoc (ConDeclField { cd_fld_names = [i']
, cd_fld_type = ty'
, cd_fld_doc = Nothing}) }
cvtDerivs :: [TH.Name] -> CvtM (Maybe (Located [LHsType RdrName]))
cvtDerivs [] = return Nothing
cvtDerivs cs = do { cs' <- mapM cvt_one cs
; return (Just (noLoc cs')) }
where
cvt_one c = do { c' <- tconName c
; returnL $ HsTyVar c' }
cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep (Located RdrName)))
cvt_fundep (FunDep xs ys) = do { xs' <- mapM tName xs
; ys' <- mapM tName ys
; returnL (map noLoc xs', map noLoc ys') }
noExistentials :: [LHsTyVarBndr RdrName]
noExistentials = []
cvtForD :: Foreign -> CvtM (ForeignDecl RdrName)
cvtForD (ImportF callconv safety from nm ty)
| callconv == TH.Prim || callconv == TH.JavaScript
= mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing
(CFunction (StaticTarget (mkFastString from) Nothing True))
(noLoc from))
| Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety')
(mkFastString (TH.nameBase nm))
from (noLoc from)
= mk_imp impspec
| otherwise
= failWith $ text (show from) <+> ptext (sLit "is not a valid ccall impent")
where
mk_imp impspec
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; return (ForeignImport nm' ty' noForeignImportCoercionYet impspec)
}
safety' = case safety of
Unsafe -> PlayRisky
Safe -> PlaySafe
Interruptible -> PlayInterruptible
cvtForD (ExportF callconv as nm ty)
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; let e = CExport (noLoc (CExportStatic (mkFastString as)
(cvt_conv callconv)))
(noLoc as)
; return $ ForeignExport nm' ty' noForeignExportCoercionYet e }
cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall = CCallConv
cvt_conv TH.StdCall = StdCallConv
cvt_conv TH.CApi = CApiConv
cvt_conv TH.Prim = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv
cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl RdrName))
cvtPragmaD (InlineP nm inline rm phases)
= do { nm' <- vNameL nm
; let dflt = dfltActivation inline
; let ip = InlinePragma { inl_src = "{-# INLINE"
, inl_inline = cvtInline inline
, inl_rule = cvtRuleMatch rm
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustL $ Hs.SigD $ InlineSig nm' ip }
cvtPragmaD (SpecialiseP nm ty inline phases)
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; let (inline', dflt) = case inline of
Just inline1 -> (cvtInline inline1, dfltActivation inline1)
Nothing -> (EmptyInlineSpec, AlwaysActive)
; let ip = InlinePragma { inl_src = "{-# INLINE"
, inl_inline = inline'
, inl_rule = Hs.FunLike
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustL $ Hs.SigD $ SpecSig nm' [ty'] ip }
cvtPragmaD (SpecialiseInstP ty)
= do { ty' <- cvtType ty
; returnJustL $ Hs.SigD $ SpecInstSig "{-# SPECIALISE" ty' }
cvtPragmaD (RuleP nm bndrs lhs rhs phases)
= do { let nm' = mkFastString nm
; let act = cvtPhases phases AlwaysActive
; bndrs' <- mapM cvtRuleBndr bndrs
; lhs' <- cvtl lhs
; rhs' <- cvtl rhs
; returnJustL $ Hs.RuleD
$ HsRules "{-# RULES" [noLoc $ HsRule (noLoc nm') act bndrs'
lhs' placeHolderNames
rhs' placeHolderNames]
}
cvtPragmaD (AnnP target exp)
= do { exp' <- cvtl exp
; target' <- case target of
ModuleAnnotation -> return ModuleAnnProvenance
TypeAnnotation n -> do
n' <- tconName n
return (TypeAnnProvenance (noLoc n'))
ValueAnnotation n -> do
n' <- vcName n
return (ValueAnnProvenance (noLoc n'))
; returnJustL $ Hs.AnnD $ HsAnnotation "{-# ANN" target' exp'
}
cvtPragmaD (LineP line file)
= do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
; return Nothing
}
dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _ = AlwaysActive
cvtInline :: TH.Inline -> Hs.InlineSpec
cvtInline TH.NoInline = Hs.NoInline
cvtInline TH.Inline = Hs.Inline
cvtInline TH.Inlinable = Hs.Inlinable
cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike
cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases dflt = dflt
cvtPhases (FromPhase i) _ = ActiveAfter i
cvtPhases (BeforePhase i) _ = ActiveBefore i
cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr RdrName)
cvtRuleBndr (RuleVar n)
= do { n' <- vNameL n
; return $ noLoc $ Hs.RuleBndr n' }
cvtRuleBndr (TypedRuleVar n ty)
= do { n' <- vNameL n
; ty' <- cvtType ty
; return $ noLoc $ Hs.RuleBndrSig n' $ mkHsWithBndrs ty' }
cvtLocalDecs :: MsgDoc -> [TH.Dec] -> CvtM (HsLocalBinds RdrName)
cvtLocalDecs doc ds
| null ds
= return EmptyLocalBinds
| otherwise
= do { ds' <- cvtDecs ds
; let (binds, prob_sigs) = partitionWith is_bind ds'
; let (sigs, bads) = partitionWith is_sig prob_sigs
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (HsValBinds (ValBindsIn (listToBag binds) sigs)) }
cvtClause :: TH.Clause -> CvtM (Hs.LMatch RdrName (LHsExpr RdrName))
cvtClause (Clause ps body wheres)
= do { ps' <- cvtPats ps
; g' <- cvtGuard body
; ds' <- cvtLocalDecs (ptext (sLit "a where clause")) wheres
; returnL $ Hs.Match Nothing ps' Nothing (GRHSs g' ds') }
cvtl :: TH.Exp -> CvtM (LHsExpr RdrName)
cvtl e = wrapL (cvt e)
where
cvt (VarE s) = do { s' <- vName s; return $ HsVar s' }
cvt (ConE s) = do { s' <- cName s; return $ HsVar s' }
cvt (LitE l)
| overloadedLit l = do { l' <- cvtOverLit l; return $ HsOverLit l' }
| otherwise = do { l' <- cvtLit l; return $ HsLit l' }
cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y; return $ HsApp x' y' }
cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e
; return $ HsLam (mkMatchGroup FromSource [mkSimpleMatch ps' e']) }
cvt (LamCaseE ms) = do { ms' <- mapM cvtMatch ms
; return $ HsLamCase placeHolderType
(mkMatchGroup FromSource ms')
}
cvt (TupE [e]) = do { e' <- cvtl e; return $ HsPar e' }
cvt (TupE es) = do { es' <- mapM cvtl es
; return $ ExplicitTuple (map (noLoc . Present) es')
Boxed }
cvt (UnboxedTupE es) = do { es' <- mapM cvtl es
; return $ ExplicitTuple
(map (noLoc . Present) es') Unboxed }
cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
; return $ HsIf (Just noSyntaxExpr) x' y' z' }
cvt (MultiIfE alts)
| null alts = failWith (ptext (sLit "Multi-way if-expression with no alternatives"))
| otherwise = do { alts' <- mapM cvtpair alts
; return $ HsMultiIf placeHolderType alts' }
cvt (LetE ds e) = do { ds' <- cvtLocalDecs (ptext (sLit "a let expression")) ds
; e' <- cvtl e; return $ HsLet ds' e' }
cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM cvtMatch ms
; return $ HsCase e' (mkMatchGroup FromSource ms') }
cvt (DoE ss) = cvtHsDo DoExpr ss
cvt (CompE ss) = cvtHsDo ListComp ss
cvt (ArithSeqE dd) = do { dd' <- cvtDD dd; return $ ArithSeq noPostTcExpr Nothing dd' }
cvt (ListE xs)
| Just s <- allCharLs xs = do { l' <- cvtLit (StringL s); return (HsLit l') }
| otherwise = do { xs' <- mapM cvtl xs
; return $ ExplicitList placeHolderType Nothing xs'
}
cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y
; wrapParL HsPar $
OpApp (mkLHsPar x') s' undefined (mkLHsPar y') }
cvt (InfixE Nothing s (Just y)) = do { s' <- cvtl s; y' <- cvtl y
; wrapParL HsPar $ SectionR s' y' }
cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s
; wrapParL HsPar $ SectionL x' s' }
cvt (InfixE Nothing s Nothing ) = do { s' <- cvtl s; return $ HsPar s' }
cvt (UInfixE x s y) = do { x' <- cvtl x
; let x'' = case x' of
L _ (OpApp {}) -> x'
_ -> mkLHsPar x'
; cvtOpApp x'' s y }
cvt (ParensE e) = do { e' <- cvtl e; return $ HsPar e' }
cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtType t
; return $ ExprWithTySig e' t' PlaceHolder }
cvt (RecConE c flds) = do { c' <- cNameL c
; flds' <- mapM cvtFld flds
; return $ RecordCon c' noPostTcExpr (HsRecFields flds' Nothing)}
cvt (RecUpdE e flds) = do { e' <- cvtl e
; flds' <- mapM cvtFld flds
; return $ RecordUpd e' (HsRecFields flds' Nothing) [] [] [] }
cvt (StaticE e) = fmap HsStatic $ cvtl e
cvtFld :: (TH.Name, TH.Exp) -> CvtM (LHsRecField RdrName (LHsExpr RdrName))
cvtFld (v,e)
= do { v' <- vNameL v; e' <- cvtl e
; return (noLoc $ HsRecField { hsRecFieldId = v', hsRecFieldArg = e'
, hsRecPun = False}) }
cvtDD :: Range -> CvtM (ArithSeqInfo RdrName)
cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }
cvtOpApp :: LHsExpr RdrName -> TH.Exp -> TH.Exp -> CvtM (HsExpr RdrName)
cvtOpApp x op1 (UInfixE y op2 z)
= do { l <- wrapL $ cvtOpApp x op1 y
; cvtOpApp l op2 z }
cvtOpApp x op y
= do { op' <- cvtl op
; y' <- cvtl y
; return (OpApp x op' undefined y') }
cvtHsDo :: HsStmtContext Name.Name -> [TH.Stmt] -> CvtM (HsExpr RdrName)
cvtHsDo do_or_lc stmts
| null stmts = failWith (ptext (sLit "Empty stmt list in do-block"))
| otherwise
= do { stmts' <- cvtStmts stmts
; let Just (stmts'', last') = snocView stmts'
; last'' <- case last' of
L loc (BodyStmt body _ _ _) -> return (L loc (mkLastStmt body))
_ -> failWith (bad_last last')
; return $ HsDo do_or_lc (stmts'' ++ [last'']) placeHolderType }
where
bad_last stmt = vcat [ ptext (sLit "Illegal last statement of") <+> pprAStmtContext do_or_lc <> colon
, nest 2 $ Outputable.ppr stmt
, ptext (sLit "(It should be an expression.)") ]
cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt RdrName (LHsExpr RdrName)]
cvtStmts = mapM cvtStmt
cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt RdrName (LHsExpr RdrName))
cvtStmt (NoBindS e) = do { e' <- cvtl e; returnL $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' }
cvtStmt (TH.LetS ds) = do { ds' <- cvtLocalDecs (ptext (sLit "a let binding")) ds
; returnL $ LetStmt ds' }
cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss; returnL $ ParStmt dss' noSyntaxExpr noSyntaxExpr }
where
cvt_one ds = do { ds' <- cvtStmts ds; return (ParStmtBlock ds' undefined noSyntaxExpr) }
cvtMatch :: TH.Match -> CvtM (Hs.LMatch RdrName (LHsExpr RdrName))
cvtMatch (TH.Match p body decs)
= do { p' <- cvtPat p
; g' <- cvtGuard body
; decs' <- cvtLocalDecs (ptext (sLit "a where clause")) decs
; returnL $ Hs.Match Nothing [p'] Nothing (GRHSs g' decs') }
cvtGuard :: TH.Body -> CvtM [LGRHS RdrName (LHsExpr RdrName)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e) = do { e' <- cvtl e; g' <- returnL $ GRHS [] e'; return [g'] }
cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS RdrName (LHsExpr RdrName))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
; g' <- returnL $ mkBodyStmt ge'
; returnL $ GRHS [g'] rhs' }
cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
; returnL $ GRHS gs' rhs' }
cvtOverLit :: Lit -> CvtM (HsOverLit RdrName)
cvtOverLit (IntegerL i)
= do { force i; return $ mkHsIntegral (show i) i placeHolderType}
cvtOverLit (RationalL r)
= do { force r; return $ mkHsFractional (cvtFractionalLit r) placeHolderType}
cvtOverLit (StringL s)
= do { let { s' = mkFastString s }
; force s'
; return $ mkHsIsString s s' placeHolderType
}
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
allCharLs :: [TH.Exp] -> Maybe String
allCharLs xs
= case xs of
LitE (CharL c) : ys -> go [c] ys
_ -> Nothing
where
go cs [] = Just (reverse cs)
go cs (LitE (CharL c) : ys) = go (c:cs) ys
go _ _ = Nothing
cvtLit :: Lit -> CvtM HsLit
cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim (show i) i }
cvtLit (WordPrimL w) = do { force w; return $ HsWordPrim (show w) w }
cvtLit (FloatPrimL f) = do { force f; return $ HsFloatPrim (cvtFractionalLit f) }
cvtLit (DoublePrimL f) = do { force f; return $ HsDoublePrim (cvtFractionalLit f) }
cvtLit (CharL c) = do { force c; return $ HsChar (show c) c }
cvtLit (StringL s) = do { let { s' = mkFastString s }
; force s'
; return $ HsString s s' }
cvtLit (StringPrimL s) = do { let { s' = BS.pack s }
; force s'
; return $ HsStringPrim (w8ToString s) s' }
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
w8ToString :: [Word8] -> String
w8ToString ws = map (\w -> chr (fromIntegral w)) ws
cvtPats :: [TH.Pat] -> CvtM [Hs.LPat RdrName]
cvtPats pats = mapM cvtPat pats
cvtPat :: TH.Pat -> CvtM (Hs.LPat RdrName)
cvtPat pat = wrapL (cvtp pat)
cvtp :: TH.Pat -> CvtM (Hs.Pat RdrName)
cvtp (TH.LitP l)
| overloadedLit l = do { l' <- cvtOverLit l
; return (mkNPat (noLoc l') Nothing) }
| otherwise = do { l' <- cvtLit l; return $ Hs.LitPat l' }
cvtp (TH.VarP s) = do { s' <- vName s; return $ Hs.VarPat s' }
cvtp (TupP [p]) = do { p' <- cvtPat p; return $ ParPat p' }
cvtp (TupP ps) = do { ps' <- cvtPats ps; return $ TuplePat ps' Boxed [] }
cvtp (UnboxedTupP ps) = do { ps' <- cvtPats ps; return $ TuplePat ps' Unboxed [] }
cvtp (ConP s ps) = do { s' <- cNameL s; ps' <- cvtPats ps
; return $ ConPatIn s' (PrefixCon ps') }
cvtp (InfixP p1 s p2) = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2
; wrapParL ParPat $
ConPatIn s' (InfixCon (mkParPat p1') (mkParPat p2')) }
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 }
cvtp (ParensP p) = do { p' <- cvtPat p; return $ ParPat p' }
cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat p' }
cvtp (BangP p) = do { p' <- cvtPat p; return $ BangPat p' }
cvtp (TH.AsP s p) = do { s' <- vNameL s; p' <- cvtPat p; return $ AsPat s' p' }
cvtp TH.WildP = return $ WildPat placeHolderType
cvtp (RecP c fs) = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs
; return $ ConPatIn c'
$ Hs.RecCon (HsRecFields fs' Nothing) }
cvtp (ListP ps) = do { ps' <- cvtPats ps
; return $ ListPat ps' placeHolderType Nothing }
cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t
; return $ SigPatIn p' (mkHsWithBndrs t') }
cvtp (ViewP e p) = do { e' <- cvtl e; p' <- cvtPat p
; return $ ViewPat e' p' placeHolderType }
cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField RdrName (LPat RdrName))
cvtPatFld (s,p)
= do { s' <- vNameL s; p' <- cvtPat p
; return (noLoc $ HsRecField { hsRecFieldId = s', hsRecFieldArg = p'
, hsRecPun = False}) }
cvtOpAppP :: Hs.LPat RdrName -> TH.Name -> TH.Pat -> CvtM (Hs.Pat RdrName)
cvtOpAppP x op1 (UInfixP y op2 z)
= do { l <- wrapL $ cvtOpAppP x op1 y
; cvtOpAppP l op2 z }
cvtOpAppP x op y
= do { op' <- cNameL op
; y' <- cvtPat y
; return (ConPatIn op' (InfixCon x y')) }
cvtTvs :: [TH.TyVarBndr] -> CvtM (LHsTyVarBndrs RdrName)
cvtTvs tvs = do { tvs' <- mapM cvt_tv tvs; return (mkHsQTvs tvs') }
cvt_tv :: TH.TyVarBndr -> CvtM (LHsTyVarBndr RdrName)
cvt_tv (TH.PlainTV nm)
= do { nm' <- tName nm
; returnL $ UserTyVar nm' }
cvt_tv (TH.KindedTV nm ki)
= do { nm' <- tName nm
; ki' <- cvtKind ki
; returnL $ KindedTyVar (noLoc nm') ki' }
cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR = Just Coercion.Phantom
cvtRole TH.InferR = Nothing
cvtContext :: TH.Cxt -> CvtM (LHsContext RdrName)
cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' }
cvtPred :: TH.Pred -> CvtM (LHsType RdrName)
cvtPred = cvtType
cvtType :: TH.Type -> CvtM (LHsType RdrName)
cvtType = cvtTypeKind "type"
cvtTypeKind :: String -> TH.Type -> CvtM (LHsType RdrName)
cvtTypeKind ty_str ty
= do { (head_ty, tys') <- split_ty_app ty
; case head_ty of
TupleT n
| length tys' == n
-> if n==1 then return (head tys')
else returnL (HsTupleTy HsBoxedOrConstraintTuple tys')
| n == 1
-> failWith (ptext (sLit ("Illegal 1-tuple " ++ ty_str ++ " constructor")))
| otherwise
-> mk_apps (HsTyVar (getRdrName (tupleTyCon BoxedTuple n))) tys'
UnboxedTupleT n
| length tys' == n
-> if n==1 then return (head tys')
else returnL (HsTupleTy HsUnboxedTuple tys')
| otherwise
-> mk_apps (HsTyVar (getRdrName (tupleTyCon UnboxedTuple n))) tys'
ArrowT
| [x',y'] <- tys' -> returnL (HsFunTy x' y')
| otherwise -> mk_apps (HsTyVar (getRdrName funTyCon)) tys'
ListT
| [x'] <- tys' -> returnL (HsListTy x')
| otherwise -> mk_apps (HsTyVar (getRdrName listTyCon)) tys'
VarT nm -> do { nm' <- tName nm; mk_apps (HsTyVar nm') tys' }
ConT nm -> do { nm' <- tconName nm; mk_apps (HsTyVar nm') tys' }
ForallT tvs cxt ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; cxt' <- cvtContext cxt
; ty' <- cvtType ty
; returnL $ mkExplicitHsForAllTy (hsQTvBndrs tvs') cxt' ty'
}
SigT ty ki
-> do { ty' <- cvtType ty
; ki' <- cvtKind ki
; mk_apps (HsKindSig ty' ki') tys'
}
LitT lit
-> returnL (HsTyLit (cvtTyLit lit))
PromotedT nm -> do { nm' <- cName nm; mk_apps (HsTyVar nm') tys' }
PromotedTupleT n
| n == 1
-> failWith (ptext (sLit ("Illegal promoted 1-tuple " ++ ty_str)))
| m == n
-> do { let kis = replicate m placeHolderKind
; returnL (HsExplicitTupleTy kis tys')
}
where
m = length tys'
PromotedNilT
-> returnL (HsExplicitListTy placeHolderKind [])
PromotedConsT
| [ty1, L _ (HsExplicitListTy _ tys2)] <- tys'
-> returnL (HsExplicitListTy placeHolderKind (ty1:tys2))
| otherwise
-> mk_apps (HsTyVar (getRdrName consDataCon)) tys'
StarT
-> returnL (HsTyVar (getRdrName liftedTypeKindTyCon))
ConstraintT
-> returnL (HsTyVar (getRdrName constraintKindTyCon))
EqualityT
| [x',y'] <- tys' -> returnL (HsEqTy x' y')
| otherwise -> mk_apps (HsTyVar (getRdrName eqPrimTyCon)) tys'
_ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty))
}
mk_apps :: HsType RdrName -> [LHsType RdrName] -> CvtM (LHsType RdrName)
mk_apps head_ty [] = returnL head_ty
mk_apps head_ty (ty:tys) = do { head_ty' <- returnL head_ty
; mk_apps (HsAppTy head_ty' ty) tys }
split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType RdrName])
split_ty_app ty = go ty []
where
go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') }
go f as = return (f,as)
cvtTyLit :: TH.TyLit -> HsTyLit
cvtTyLit (NumTyLit i) = HsNumTy (show i) i
cvtTyLit (StrTyLit s) = HsStrTy s (fsLit s)
cvtKind :: TH.Kind -> CvtM (LHsKind RdrName)
cvtKind = cvtTypeKind "kind"
cvtMaybeKind :: Maybe TH.Kind -> CvtM (Maybe (LHsKind RdrName))
cvtMaybeKind Nothing = return Nothing
cvtMaybeKind (Just ki) = do { ki' <- cvtKind ki
; return (Just ki') }
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity prec (cvt_dir dir)
where
cvt_dir TH.InfixL = Hs.InfixL
cvt_dir TH.InfixR = Hs.InfixR
cvt_dir TH.InfixN = Hs.InfixN
overloadedLit :: Lit -> Bool
overloadedLit (IntegerL _) = True
overloadedLit (RationalL _) = True
overloadedLit _ = False
cvtFractionalLit :: Rational -> FractionalLit
cvtFractionalLit r = FL { fl_text = show (fromRational r :: Double), fl_value = r }
vNameL, cNameL, vcNameL, tconNameL :: TH.Name -> CvtM (Located RdrName)
vName, cName, vcName, tName, tconName :: TH.Name -> CvtM RdrName
vNameL n = wrapL (vName n)
vName n = cvtName OccName.varName n
cNameL n = wrapL (cName n)
cName n = cvtName OccName.dataName n
vcNameL n = wrapL (vcName n)
vcName n = if isVarName n then vName n else cName n
tName n = cvtName OccName.tvName n
tconNameL n = wrapL (tconName n)
tconName n = cvtName OccName.tcClsName n
cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
| not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
| otherwise
= do { loc <- getL
; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
; force rdr_name
; return rdr_name }
where
occ_str = TH.occString occ
okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
| OccName.isVarNameSpace ns = okVarOcc str
| OccName.isDataConNameSpace ns = okConOcc str
| otherwise = okTcOcc str
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
= case TH.occString occ of
"" -> False
(c:_) -> startsVarId c || startsVarSym c
badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
= ptext (sLit "Illegal") <+> pprNameSpace ctxt_ns
<+> ptext (sLit "name:") <+> quotes (text occ)
thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
thRdrName loc ctxt_ns th_occ th_name
= case th_name of
TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
TH.NameQ mod -> (mkRdrQual $! mk_mod mod) $! occ
TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq uniq) $! occ) loc)
TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq uniq) $! occ) loc)
TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
| otherwise -> mkRdrUnqual $! occ
where
occ :: OccName.OccName
occ = mk_occ ctxt_ns th_occ
thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod = (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! (mk_occ (mk_ghc_ns th_ns) occ)
thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
| TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
| otherwise = [ thRdrName noSrcSpan gns occ_str flavour
| gns <- guessed_nss]
where
guessed_nss | isLexCon (mkFastString occ_str) = [OccName.tcName, OccName.dataName]
| otherwise = [OccName.varName, OccName.tvName]
occ_str = TH.occString occ
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ
mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName = OccName.varName
mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)
mk_pkg :: TH.PkgName -> PackageKey
mk_pkg pkg = stringToPackageKey (TH.pkgString pkg)
mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u