module UniqSupply (
UniqSupply,
uniqFromSupply, uniqsFromSupply,
takeUniqFromSupply,
mkSplitUniqSupply,
splitUniqSupply, listSplitUniqSupply,
UniqSM, MonadUnique(..),
initUs, initUs_,
lazyThenUs, lazyMapUs,
) where
import Unique
import FastTypes
import GHC.IO
import MonadUtils
import Control.Monad
data UniqSupply
= MkSplitUniqSupply FastInt
UniqSupply UniqSupply
mkSplitUniqSupply :: Char -> IO UniqSupply
splitUniqSupply :: UniqSupply -> (UniqSupply, UniqSupply)
listSplitUniqSupply :: UniqSupply -> [UniqSupply]
uniqFromSupply :: UniqSupply -> Unique
uniqsFromSupply :: UniqSupply -> [Unique]
takeUniqFromSupply :: UniqSupply -> (Unique, UniqSupply)
mkSplitUniqSupply c
= case fastOrd (cUnbox c) `shiftLFastInt` _ILIT(24) of
mask -> let
mk_supply
= unsafeInterleaveIO (
genSym >>= \ u_ -> case iUnbox u_ of { u -> (
mk_supply >>= \ s1 ->
mk_supply >>= \ s2 ->
return (MkSplitUniqSupply (mask `bitOrFastInt` u) s1 s2)
)})
in
mk_supply
foreign import ccall unsafe "genSym" genSym :: IO Int
splitUniqSupply (MkSplitUniqSupply _ s1 s2) = (s1, s2)
listSplitUniqSupply (MkSplitUniqSupply _ s1 s2) = s1 : listSplitUniqSupply s2
uniqFromSupply (MkSplitUniqSupply n _ _) = mkUniqueGrimily (iBox n)
uniqsFromSupply (MkSplitUniqSupply n _ s2) = mkUniqueGrimily (iBox n) : uniqsFromSupply s2
takeUniqFromSupply (MkSplitUniqSupply n s1 _) = (mkUniqueGrimily (iBox n), s1)
newtype UniqSM result = USM { unUSM :: UniqSupply -> (# result, UniqSupply #) }
instance Monad UniqSM where
return = returnUs
(>>=) = thenUs
(>>) = thenUs_
instance Functor UniqSM where
fmap f (USM x) = USM (\us -> case x us of
(# r, us' #) -> (# f r, us' #))
instance Applicative UniqSM where
pure = returnUs
(USM f) <*> (USM x) = USM $ \us -> case f us of
(# ff, us' #) -> case x us' of
(# xx, us'' #) -> (# ff xx, us'' #)
(*>) = thenUs_
initUs :: UniqSupply -> UniqSM a -> (a, UniqSupply)
initUs init_us m = case unUSM m init_us of { (# r, us #) -> (r,us) }
initUs_ :: UniqSupply -> UniqSM a -> a
initUs_ init_us m = case unUSM m init_us of { (# r, _ #) -> r }
liftUSM :: UniqSM a -> UniqSupply -> (a, UniqSupply)
liftUSM (USM m) us = case m us of (# a, us' #) -> (a, us')
instance MonadFix UniqSM where
mfix m = USM (\us -> let (r,us') = liftUSM (m r) us in (# r,us' #))
thenUs :: UniqSM a -> (a -> UniqSM b) -> UniqSM b
thenUs (USM expr) cont
= USM (\us -> case (expr us) of
(# result, us' #) -> unUSM (cont result) us')
lazyThenUs :: UniqSM a -> (a -> UniqSM b) -> UniqSM b
lazyThenUs expr cont
= USM (\us -> let (result, us') = liftUSM expr us in unUSM (cont result) us')
thenUs_ :: UniqSM a -> UniqSM b -> UniqSM b
thenUs_ (USM expr) (USM cont)
= USM (\us -> case (expr us) of { (# _, us' #) -> cont us' })
returnUs :: a -> UniqSM a
returnUs result = USM (\us -> (# result, us #))
getUs :: UniqSM UniqSupply
getUs = USM (\us -> case splitUniqSupply us of (us1,us2) -> (# us1, us2 #))
class Monad m => MonadUnique m where
getUniqueSupplyM :: m UniqSupply
getUniqueM :: m Unique
getUniquesM :: m [Unique]
getUniqueM = liftM uniqFromSupply getUniqueSupplyM
getUniquesM = liftM uniqsFromSupply getUniqueSupplyM
instance MonadUnique UniqSM where
getUniqueSupplyM = getUs
getUniqueM = getUniqueUs
getUniquesM = getUniquesUs
getUniqueUs :: UniqSM Unique
getUniqueUs = USM (\us -> case takeUniqFromSupply us of
(u,us') -> (# u, us' #))
getUniquesUs :: UniqSM [Unique]
getUniquesUs = USM (\us -> case splitUniqSupply us of
(us1,us2) -> (# uniqsFromSupply us1, us2 #))
lazyMapUs :: (a -> UniqSM b) -> [a] -> UniqSM [b]
lazyMapUs _ [] = returnUs []
lazyMapUs f (x:xs)
= f x `lazyThenUs` \ r ->
lazyMapUs f xs `lazyThenUs` \ rs ->
returnUs (r:rs)