{-# LANGUAGE NoImplicitPrelude, MagicHash, UnboxedTuples, Rank2Types #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.ST -- Copyright : (c) The University of Glasgow, 1992-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The 'ST' Monad. -- ----------------------------------------------------------------------------- -- #hide module GHC.ST ( ST(..), STret(..), STRep, fixST, runST, runSTRep, -- * Unsafe functions liftST, unsafeInterleaveST ) where import GHC.Base import GHC.Show import Control.Monad( forever ) default ()\end{code} %********************************************************* %* * \subsection{The @ST@ monad} %* * %********************************************************* The state-transformer monad proper. By default the monad is strict; too many people got bitten by space leaks when it was lazy. \begin{code}
-- | The strict state-transformer monad. -- A computation of type @'ST' s a@ transforms an internal state indexed -- by @s@, and returns a value of type @a@. -- The @s@ parameter is either -- -- * an uninstantiated type variable (inside invocations of 'runST'), or -- -- * 'RealWorld' (inside invocations of 'Control.Monad.ST.stToIO'). -- -- It serves to keep the internal states of different invocations -- of 'runST' separate from each other and from invocations of -- 'Control.Monad.ST.stToIO'. -- -- The '>>=' and '>>' operations are strict in the state (though not in -- values stored in the state). For example, -- -- @'runST' (writeSTRef _|_ v >>= f) = _|_@ newtype ST s a = ST (STRep s a) type STRep s a = State# s -> (# State# s, a #) instance Functor (ST s) where fmap f (ST m) = ST $ \ s -> case (m s) of { (# new_s, r #) -> (# new_s, f r #) } instance Monad (ST s) where {-# INLINE return #-} {-# INLINE (>>) #-} {-# INLINE (>>=) #-} return x = ST (\ s -> (# s, x #)) m >> k = m >>= \ _ -> k (ST m) >>= k = ST (\ s -> case (m s) of { (# new_s, r #) -> case (k r) of { ST k2 -> (k2 new_s) }}) data STret s a = STret (State# s) a {-# SPECIALISE forever :: ST s a -> ST s b #-} -- See Note [Make forever INLINABLE] in Control.Monad -- liftST is useful when we want a lifted result from an ST computation. See -- fixST below. liftST :: ST s a -> State# s -> STret s a liftST (ST m) = \s -> case m s of (# s', r #) -> STret s' r {-# NOINLINE unsafeInterleaveST #-} unsafeInterleaveST :: ST s a -> ST s a unsafeInterleaveST (ST m) = ST ( \ s -> let r = case m s of (# _, res #) -> res in (# s, r #) ) -- | Allow the result of a state transformer computation to be used (lazily) -- inside the computation. -- Note that if @f@ is strict, @'fixST' f = _|_@. fixST :: (a -> ST s a) -> ST s a fixST k = ST $ \ s -> let ans = liftST (k r) s STret _ r = ans in case ans of STret s' x -> (# s', x #) instance Show (ST s a) where showsPrec _ _ = showString "<<ST action>>" showList = showList__ (showsPrec 0)\end{code} Definition of runST ~~~~~~~~~~~~~~~~~~~ SLPJ 95/04: Why @runST@ must not have an unfolding; consider: \begin{verbatim} f x = runST ( \ s -> let (a, s') = newArray# 100 [] s (_, s'') = fill_in_array_or_something a x s' in freezeArray# a s'' ) \end{verbatim} If we inline @runST@, we'll get: \begin{verbatim} f x = let (a, s') = newArray# 100 [] realWorld#{-NB-} (_, s'') = fill_in_array_or_something a x s' in freezeArray# a s'' \end{verbatim} And now the @newArray#@ binding can be floated to become a CAF, which is totally and utterly wrong: \begin{verbatim} f = let (a, s') = newArray# 100 [] realWorld#{-NB-} -- YIKES!!! in \ x -> let (_, s'') = fill_in_array_or_something a x s' in freezeArray# a s'' \end{verbatim} All calls to @f@ will share a {\em single} array! End SLPJ 95/04. \begin{code}
{-# INLINE runST #-} -- The INLINE prevents runSTRep getting inlined in *this* module -- so that it is still visible when runST is inlined in an importing -- module. Regrettably delicate. runST is behaving like a wrapper. -- | Return the value computed by a state transformer computation. -- The @forall@ ensures that the internal state used by the 'ST' -- computation is inaccessible to the rest of the program. runST :: (forall s. ST s a) -> a runST st = runSTRep (case st of { ST st_rep -> st_rep }) -- I'm only letting runSTRep be inlined right at the end, in particular *after* full laziness -- That's what the "INLINE [0]" says. -- SLPJ Apr 99 -- {-# INLINE [0] runSTRep #-} -- SDM: further to the above, inline phase 0 is run *before* -- full-laziness at the moment, which means that the above comment is -- invalid. Inlining runSTRep doesn't make a huge amount of -- difference, anyway. Hence: {-# NOINLINE runSTRep #-} runSTRep :: (forall s. STRep s a) -> a runSTRep st_rep = case st_rep realWorld# of (# _, r #) -> r\end{code}