%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
TcMatches: Typecheck some @Matches@
\begin{code}
module TcMatches ( tcMatchesFun, tcGRHSsPat, tcMatchesCase, tcMatchLambda,
TcMatchCtxt(..), TcStmtChecker,
tcStmts, tcStmtsAndThen, tcDoStmts, tcBody,
tcDoStmt, tcGuardStmt
) where
import TcExpr( tcSyntaxOp, tcInferRhoNC, tcInferRho, tcCheckId,
tcMonoExpr, tcMonoExprNC, tcPolyExpr )
import HsSyn
import BasicTypes
import TcRnMonad
import TcEnv
import TcPat
import TcMType
import TcType
import TcBinds
import TcUnify
import Name
import TysWiredIn
import Id
import TyCon
import TysPrim
import Coercion ( isReflCo, mkSymCo )
import Outputable
import Util
import SrcLoc
import FastString
import MkCore
import Control.Monad
#include "HsVersions.h"
\end{code}
%************************************************************************
%* *
\subsection{tcMatchesFun, tcMatchesCase}
%* *
%************************************************************************
@tcMatchesFun@ typechecks a @[Match]@ list which occurs in a
@FunMonoBind@. The second argument is the name of the function, which
is used in error messages. It checks that all the equations have the
same number of arguments before using @tcMatches@ to do the work.
Note [Polymorphic expected type for tcMatchesFun]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tcMatchesFun may be given a *sigma* (polymorphic) type
so it must be prepared to use tcGen to skolemise it.
See Note [sig_tau may be polymorphic] in TcPat.
\begin{code}
tcMatchesFun :: Name -> Bool
-> MatchGroup Name
-> TcSigmaType
-> TcM (HsWrapper, MatchGroup TcId)
tcMatchesFun fun_name inf matches exp_ty
= do {
traceTc "tcMatchesFun" (ppr fun_name $$ ppr exp_ty)
; checkArgs fun_name matches
; (wrap_gen, (wrap_fun, group))
<- tcGen (FunSigCtxt fun_name) exp_ty $ \ _ exp_rho ->
matchFunTys herald arity exp_rho $ \ pat_tys rhs_ty ->
tcMatches match_ctxt pat_tys rhs_ty matches
; return (wrap_gen <.> wrap_fun, group) }
where
arity = matchGroupArity matches
herald = ptext (sLit "The equation(s) for")
<+> quotes (ppr fun_name) <+> ptext (sLit "have")
match_ctxt = MC { mc_what = FunRhs fun_name inf, mc_body = tcBody }
\end{code}
@tcMatchesCase@ doesn't do the argument-count check because the
parser guarantees that each equation has exactly one argument.
\begin{code}
tcMatchesCase :: TcMatchCtxt
-> TcRhoType
-> MatchGroup Name
-> TcRhoType
-> TcM (MatchGroup TcId)
tcMatchesCase ctxt scrut_ty matches res_ty
| isEmptyMatchGroup matches
= return (MatchGroup [] (mkFunTys [scrut_ty] res_ty))
| otherwise
= tcMatches ctxt [scrut_ty] res_ty matches
tcMatchLambda :: MatchGroup Name -> TcRhoType -> TcM (HsWrapper, MatchGroup TcId)
tcMatchLambda match res_ty
= matchFunTys herald n_pats res_ty $ \ pat_tys rhs_ty ->
tcMatches match_ctxt pat_tys rhs_ty match
where
n_pats = matchGroupArity match
herald = sep [ ptext (sLit "The lambda expression")
<+> quotes (pprSetDepth (PartWay 1) $
pprMatches (LambdaExpr :: HsMatchContext Name) match),
ptext (sLit "has")]
match_ctxt = MC { mc_what = LambdaExpr,
mc_body = tcBody }
\end{code}
@tcGRHSsPat@ typechecks @[GRHSs]@ that occur in a @PatMonoBind@.
\begin{code}
tcGRHSsPat :: GRHSs Name -> TcRhoType -> TcM (GRHSs TcId)
tcGRHSsPat grhss res_ty = tcGRHSs match_ctxt grhss res_ty
where
match_ctxt = MC { mc_what = PatBindRhs,
mc_body = tcBody }
\end{code}
\begin{code}
matchFunTys
:: SDoc
-> Arity
-> TcRhoType
-> ([TcSigmaType] -> TcRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchFunTys herald arity res_ty thing_inside
= do { (coi, pat_tys, res_ty) <- matchExpectedFunTys herald arity res_ty
; res <- thing_inside pat_tys res_ty
; return (coToHsWrapper (mkSymCo coi), res) }
\end{code}
%************************************************************************
%* *
\subsection{tcMatch}
%* *
%************************************************************************
\begin{code}
tcMatches :: TcMatchCtxt
-> [TcSigmaType]
-> TcRhoType
-> MatchGroup Name
-> TcM (MatchGroup TcId)
data TcMatchCtxt
= MC { mc_what :: HsMatchContext Name,
mc_body :: LHsExpr Name
-> TcRhoType
-> TcM (LHsExpr TcId) }
tcMatches ctxt pat_tys rhs_ty (MatchGroup matches _)
= ASSERT( not (null matches) )
do { matches' <- mapM (tcMatch ctxt pat_tys rhs_ty) matches
; return (MatchGroup matches' (mkFunTys pat_tys rhs_ty)) }
tcMatch :: TcMatchCtxt
-> [TcSigmaType]
-> TcRhoType
-> LMatch Name
-> TcM (LMatch TcId)
tcMatch ctxt pat_tys rhs_ty match
= wrapLocM (tc_match ctxt pat_tys rhs_ty) match
where
tc_match ctxt pat_tys rhs_ty match@(Match pats maybe_rhs_sig grhss)
= add_match_ctxt match $
do { (pats', grhss') <- tcPats (mc_what ctxt) pats pat_tys $
tc_grhss ctxt maybe_rhs_sig grhss rhs_ty
; return (Match pats' Nothing grhss') }
tc_grhss ctxt Nothing grhss rhs_ty
= tcGRHSs ctxt grhss rhs_ty
tc_grhss _ (Just {}) _ _
= panic "tc_ghrss"
add_match_ctxt match thing_inside
= case mc_what ctxt of
LambdaExpr -> thing_inside
m_ctxt -> addErrCtxt (pprMatchInCtxt m_ctxt match) thing_inside
tcGRHSs :: TcMatchCtxt -> GRHSs Name -> TcRhoType
-> TcM (GRHSs TcId)
tcGRHSs ctxt (GRHSs grhss binds) res_ty
= do { (binds', grhss') <- tcLocalBinds binds $
mapM (wrapLocM (tcGRHS ctxt res_ty)) grhss
; return (GRHSs grhss' binds') }
tcGRHS :: TcMatchCtxt -> TcRhoType -> GRHS Name -> TcM (GRHS TcId)
tcGRHS ctxt res_ty (GRHS guards rhs)
= do { (guards', rhs') <- tcStmtsAndThen stmt_ctxt tcGuardStmt guards res_ty $
mc_body ctxt rhs
; return (GRHS guards' rhs') }
where
stmt_ctxt = PatGuard (mc_what ctxt)
\end{code}
%************************************************************************
%* *
\subsection{@tcDoStmts@ typechecks a {\em list} of do statements}
%* *
%************************************************************************
\begin{code}
tcDoStmts :: HsStmtContext Name
-> [LStmt Name]
-> TcRhoType
-> TcM (HsExpr TcId)
tcDoStmts ListComp stmts res_ty
= do { (coi, elt_ty) <- matchExpectedListTy res_ty
; let list_ty = mkListTy elt_ty
; stmts' <- tcStmts ListComp (tcLcStmt listTyCon) stmts elt_ty
; return $ mkHsWrapCo coi (HsDo ListComp stmts' list_ty) }
tcDoStmts PArrComp stmts res_ty
= do { (coi, elt_ty) <- matchExpectedPArrTy res_ty
; let parr_ty = mkPArrTy elt_ty
; stmts' <- tcStmts PArrComp (tcLcStmt parrTyCon) stmts elt_ty
; return $ mkHsWrapCo coi (HsDo PArrComp stmts' parr_ty) }
tcDoStmts DoExpr stmts res_ty
= do { stmts' <- tcStmts DoExpr tcDoStmt stmts res_ty
; return (HsDo DoExpr stmts' res_ty) }
tcDoStmts MDoExpr stmts res_ty
= do { stmts' <- tcStmts MDoExpr tcDoStmt stmts res_ty
; return (HsDo MDoExpr stmts' res_ty) }
tcDoStmts MonadComp stmts res_ty
= do { stmts' <- tcStmts MonadComp tcMcStmt stmts res_ty
; return (HsDo MonadComp stmts' res_ty) }
tcDoStmts ctxt _ _ = pprPanic "tcDoStmts" (pprStmtContext ctxt)
tcBody :: LHsExpr Name -> TcRhoType -> TcM (LHsExpr TcId)
tcBody body res_ty
= do { traceTc "tcBody" (ppr res_ty)
; body' <- tcMonoExpr body res_ty
; return body'
}
\end{code}
%************************************************************************
%* *
\subsection{tcStmts}
%* *
%************************************************************************
\begin{code}
type TcStmtChecker
= forall thing. HsStmtContext Name
-> Stmt Name
-> TcRhoType
-> (TcRhoType -> TcM thing)
-> TcM (Stmt TcId, thing)
tcStmts :: HsStmtContext Name
-> TcStmtChecker
-> [LStmt Name]
-> TcRhoType
-> TcM [LStmt TcId]
tcStmts ctxt stmt_chk stmts res_ty
= do { (stmts', _) <- tcStmtsAndThen ctxt stmt_chk stmts res_ty $
const (return ())
; return stmts' }
tcStmtsAndThen :: HsStmtContext Name
-> TcStmtChecker
-> [LStmt Name]
-> TcRhoType
-> (TcRhoType -> TcM thing)
-> TcM ([LStmt TcId], thing)
tcStmtsAndThen _ _ [] res_ty thing_inside
= do { thing <- thing_inside res_ty
; return ([], thing) }
tcStmtsAndThen ctxt stmt_chk (L loc (LetStmt binds) : stmts) res_ty thing_inside
= do { (binds', (stmts',thing)) <- tcLocalBinds binds $
tcStmtsAndThen ctxt stmt_chk stmts res_ty thing_inside
; return (L loc (LetStmt binds') : stmts', thing) }
tcStmtsAndThen ctxt stmt_chk (L loc stmt : stmts) res_ty thing_inside
= do { (stmt', (stmts', thing)) <-
setSrcSpan loc $
addErrCtxt (pprStmtInCtxt ctxt stmt) $
stmt_chk ctxt stmt res_ty $ \ res_ty' ->
popErrCtxt $
tcStmtsAndThen ctxt stmt_chk stmts res_ty' $
thing_inside
; return (L loc stmt' : stmts', thing) }
tcGuardStmt :: TcStmtChecker
tcGuardStmt _ (ExprStmt guard _ _ _) res_ty thing_inside
= do { guard' <- tcMonoExpr guard boolTy
; thing <- thing_inside res_ty
; return (ExprStmt guard' noSyntaxExpr noSyntaxExpr boolTy, thing) }
tcGuardStmt ctxt (BindStmt pat rhs _ _) res_ty thing_inside
= do { (rhs', rhs_ty) <- tcInferRhoNC rhs
; (pat', thing) <- tcPat (StmtCtxt ctxt) pat rhs_ty $
thing_inside res_ty
; return (BindStmt pat' rhs' noSyntaxExpr noSyntaxExpr, thing) }
tcGuardStmt _ stmt _ _
= pprPanic "tcGuardStmt: unexpected Stmt" (ppr stmt)
tcLcStmt :: TyCon
-> TcStmtChecker
tcLcStmt _ _ (LastStmt body _) elt_ty thing_inside
= do { body' <- tcMonoExprNC body elt_ty
; thing <- thing_inside (panic "tcLcStmt: thing_inside")
; return (LastStmt body' noSyntaxExpr, thing) }
tcLcStmt m_tc ctxt (BindStmt pat rhs _ _) elt_ty thing_inside
= do { pat_ty <- newFlexiTyVarTy liftedTypeKind
; rhs' <- tcMonoExpr rhs (mkTyConApp m_tc [pat_ty])
; (pat', thing) <- tcPat (StmtCtxt ctxt) pat pat_ty $
thing_inside elt_ty
; return (BindStmt pat' rhs' noSyntaxExpr noSyntaxExpr, thing) }
tcLcStmt _ _ (ExprStmt rhs _ _ _) elt_ty thing_inside
= do { rhs' <- tcMonoExpr rhs boolTy
; thing <- thing_inside elt_ty
; return (ExprStmt rhs' noSyntaxExpr noSyntaxExpr boolTy, thing) }
tcLcStmt m_tc ctxt (ParStmt bndr_stmts_s _ _ _) elt_ty thing_inside
= do { (pairs', thing) <- loop bndr_stmts_s
; return (ParStmt pairs' noSyntaxExpr noSyntaxExpr noSyntaxExpr, thing) }
where
loop [] = do { thing <- thing_inside elt_ty
; return ([], thing) }
loop ((stmts, names) : pairs)
= do { (stmts', (ids, pairs', thing))
<- tcStmtsAndThen ctxt (tcLcStmt m_tc) stmts elt_ty $ \ _elt_ty' ->
do { ids <- tcLookupLocalIds names
; (pairs', thing) <- loop pairs
; return (ids, pairs', thing) }
; return ( (stmts', ids) : pairs', thing ) }
tcLcStmt m_tc ctxt (TransStmt { trS_form = form, trS_stmts = stmts
, trS_bndrs = bindersMap
, trS_by = by, trS_using = using }) elt_ty thing_inside
= do { let (bndr_names, n_bndr_names) = unzip bindersMap
unused_ty = pprPanic "tcLcStmt: inner ty" (ppr bindersMap)
; (stmts', (bndr_ids, by'))
<- tcStmtsAndThen (TransStmtCtxt ctxt) (tcLcStmt m_tc) stmts unused_ty $ \_ -> do
{ by' <- case by of
Nothing -> return Nothing
Just e -> do { e_ty <- tcInferRho e; return (Just e_ty) }
; bndr_ids <- tcLookupLocalIds bndr_names
; return (bndr_ids, by') }
; let m_app ty = mkTyConApp m_tc [ty]
; let n_app = case form of
ThenForm -> (\ty -> ty)
_ -> m_app
by_arrow :: Type -> Type
by_arrow = case by' of
Nothing -> \ty -> ty
Just (_,e_ty) -> \ty -> (alphaTy `mkFunTy` e_ty) `mkFunTy` ty
tup_ty = mkBigCoreVarTupTy bndr_ids
poly_arg_ty = m_app alphaTy
poly_res_ty = m_app (n_app alphaTy)
using_poly_ty = mkForAllTy alphaTyVar $ by_arrow $
poly_arg_ty `mkFunTy` poly_res_ty
; using' <- tcPolyExpr using using_poly_ty
; let final_using = fmap (HsWrap (WpTyApp tup_ty)) using'
; let mk_n_bndr :: Name -> TcId -> TcId
mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name (n_app (idType bndr_id))
n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids
bindersMap' = bndr_ids `zip` n_bndr_ids
; thing <- tcExtendIdEnv n_bndr_ids (thing_inside elt_ty)
; return (emptyTransStmt { trS_stmts = stmts', trS_bndrs = bindersMap'
, trS_by = fmap fst by', trS_using = final_using
, trS_form = form }, thing) }
tcLcStmt _ _ stmt _ _
= pprPanic "tcLcStmt: unexpected Stmt" (ppr stmt)
tcMcStmt :: TcStmtChecker
tcMcStmt _ (LastStmt body return_op) res_ty thing_inside
= do { a_ty <- newFlexiTyVarTy liftedTypeKind
; return_op' <- tcSyntaxOp MCompOrigin return_op
(a_ty `mkFunTy` res_ty)
; body' <- tcMonoExprNC body a_ty
; thing <- thing_inside (panic "tcMcStmt: thing_inside")
; return (LastStmt body' return_op', thing) }
tcMcStmt ctxt (BindStmt pat rhs bind_op fail_op) res_ty thing_inside
= do { rhs_ty <- newFlexiTyVarTy liftedTypeKind
; pat_ty <- newFlexiTyVarTy liftedTypeKind
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; bind_op' <- tcSyntaxOp MCompOrigin bind_op
(mkFunTys [rhs_ty, mkFunTy pat_ty new_res_ty] res_ty)
; fail_op' <- if isIrrefutableHsPat pat
then return noSyntaxExpr
else tcSyntaxOp MCompOrigin fail_op (mkFunTy stringTy new_res_ty)
; rhs' <- tcMonoExprNC rhs rhs_ty
; (pat', thing) <- tcPat (StmtCtxt ctxt) pat pat_ty $
thing_inside new_res_ty
; return (BindStmt pat' rhs' bind_op' fail_op', thing) }
tcMcStmt _ (ExprStmt rhs then_op guard_op _) res_ty thing_inside
= do {
test_ty <- newFlexiTyVarTy liftedTypeKind
; rhs_ty <- newFlexiTyVarTy liftedTypeKind
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; rhs' <- tcMonoExpr rhs test_ty
; guard_op' <- tcSyntaxOp MCompOrigin guard_op
(mkFunTy test_ty rhs_ty)
; then_op' <- tcSyntaxOp MCompOrigin then_op
(mkFunTys [rhs_ty, new_res_ty] res_ty)
; thing <- thing_inside new_res_ty
; return (ExprStmt rhs' then_op' guard_op' rhs_ty, thing) }
tcMcStmt ctxt (TransStmt { trS_stmts = stmts, trS_bndrs = bindersMap
, trS_by = by, trS_using = using, trS_form = form
, trS_ret = return_op, trS_bind = bind_op
, trS_fmap = fmap_op }) res_ty thing_inside
= do { let star_star_kind = liftedTypeKind `mkArrowKind` liftedTypeKind
; m1_ty <- newFlexiTyVarTy star_star_kind
; m2_ty <- newFlexiTyVarTy star_star_kind
; tup_ty <- newFlexiTyVarTy liftedTypeKind
; by_e_ty <- newFlexiTyVarTy liftedTypeKind
; n_app <- case form of
ThenForm -> return (\ty -> ty)
_ -> do { n_ty <- newFlexiTyVarTy star_star_kind
; return (n_ty `mkAppTy`) }
; let by_arrow :: Type -> Type
by_arrow = case by of
Nothing -> \res -> res
Just {} -> \res -> (alphaTy `mkFunTy` by_e_ty) `mkFunTy` res
poly_arg_ty = m1_ty `mkAppTy` alphaTy
using_arg_ty = m1_ty `mkAppTy` tup_ty
poly_res_ty = m2_ty `mkAppTy` n_app alphaTy
using_res_ty = m2_ty `mkAppTy` n_app tup_ty
using_poly_ty = mkForAllTy alphaTyVar $ by_arrow $
poly_arg_ty `mkFunTy` poly_res_ty
; let (bndr_names, n_bndr_names) = unzip bindersMap
; (stmts', (bndr_ids, by', return_op')) <-
tcStmtsAndThen (TransStmtCtxt ctxt) tcMcStmt stmts using_arg_ty $ \res_ty' -> do
{ by' <- case by of
Nothing -> return Nothing
Just e -> do { e' <- tcMonoExpr e by_e_ty; return (Just e') }
; bndr_ids <- tcLookupLocalIds bndr_names
; return_op' <- tcSyntaxOp MCompOrigin return_op $
(mkBigCoreVarTupTy bndr_ids) `mkFunTy` res_ty'
; return (bndr_ids, by', return_op') }
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; bind_op' <- tcSyntaxOp MCompOrigin bind_op $
using_res_ty `mkFunTy` (n_app tup_ty `mkFunTy` new_res_ty)
`mkFunTy` res_ty
; fmap_op' <- case form of
ThenForm -> return noSyntaxExpr
_ -> fmap unLoc . tcPolyExpr (noLoc fmap_op) $
mkForAllTy alphaTyVar $ mkForAllTy betaTyVar $
(alphaTy `mkFunTy` betaTy)
`mkFunTy` (n_app alphaTy)
`mkFunTy` (n_app betaTy)
; using' <- tcPolyExpr using using_poly_ty
; let final_using = fmap (HsWrap (WpTyApp tup_ty)) using'
; let mk_n_bndr :: Name -> TcId -> TcId
mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name (n_app (idType bndr_id))
n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids
bindersMap' = bndr_ids `zip` n_bndr_ids
; thing <- tcExtendIdEnv n_bndr_ids (thing_inside new_res_ty)
; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap'
, trS_by = by', trS_using = final_using
, trS_ret = return_op', trS_bind = bind_op'
, trS_fmap = fmap_op', trS_form = form }, thing) }
tcMcStmt ctxt (ParStmt bndr_stmts_s mzip_op bind_op return_op) res_ty thing_inside
= do { let star_star_kind = liftedTypeKind `mkArrowKind` liftedTypeKind
; m_ty <- newFlexiTyVarTy star_star_kind
; let mzip_ty = mkForAllTys [alphaTyVar, betaTyVar] $
(m_ty `mkAppTy` alphaTy)
`mkFunTy`
(m_ty `mkAppTy` betaTy)
`mkFunTy`
(m_ty `mkAppTy` mkBoxedTupleTy [alphaTy, betaTy])
; mzip_op' <- unLoc `fmap` tcPolyExpr (noLoc mzip_op) mzip_ty
; return_op' <- fmap unLoc . tcPolyExpr (noLoc return_op) $
mkForAllTy alphaTyVar $
alphaTy `mkFunTy` (m_ty `mkAppTy` alphaTy)
; (pairs', thing) <- loop m_ty bndr_stmts_s
; let tys = map (mkBigCoreVarTupTy . snd) pairs'
tuple_ty = mk_tuple_ty tys
; bind_op' <- tcSyntaxOp MCompOrigin bind_op $
(m_ty `mkAppTy` tuple_ty)
`mkFunTy` (tuple_ty `mkFunTy` res_ty)
`mkFunTy` res_ty
; return (ParStmt pairs' mzip_op' bind_op' return_op', thing) }
where
mk_tuple_ty tys = foldr1 (\tn tm -> mkBoxedTupleTy [tn, tm]) tys
loop _ [] = do { thing <- thing_inside res_ty
; return ([], thing) }
loop m_ty ((stmts, names) : pairs)
= do {
ty_dummy <- newFlexiTyVarTy liftedTypeKind
; (stmts', (ids, pairs', thing))
<- tcStmtsAndThen ctxt tcMcStmt stmts ty_dummy $ \res_ty' ->
do { ids <- tcLookupLocalIds names
; let m_tup_ty = m_ty `mkAppTy` mkBigCoreVarTupTy ids
; check_same m_tup_ty res_ty'
; check_same m_tup_ty ty_dummy
; (pairs', thing) <- loop m_ty pairs
; return (ids, pairs', thing) }
; return ( (stmts', ids) : pairs', thing ) }
check_same actual expected
= do { coi <- unifyType actual expected
; unless (isReflCo coi) $
failWithMisMatch [UnifyOrigin { uo_expected = expected
, uo_actual = actual }] }
tcMcStmt _ stmt _ _
= pprPanic "tcMcStmt: unexpected Stmt" (ppr stmt)
tcDoStmt :: TcStmtChecker
tcDoStmt _ (LastStmt body _) res_ty thing_inside
= do { body' <- tcMonoExprNC body res_ty
; thing <- thing_inside (panic "tcDoStmt: thing_inside")
; return (LastStmt body' noSyntaxExpr, thing) }
tcDoStmt ctxt (BindStmt pat rhs bind_op fail_op) res_ty thing_inside
= do {
rhs_ty <- newFlexiTyVarTy liftedTypeKind
; pat_ty <- newFlexiTyVarTy liftedTypeKind
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; bind_op' <- tcSyntaxOp DoOrigin bind_op
(mkFunTys [rhs_ty, mkFunTy pat_ty new_res_ty] res_ty)
; fail_op' <- if isIrrefutableHsPat pat
then return noSyntaxExpr
else tcSyntaxOp DoOrigin fail_op (mkFunTy stringTy new_res_ty)
; rhs' <- tcMonoExprNC rhs rhs_ty
; (pat', thing) <- tcPat (StmtCtxt ctxt) pat pat_ty $
thing_inside new_res_ty
; return (BindStmt pat' rhs' bind_op' fail_op', thing) }
tcDoStmt _ (ExprStmt rhs then_op _ _) res_ty thing_inside
= do {
rhs_ty <- newFlexiTyVarTy liftedTypeKind
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; then_op' <- tcSyntaxOp DoOrigin then_op
(mkFunTys [rhs_ty, new_res_ty] res_ty)
; rhs' <- tcMonoExprNC rhs rhs_ty
; thing <- thing_inside new_res_ty
; return (ExprStmt rhs' then_op' noSyntaxExpr rhs_ty, thing) }
tcDoStmt ctxt (RecStmt { recS_stmts = stmts, recS_later_ids = later_names
, recS_rec_ids = rec_names, recS_ret_fn = ret_op
, recS_mfix_fn = mfix_op, recS_bind_fn = bind_op })
res_ty thing_inside
= do { let tup_names = rec_names ++ filterOut (`elem` rec_names) later_names
; tup_elt_tys <- newFlexiTyVarTys (length tup_names) liftedTypeKind
; let tup_ids = zipWith mkLocalId tup_names tup_elt_tys
tup_ty = mkBoxedTupleTy tup_elt_tys
; tcExtendIdEnv tup_ids $ do
{ stmts_ty <- newFlexiTyVarTy liftedTypeKind
; (stmts', (ret_op', tup_rets))
<- tcStmtsAndThen ctxt tcDoStmt stmts stmts_ty $ \ inner_res_ty ->
do { tup_rets <- zipWithM tcCheckId tup_names tup_elt_tys
; ret_op' <- tcSyntaxOp DoOrigin ret_op (mkFunTy tup_ty inner_res_ty)
; return (ret_op', tup_rets) }
; mfix_res_ty <- newFlexiTyVarTy liftedTypeKind
; mfix_op' <- tcSyntaxOp DoOrigin mfix_op
(mkFunTy (mkFunTy tup_ty stmts_ty) mfix_res_ty)
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; bind_op' <- tcSyntaxOp DoOrigin bind_op
(mkFunTys [mfix_res_ty, mkFunTy tup_ty new_res_ty] res_ty)
; thing <- thing_inside new_res_ty
; let rec_ids = takeList rec_names tup_ids
; later_ids <- tcLookupLocalIds later_names
; traceTc "tcdo" $ vcat [ppr rec_ids <+> ppr (map idType rec_ids),
ppr later_ids <+> ppr (map idType later_ids)]
; return (RecStmt { recS_stmts = stmts', recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_ret_fn = ret_op'
, recS_mfix_fn = mfix_op', recS_bind_fn = bind_op'
, recS_rec_rets = tup_rets, recS_ret_ty = stmts_ty }, thing)
}}
tcDoStmt _ stmt _ _
= pprPanic "tcDoStmt: unexpected Stmt" (ppr stmt)
\end{code}
Note [Treat rebindable syntax first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When typechecking
do { bar; ... } :: IO ()
we want to typecheck 'bar' in the knowledge that it should be an IO thing,
pushing info from the context into the RHS. To do this, we check the
rebindable syntax first, and push that information into (tcMonoExprNC rhs).
Otherwise the error shows up when cheking the rebindable syntax, and
the expected/inferred stuff is back to front (see Trac #3613).
%************************************************************************
%* *
\subsection{Errors and contexts}
%* *
%************************************************************************
@sameNoOfArgs@ takes a @[RenamedMatch]@ and decides whether the same
number of args are used in each equation.
\begin{code}
checkArgs :: Name -> MatchGroup Name -> TcM ()
checkArgs fun (MatchGroup (match1:matches) _)
| null bad_matches = return ()
| otherwise
= failWithTc (vcat [ptext (sLit "Equations for") <+> quotes (ppr fun) <+>
ptext (sLit "have different numbers of arguments"),
nest 2 (ppr (getLoc match1)),
nest 2 (ppr (getLoc (head bad_matches)))])
where
n_args1 = args_in_match match1
bad_matches = [m | m <- matches, args_in_match m /= n_args1]
args_in_match :: LMatch Name -> Int
args_in_match (L _ (Match pats _ _)) = length pats
checkArgs fun _ = pprPanic "TcPat.checkArgs" (ppr fun)
\end{code}