% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1998 % \section[TypeRep]{Type - friends' interface} \begin{code}
-- We expose the relevant stuff from this module via the Type module
{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable, DeriveTraversable #-}
module TypeRep (
	TyThing(..), 
	Type(..),
        Pred(..),                       -- to friends
	
        Kind, SuperKind,
        PredType, ThetaType,      -- Synonyms

        -- Functions over types
        mkTyConApp, mkTyConTy, mkTyVarTy, mkTyVarTys,
        isLiftedTypeKind, isCoercionKind, 

        -- Pretty-printing
	pprType, pprParendType, pprTypeApp,
	pprTyThing, pprTyThingCategory, 
	pprPredTy, pprEqPred, pprTheta, pprForAll, pprThetaArrowTy, pprClassPred,
        pprKind, pprParendKind,
	Prec(..), maybeParen, pprTcApp, pprTypeNameApp, 
        pprPrefixApp, pprPred, pprArrowChain, pprThetaArrow,

        -- Free variables
        tyVarsOfType, tyVarsOfTypes,
        tyVarsOfPred, tyVarsOfTheta,
	varsOfPred, varsOfTheta,
	predSize,

        -- Substitutions
        TvSubst(..), TvSubstEnv
    ) where

#include "HsVersions.h"

import {-# SOURCE #-} DataCon( DataCon, dataConName )

-- friends:
import Var
import VarEnv
import VarSet
import Name
import BasicTypes
import TyCon
import Class

-- others
import PrelNames
import Outputable
import FastString
import Pair

-- libraries
import qualified Data.Data        as Data hiding ( TyCon )
import qualified Data.Foldable    as Data
import qualified Data.Traversable as Data
\end{code} ---------------------- A note about newtypes ---------------------- Consider newtype N = MkN Int Then we want N to be represented as an Int, and that's what we arrange. The front end of the compiler [TcType.lhs] treats N as opaque, the back end treats it as transparent [Type.lhs]. There's a bit of a problem with recursive newtypes newtype P = MkP P newtype Q = MkQ (Q->Q) Here the 'implicit expansion' we get from treating P and Q as transparent would give rise to infinite types, which in turn makes eqType diverge. Similarly splitForAllTys and splitFunTys can get into a loop. Solution: * Newtypes are always represented using TyConApp. * For non-recursive newtypes, P, treat P just like a type synonym after type-checking is done; i.e. it's opaque during type checking (functions from TcType) but transparent afterwards (functions from Type). "Treat P as a type synonym" means "all functions expand NewTcApps on the fly". Applications of the data constructor P simply vanish: P x = x * For recursive newtypes Q, treat the Q and its representation as distinct right through the compiler. Applications of the data consructor use a coerce: Q = \(x::Q->Q). coerce Q x They are rare, so who cares if they are a tiny bit less efficient. The typechecker (TcTyDecls) identifies enough type construtors as 'recursive' to cut all loops. The other members of the loop may be marked 'non-recursive'. %************************************************************************ %* * \subsection{The data type} %* * %************************************************************************ \begin{code}
-- | The key representation of types within the compiler
data Type
  = TyVarTy TyVar	-- ^ Vanilla type variable (*never* a coercion variable)

  | AppTy
	Type
	Type		-- ^ Type application to something other than a 'TyCon'. Parameters:
	                --
                        --  1) Function: must /not/ be a 'TyConApp',
                        --     must be another 'AppTy', or 'TyVarTy'
	                --
	                --  2) Argument type

  | TyConApp
	TyCon
	[Type]		-- ^ Application of a 'TyCon', including newtypes /and/ synonyms.
	                -- Invariant: saturated appliations of 'FunTyCon' must
	                -- use 'FunTy' and saturated synonyms must use their own
                        -- constructors. However, /unsaturated/ 'FunTyCon's
                        -- do appear as 'TyConApp's.
	                -- Parameters:
	                --
	                -- 1) Type constructor being applied to.
	                --
                        -- 2) Type arguments. Might not have enough type arguments
                        --    here to saturate the constructor.
                        --    Even type synonyms are not necessarily saturated;
                        --    for example unsaturated type synonyms
	                --    can appear as the right hand side of a type synonym.

  | FunTy
	Type		
	Type		-- ^ Special case of 'TyConApp': @TyConApp FunTyCon [t1, t2]@
			-- See Note [Equality-constrained types]

  | ForAllTy
	TyCoVar         -- Type variable
	Type	        -- ^ A polymorphic type

  | PredTy
	PredType	-- ^ The type of evidence for a type predictate.
                        -- Note that a @PredTy (EqPred _ _)@ can appear only as the kind
                        -- of a coercion variable; never as the argument or result of a
                        -- 'FunTy' (unlike the 'PredType' constructors 'ClassP' or 'IParam')
	                
	                -- See Note [PredTy], and Note [Equality predicates]
  deriving (Data.Data, Data.Typeable)

-- | The key type representing kinds in the compiler.
-- Invariant: a kind is always in one of these forms:
--
-- > FunTy k1 k2
-- > TyConApp PrimTyCon [...]
-- > TyVar kv   -- (during inference only)
-- > ForAll ... -- (for top-level coercions)
type Kind = Type

-- | "Super kinds", used to help encode 'Kind's as types.
-- Invariant: a super kind is always of this form:
--
-- > TyConApp SuperKindTyCon ...
type SuperKind = Type
\end{code} Note [Equality-constrained types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The type forall ab. (a ~ [b]) => blah is encoded like this: ForAllTy (a:*) $ ForAllTy (b:*) $ FunTy (PredTy (EqPred a [b]) $ blah ------------------------------------- Note [PredTy] \begin{code}
-- | A type of the form @PredTy p@ represents a value whose type is
-- the Haskell predicate @p@, where a predicate is what occurs before 
-- the @=>@ in a Haskell type.
-- It can be expanded into its representation, but: 
--
-- * The type checker must treat it as opaque
--
-- * The rest of the compiler treats it as transparent
--
-- Consider these examples:
--
-- > f :: (Eq a) => a -> Int
-- > g :: (?x :: Int -> Int) => a -> Int
-- > h :: (r\l) => {r} => {l::Int | r}
--
-- Here the @Eq a@ and @?x :: Int -> Int@ and @r\l@ are all called \"predicates\"
type PredType = Pred Type

data Pred a   -- Typically 'a' is instantiated with Type or Coercion
  = ClassP Class [a]            -- ^ Class predicate e.g. @Eq a@
  | IParam (IPName Name) a      -- ^ Implicit parameter e.g. @?x :: Int@
  | EqPred a a                  -- ^ Equality predicate e.g @ty1 ~ ty2@
  deriving (Data.Data, Data.Typeable, Data.Foldable, Data.Traversable, Functor)

-- | A collection of 'PredType's
type ThetaType = [PredType]
\end{code} (We don't support TREX records yet, but the setup is designed to expand to allow them.) A Haskell qualified type, such as that for f,g,h above, is represented using * a FunTy for the double arrow * with a PredTy as the function argument The predicate really does turn into a real extra argument to the function. If the argument has type (PredTy p) then the predicate p is represented by evidence (a dictionary, for example, of type (predRepTy p). Note [Equality predicates] ~~~~~~~~~~~~~~~~~~~~~~~~~~ forall a b. (a ~ S b) => a -> b could be represented by ForAllTy a (ForAllTy b (FunTy (PredTy (EqPred a (S b))) ...)) OR ForAllTy a (ForAllTy b (ForAllTy (c::PredTy (EqPred a (S b))) ...)) The latter is what we do. (Unlike for class and implicit parameter constraints, which do use FunTy.) Reason: * FunTy is always a *value* function * ForAllTy is discarded at runtime We often need to make a "wildcard" (c::PredTy..). We always use the same name (wildCoVarName), since it's not mentioned. %************************************************************************ %* * Simple constructors %* * %************************************************************************ These functions are here so that they can be used by TysPrim, which in turn is imported by Type \begin{code}
mkTyVarTy  :: TyVar   -> Type
mkTyVarTy  = TyVarTy

mkTyVarTys :: [TyVar] -> [Type]
mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy

-- | A key function: builds a 'TyConApp' or 'FunTy' as apppropriate to its arguments.
-- Applies its arguments to the constructor from left to right
mkTyConApp :: TyCon -> [Type] -> Type
mkTyConApp tycon tys
  | isFunTyCon tycon, [ty1,ty2] <- tys
  = FunTy ty1 ty2

  | otherwise
  = TyConApp tycon tys

-- | Create the plain type constructor type which has been applied to no type arguments at all.
mkTyConTy :: TyCon -> Type
mkTyConTy tycon = mkTyConApp tycon []

isLiftedTypeKind :: Kind -> Bool
-- This function is here because it's used in the pretty printer
isLiftedTypeKind (TyConApp tc []) = tc `hasKey` liftedTypeKindTyConKey
isLiftedTypeKind _                = False

isCoercionKind :: Kind -> Bool
-- All coercions are of form (ty1 ~ ty2)
-- This function is here rather than in Coercion, because it
-- is used in a knot-tied way to enforce invariants in Var
isCoercionKind (PredTy (EqPred {})) = True
isCoercionKind _                    = False
\end{code} %************************************************************************ %* * Free variables of types and coercions %* * %************************************************************************ \begin{code}
tyVarsOfPred :: PredType -> TyCoVarSet
tyVarsOfPred = varsOfPred tyVarsOfType

tyVarsOfTheta :: ThetaType -> TyCoVarSet
tyVarsOfTheta = varsOfTheta tyVarsOfType

tyVarsOfType :: Type -> VarSet
-- ^ NB: for type synonyms tyVarsOfType does /not/ expand the synonym
tyVarsOfType (TyVarTy v)         = unitVarSet v
tyVarsOfType (TyConApp _ tys)    = tyVarsOfTypes tys
tyVarsOfType (PredTy sty)        = varsOfPred tyVarsOfType sty
tyVarsOfType (FunTy arg res)     = tyVarsOfType arg `unionVarSet` tyVarsOfType res
tyVarsOfType (AppTy fun arg)     = tyVarsOfType fun `unionVarSet` tyVarsOfType arg
tyVarsOfType (ForAllTy tyvar ty) = delVarSet (tyVarsOfType ty) tyvar

tyVarsOfTypes :: [Type] -> TyVarSet
tyVarsOfTypes tys = foldr (unionVarSet . tyVarsOfType) emptyVarSet tys

varsOfPred :: (a -> VarSet) -> Pred a -> VarSet
varsOfPred f (IParam _ ty)    = f ty
varsOfPred f (ClassP _ tys)   = foldr (unionVarSet . f) emptyVarSet tys
varsOfPred f (EqPred ty1 ty2) = f ty1 `unionVarSet` f ty2

varsOfTheta :: (a -> VarSet) -> [Pred a] -> VarSet
varsOfTheta f = foldr (unionVarSet . varsOfPred f) emptyVarSet

predSize :: (a -> Int) -> Pred a -> Int
predSize size (IParam _ t)   = 1 + size t
predSize size (ClassP _ ts)  = 1 + sum (map size ts)
predSize size (EqPred t1 t2) = size t1 + size t2
\end{code} %************************************************************************ %* * TyThing %* * %************************************************************************ Despite the fact that DataCon has to be imported via a hi-boot route, this module seems the right place for TyThing, because it's needed for funTyCon and all the types in TysPrim. \begin{code}
-- | A typecheckable-thing, essentially anything that has a name
data TyThing = AnId     Id
	     | ADataCon DataCon
	     | ATyCon   TyCon
             | ACoAxiom CoAxiom
	     | AClass   Class

instance Outputable TyThing where 
  ppr = pprTyThing

pprTyThing :: TyThing -> SDoc
pprTyThing thing = pprTyThingCategory thing <+> quotes (ppr (getName thing))

pprTyThingCategory :: TyThing -> SDoc
pprTyThingCategory (ATyCon _) 	= ptext (sLit "Type constructor")
pprTyThingCategory (ACoAxiom _) = ptext (sLit "Coercion axiom")
pprTyThingCategory (AClass _)   = ptext (sLit "Class")
pprTyThingCategory (AnId   _)   = ptext (sLit "Identifier")
pprTyThingCategory (ADataCon _) = ptext (sLit "Data constructor")

instance NamedThing TyThing where	-- Can't put this with the type
  getName (AnId id)     = getName id	-- decl, because the DataCon instance
  getName (ATyCon tc)   = getName tc	-- isn't visible there
  getName (ACoAxiom cc) = getName cc
  getName (AClass cl)   = getName cl
  getName (ADataCon dc) = dataConName dc
\end{code} %************************************************************************ %* * Substitutions Data type defined here to avoid unnecessary mutual recursion %* * %************************************************************************ \begin{code}
-- | Type substitution
--
-- #tvsubst_invariant#
-- The following invariants must hold of a 'TvSubst':
-- 
-- 1. The in-scope set is needed /only/ to
-- guide the generation of fresh uniques
--
-- 2. In particular, the /kind/ of the type variables in 
-- the in-scope set is not relevant
--
-- 3. The substition is only applied ONCE! This is because
-- in general such application will not reached a fixed point.
data TvSubst 		
  = TvSubst InScopeSet 	-- The in-scope type variables
	    TvSubstEnv	-- Substitution of types
	-- See Note [Apply Once]
	-- and Note [Extending the TvSubstEnv]

-- | A substitition of 'Type's for 'TyVar's
type TvSubstEnv = TyVarEnv Type
	-- A TvSubstEnv is used both inside a TvSubst (with the apply-once
	-- invariant discussed in Note [Apply Once]), and also independently
	-- in the middle of matching, and unification (see Types.Unify)
	-- So you have to look at the context to know if it's idempotent or
	-- apply-once or whatever
\end{code} Note [Apply Once] ~~~~~~~~~~~~~~~~~ We use TvSubsts to instantiate things, and we might instantiate forall a b. ty \with the types [a, b], or [b, a]. So the substition might go [a->b, b->a]. A similar situation arises in Core when we find a beta redex like (/\ a /\ b -> e) b a Then we also end up with a substition that permutes type variables. Other variations happen to; for example [a -> (a, b)]. *************************************************** *** So a TvSubst must be applied precisely once *** *************************************************** A TvSubst is not idempotent, but, unlike the non-idempotent substitution we use during unifications, it must not be repeatedly applied. Note [Extending the TvSubst] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #tvsubst_invariant# for the invariants that must hold. This invariant allows a short-cut when the TvSubstEnv is empty: if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds --- then (substTy subst ty) does nothing. For example, consider: (/\a. /\b:(a~Int). ...b..) Int We substitute Int for 'a'. The Unique of 'b' does not change, but nevertheless we add 'b' to the TvSubstEnv, because b's kind does change This invariant has several crucial consequences: * In substTyVarBndr, we need extend the TvSubstEnv - if the unique has changed - or if the kind has changed * In substTyVar, we do not need to consult the in-scope set; the TvSubstEnv is enough * In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty \end{code} %************************************************************************ %* * Pretty-printing types Defined very early because of debug printing in assertions %* * %************************************************************************ @pprType@ is the standard @Type@ printer; the overloaded @ppr@ function is defined to use this. @pprParendType@ is the same, except it puts parens around the type, except for the atomic cases. @pprParendType@ works just by setting the initial context precedence very high. \begin{code}
data Prec = TopPrec 	-- No parens
	  | FunPrec 	-- Function args; no parens for tycon apps
	  | TyConPrec 	-- Tycon args; no parens for atomic
	  deriving( Eq, Ord )

maybeParen :: Prec -> Prec -> SDoc -> SDoc
maybeParen ctxt_prec inner_prec pretty
  | ctxt_prec < inner_prec = pretty
  | otherwise		   = parens pretty

------------------
pprType, pprParendType :: Type -> SDoc
pprType       ty = ppr_type TopPrec ty
pprParendType ty = ppr_type TyConPrec ty

pprKind, pprParendKind :: Kind -> SDoc
pprKind       = pprType
pprParendKind = pprParendType

------------------
pprPredTy :: PredType -> SDoc
pprPredTy = pprPred ppr_type

pprPred :: (Prec -> a -> SDoc) -> Pred a -> SDoc
pprPred pp (ClassP cls tys) = ppr_class_pred pp cls tys
pprPred pp (IParam ip ty)   = ppr ip <> dcolon <> pp TopPrec ty
pprPred pp (EqPred ty1 ty2) = ppr_eq_pred pp (Pair ty1 ty2)

------------
pprEqPred :: Pair Type -> SDoc
pprEqPred = ppr_eq_pred ppr_type

ppr_eq_pred :: (Prec -> a -> SDoc) -> Pair a -> SDoc
ppr_eq_pred pp (Pair ty1 ty2) = sep [ pp FunPrec ty1
                                    , nest 2 (ptext (sLit "~"))
                                    , pp FunPrec ty2]
			       -- Precedence looks like (->) so that we get
			       --    Maybe a ~ Bool
			       --    (a->a) ~ Bool
			       -- Note parens on the latter!

------------
pprClassPred :: Class -> [Type] -> SDoc
pprClassPred = ppr_class_pred ppr_type

ppr_class_pred :: (Prec -> a -> SDoc) -> Class -> [a] -> SDoc
ppr_class_pred pp clas tys = pprTypeNameApp TopPrec pp (getName clas) tys

------------
pprTheta :: ThetaType -> SDoc
-- pprTheta [pred] = pprPred pred	 -- I'm in two minds about this
pprTheta theta  = parens (sep (punctuate comma (map pprPredTy theta)))

pprThetaArrowTy :: ThetaType -> SDoc
pprThetaArrowTy = pprThetaArrow ppr_type

pprThetaArrow :: (Prec -> a -> SDoc) -> [Pred a] -> SDoc
pprThetaArrow _ []      = empty
pprThetaArrow pp [pred]
      | noParenPred pred = pprPred pp pred <+> darrow
pprThetaArrow pp preds   = parens (sep (punctuate comma (map (pprPred pp) preds)))
                            <+> darrow

noParenPred :: Pred a -> Bool
-- A predicate that can appear without parens before a "=>"
--       C a => a -> a
--       a~b => a -> b
-- But   (?x::Int) => Int -> Int
noParenPred (ClassP {}) = True
noParenPred (EqPred {}) = True
noParenPred (IParam {}) = False

------------------
instance Outputable Type where
    ppr ty = pprType ty

instance Outputable (Pred Type) where
    ppr = pprPredTy   -- Not for arbitrary (Pred a), because the
    	  	      -- (Outputable a) doesn't give precedence

instance Outputable name => OutputableBndr (IPName name) where
    pprBndr _ n = ppr n	-- Simple for now

------------------
	-- OK, here's the main printer

ppr_type :: Prec -> Type -> SDoc
ppr_type _ (TyVarTy tv)	      = ppr_tvar tv
ppr_type p (PredTy pred)      = maybeParen p TyConPrec $
                                ifPprDebug (ptext (sLit "<pred>")) <> (pprPredTy pred)
ppr_type p (TyConApp tc tys)  = pprTcApp p ppr_type tc tys

ppr_type p (AppTy t1 t2) = maybeParen p TyConPrec $
			   pprType t1 <+> ppr_type TyConPrec t2

ppr_type p ty@(ForAllTy {})        = ppr_forall_type p ty
ppr_type p ty@(FunTy (PredTy _) _) = ppr_forall_type p ty

ppr_type p (FunTy ty1 ty2)
  = pprArrowChain p (ppr_type FunPrec ty1 : ppr_fun_tail ty2)
  where
    -- We don't want to lose synonyms, so we mustn't use splitFunTys here.
    ppr_fun_tail (FunTy ty1 ty2)
      | not (is_pred ty1) = ppr_type FunPrec ty1 : ppr_fun_tail ty2
    ppr_fun_tail other_ty = [ppr_type TopPrec other_ty]

    is_pred (PredTy {}) = True
    is_pred _           = False

ppr_forall_type :: Prec -> Type -> SDoc
ppr_forall_type p ty
  = maybeParen p FunPrec $
    sep [pprForAll tvs, pprThetaArrowTy ctxt, pprType tau]
  where
    (tvs,  rho) = split1 [] ty
    (ctxt, tau) = split2 [] rho

    split1 tvs (ForAllTy tv ty) = split1 (tv:tvs) ty
    split1 tvs ty	        = (reverse tvs, ty)
 
    split2 ps (PredTy p `FunTy` ty) = split2 (p:ps) ty
    split2 ps ty		    = (reverse ps, ty)

ppr_tvar :: TyVar -> SDoc
ppr_tvar tv  -- Note [Infix type variables]
  | isSymOcc (getOccName tv)  = parens (ppr tv)
  | otherwise		      = ppr tv

-------------------
pprForAll :: [TyVar] -> SDoc
pprForAll []  = empty
pprForAll tvs = ptext (sLit "forall") <+> sep (map pprTvBndr tvs) <> dot

pprTvBndr :: TyVar -> SDoc
pprTvBndr tv 
  | isLiftedTypeKind kind = ppr_tvar tv
  | otherwise	          = parens (ppr_tvar tv <+> dcolon <+> pprKind kind)
	     where
	       kind = tyVarKind tv
\end{code} Note [Infix type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ With TypeOperators you can say f :: (a ~> b) -> b and the (~>) is considered a type variable. However, the type pretty-printer in this module will just see (a ~> b) as App (App (TyVarTy "~>") (TyVarTy "a")) (TyVarTy "b") So it'll print the type in prefix form. To avoid confusion we must remember to parenthesise the operator, thus (~>) a b -> b See Trac #2766. \begin{code}
pprTcApp :: Prec -> (Prec -> a -> SDoc) -> TyCon -> [a] -> SDoc
pprTcApp _ _ tc []      -- No brackets for SymOcc
  = pp_nt_debug <> ppr tc
  where
   pp_nt_debug | isNewTyCon tc = ifPprDebug (if isRecursiveTyCon tc 
				             then ptext (sLit "<recnt>")
					     else ptext (sLit "<nt>"))
	       | otherwise     = empty

pprTcApp _ pp tc [ty]
  | tc `hasKey` listTyConKey = brackets (pp TopPrec ty)
  | tc `hasKey` parrTyConKey = ptext (sLit "[:") <> pp TopPrec ty <> ptext (sLit ":]")
  | tc `hasKey` liftedTypeKindTyConKey   = ptext (sLit "*")
  | tc `hasKey` unliftedTypeKindTyConKey = ptext (sLit "#")
  | tc `hasKey` openTypeKindTyConKey     = ptext (sLit "(?)")
  | tc `hasKey` ubxTupleKindTyConKey     = ptext (sLit "(#)")
  | tc `hasKey` argTypeKindTyConKey      = ptext (sLit "??")

pprTcApp p pp tc tys
  | isTupleTyCon tc && tyConArity tc == length tys
  = tupleParens (tupleTyConBoxity tc) (sep (punctuate comma (map (pp TopPrec) tys)))
  | otherwise
  = pprTypeNameApp p pp (getName tc) tys

----------------
pprTypeApp :: NamedThing a => a -> [Type] -> SDoc
-- The first arg is the tycon, or sometimes class
-- Print infix if the tycon/class looks like an operator
pprTypeApp tc tys = pprTypeNameApp TopPrec ppr_type (getName tc) tys

pprTypeNameApp :: Prec -> (Prec -> a -> SDoc) -> Name -> [a] -> SDoc
-- Used for classes and coercions as well as types; that's why it's separate from pprTcApp
pprTypeNameApp p pp tc tys
  | is_sym_occ           -- Print infix if possible
  , [ty1,ty2] <- tys  -- We know nothing of precedence though
  = maybeParen p FunPrec $
    sep [pp FunPrec ty1, pprInfixVar True (ppr tc) <+> pp FunPrec ty2]
  | otherwise
  = pprPrefixApp p (pprPrefixVar is_sym_occ (ppr tc)) (map (pp TyConPrec) tys)
  where
    is_sym_occ = isSymOcc (getOccName tc)

----------------
pprPrefixApp :: Prec -> SDoc -> [SDoc] -> SDoc
pprPrefixApp p pp_fun pp_tys = maybeParen p TyConPrec $
                               hang pp_fun 2 (sep pp_tys)

----------------
pprArrowChain :: Prec -> [SDoc] -> SDoc
-- pprArrowChain p [a,b,c]  generates   a -> b -> c
pprArrowChain _ []         = empty
pprArrowChain p (arg:args) = maybeParen p FunPrec $
                             sep [arg, sep (map (arrow <+>) args)]
\end{code}