% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Pattern-matching constructors \begin{code}
{-# OPTIONS -fno-warn-incomplete-patterns #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module MatchCon ( matchConFamily ) where

#include "HsVersions.h"

import {-# SOURCE #-} Match	( match )

import HsSyn
import DsBinds
import DataCon
import TcType
import DsMonad
import DsUtils
import Util	( all2, takeList, zipEqual )
import ListSetOps ( runs )
import Id
import NameEnv
import SrcLoc
import Outputable
\end{code} We are confronted with the first column of patterns in a set of equations, all beginning with constructors from one ``family'' (e.g., @[]@ and @:@ make up the @List@ ``family''). We want to generate the alternatives for a @Case@ expression. There are several choices: \begin{enumerate} \item Generate an alternative for every constructor in the family, whether they are used in this set of equations or not; this is what the Wadler chapter does. \begin{description} \item[Advantages:] (a)~Simple. (b)~It may also be that large sparsely-used constructor families are mainly handled by the code for literals. \item[Disadvantages:] (a)~Not practical for large sparsely-used constructor families, e.g., the ASCII character set. (b)~Have to look up a list of what constructors make up the whole family. \end{description} \item Generate an alternative for each constructor used, then add a default alternative in case some constructors in the family weren't used. \begin{description} \item[Advantages:] (a)~Alternatives aren't generated for unused constructors. (b)~The STG is quite happy with defaults. (c)~No lookup in an environment needed. \item[Disadvantages:] (a)~A spurious default alternative may be generated. \end{description} \item ``Do it right:'' generate an alternative for each constructor used, and add a default alternative if all constructors in the family weren't used. \begin{description} \item[Advantages:] (a)~You will get cases with only one alternative (and no default), which should be amenable to optimisation. Tuples are a common example. \item[Disadvantages:] (b)~Have to look up constructor families in TDE (as above). \end{description} \end{enumerate} We are implementing the ``do-it-right'' option for now. The arguments to @matchConFamily@ are the same as to @match@; the extra @Int@ returned is the number of constructors in the family. The function @matchConFamily@ is concerned with this have-we-used-all-the-constructors? question; the local function @match_cons_used@ does all the real work. \begin{code}
matchConFamily :: [Id]
               -> Type
	       -> [[EquationInfo]]
	       -> DsM MatchResult
-- Each group of eqns is for a single constructor
matchConFamily (var:vars) ty groups
  = do	{ alts <- mapM (matchOneCon vars ty) groups
	; return (mkCoAlgCaseMatchResult var ty alts) }

type ConArgPats = HsConDetails (LPat Id) (HsRecFields Id (LPat Id))

matchOneCon :: [Id]
            -> Type
            -> [EquationInfo]
            -> DsM (DataCon, [Var], MatchResult)
matchOneCon vars ty (eqn1 : eqns)	-- All eqns for a single constructor
  = do	{ arg_vars <- selectConMatchVars arg_tys args1
	 	-- Use the first equation as a source of 
		-- suggestions for the new variables

	-- Divide into sub-groups; see Note [Record patterns]
        ; let groups :: [[(ConArgPats, EquationInfo)]]
	      groups = runs compatible_pats [ (pat_args (firstPat eqn), eqn) 
	      	       	    	            | eqn <- eqn1:eqns ]

	; match_results <- mapM (match_group arg_vars) groups

      	; return (con1, tvs1 ++ dicts1 ++ arg_vars, 
		  foldr1 combineMatchResults match_results) }
  where
    ConPatOut { pat_con = L _ con1, pat_ty = pat_ty1,
	        pat_tvs = tvs1, pat_dicts = dicts1, pat_args = args1 }
	      = firstPat eqn1
    fields1 = dataConFieldLabels con1
	
    arg_tys  = dataConInstOrigArgTys con1 inst_tys
    inst_tys = tcTyConAppArgs pat_ty1 ++ 
	       mkTyVarTys (takeList (dataConExTyVars con1) tvs1)
	-- Newtypes opaque, hence tcTyConAppArgs
	-- dataConInstOrigArgTys takes the univ and existential tyvars
	-- and returns the types of the *value* args, which is what we want

    match_group :: [Id] -> [(ConArgPats, EquationInfo)] -> DsM MatchResult
    -- All members of the group have compatible ConArgPats
    match_group arg_vars arg_eqn_prs
      = do { (wraps, eqns') <- mapAndUnzipM shift arg_eqn_prs
    	   ; let group_arg_vars = select_arg_vars arg_vars arg_eqn_prs
    	   ; match_result <- match (group_arg_vars ++ vars) ty eqns'
    	   ; return (adjustMatchResult (foldr1 (.) wraps) match_result) }

    shift (_, eqn@(EqnInfo { eqn_pats = ConPatOut{ pat_tvs = tvs, pat_dicts = ds, 
					           pat_binds = bind, pat_args = args
					} : pats }))
      = do { ds_ev_binds <- dsTcEvBinds bind
	   ; return (wrapBinds (tvs `zip` tvs1) 
		    . wrapBinds (ds  `zip` dicts1)
		    . wrapDsEvBinds ds_ev_binds,
		    eqn { eqn_pats = conArgPats arg_tys args ++ pats }) }

    -- Choose the right arg_vars in the right order for this group
    -- Note [Record patterns]
    select_arg_vars arg_vars ((arg_pats, _) : _)
      | RecCon flds <- arg_pats
      , let rpats = rec_flds flds  
      , not (null rpats)     -- Treated specially; cf conArgPats
      = ASSERT2( length fields1 == length arg_vars, 
                 ppr con1 $$ ppr fields1 $$ ppr arg_vars )
        map lookup_fld rpats
      | otherwise
      = arg_vars
      where
        fld_var_env = mkNameEnv $ zipEqual "get_arg_vars" fields1 arg_vars
	lookup_fld rpat = lookupNameEnv_NF fld_var_env 
		   	  		   (idName (unLoc (hsRecFieldId rpat)))

-----------------
compatible_pats :: (ConArgPats,a) -> (ConArgPats,a) -> Bool
-- Two constructors have compatible argument patterns if the number
-- and order of sub-matches is the same in both cases
compatible_pats (RecCon flds1, _) (RecCon flds2, _) = same_fields flds1 flds2
compatible_pats (RecCon flds1, _) _                 = null (rec_flds flds1)
compatible_pats _                 (RecCon flds2, _) = null (rec_flds flds2)
compatible_pats _                 _                 = True -- Prefix or infix con

same_fields :: HsRecFields Id (LPat Id) -> HsRecFields Id (LPat Id) -> Bool
same_fields flds1 flds2 
  = all2 (\f1 f2 -> unLoc (hsRecFieldId f1) == unLoc (hsRecFieldId f2))
	 (rec_flds flds1) (rec_flds flds2)


-----------------
selectConMatchVars :: [Type] -> ConArgPats -> DsM [Id]
selectConMatchVars arg_tys (RecCon {})      = newSysLocalsDs arg_tys
selectConMatchVars _       (PrefixCon ps)   = selectMatchVars (map unLoc ps)
selectConMatchVars _       (InfixCon p1 p2) = selectMatchVars [unLoc p1, unLoc p2]

conArgPats :: [Type]	-- Instantiated argument types 
			-- Used only to fill in the types of WildPats, which
			-- are probably never looked at anyway
	   -> ConArgPats
	   -> [Pat Id]
conArgPats _arg_tys (PrefixCon ps)   = map unLoc ps
conArgPats _arg_tys (InfixCon p1 p2) = [unLoc p1, unLoc p2]
conArgPats  arg_tys (RecCon (HsRecFields { rec_flds = rpats }))
  | null rpats = map WildPat arg_tys
	-- Important special case for C {}, which can be used for a 
 	-- datacon that isn't declared to have fields at all
  | otherwise  = map (unLoc . hsRecFieldArg) rpats
\end{code} Note [Record patterns] ~~~~~~~~~~~~~~~~~~~~~~ Consider data T = T { x,y,z :: Bool } f (T { y=True, x=False }) = ... We must match the patterns IN THE ORDER GIVEN, thus for the first one we match y=True before x=False. See Trac #246; or imagine matching against (T { y=False, x=undefined }): should fail without touching the undefined. Now consider: f (T { y=True, x=False }) = ... f (T { x=True, y= False}) = ... In the first we must test y first; in the second we must test x first. So we must divide even the equations for a single constructor T into sub-goups, based on whether they match the same field in the same order. That's what the (runs compatible_pats) grouping. All non-record patterns are "compatible" in this sense, because the positional patterns (T a b) and (a `T` b) all match the arguments in order. Also T {} is special because it's equivalent to (T _ _). Hence the (null rpats) checks here and there. Note [Existentials in shift_con_pat] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T = forall a. Ord a => T a (a->Int) f (T x f) True = ...expr1... f (T y g) False = ...expr2.. When we put in the tyvars etc we get f (T a (d::Ord a) (x::a) (f::a->Int)) True = ...expr1... f (T b (e::Ord b) (y::a) (g::a->Int)) True = ...expr2... After desugaring etc we'll get a single case: f = \t::T b::Bool -> case t of T a (d::Ord a) (x::a) (f::a->Int)) -> case b of True -> ...expr1... False -> ...expr2... *** We have to substitute [a/b, d/e] in expr2! ** Hence False -> ....((/\b\(e:Ord b).expr2) a d).... Originally I tried to use (\b -> let e = d in expr2) a to do this substitution. While this is "correct" in a way, it fails Lint, because e::Ord b but d::Ord a.