\begin{code}
module TcCanonical(
mkCanonical, mkCanonicals, mkCanonicalFEV, mkCanonicalFEVs, canWanteds, canGivens,
canOccursCheck, canEqToWorkList,
rewriteWithFunDeps, mkCanonicalFDAsDerived, mkCanonicalFDAsWanted
) where
#include "HsVersions.h"
import BasicTypes
import Id ( evVarPred )
import TcErrors
import TcRnTypes
import FunDeps
import qualified TcMType as TcM
import TcType
import Type
import Coercion
import Class
import TyCon
import TypeRep
import Name
import Var
import VarEnv ( TidyEnv )
import Outputable
import Control.Monad ( unless, when, zipWithM, zipWithM_, foldM )
import MonadUtils
import Control.Applicative ( (<|>) )
import VarSet
import Bag
import HsBinds
import TcSMonad
import FastString
\end{code}
Note [Canonicalisation]
~~~~~~~~~~~~~~~~~~~~~~~
* Converts (Constraint f) _which_does_not_contain_proper_implications_ to CanonicalCts
* Unary: treats individual constraints one at a time
* Does not do any zonking
* Lives in TcS monad so that it can create new skolem variables
%************************************************************************
%* *
%* Flattening (eliminating all function symbols) *
%* *
%************************************************************************
Note [Flattening]
~~~~~~~~~~~~~~~~~~~~
flatten ty ==> (xi, cc)
where
xi has no type functions
cc = Auxiliary given (equality) constraints constraining
the fresh type variables in xi. Evidence for these
is always the identity coercion, because internally the
fresh flattening skolem variables are actually identified
with the types they have been generated to stand in for.
Note that it is flatten's job to flatten *every type function it sees*.
flatten is only called on *arguments* to type functions, by canEqGiven.
Recall that in comments we use alpha[flat = ty] to represent a
flattening skolem variable alpha which has been generated to stand in
for ty.
----- Example of flattening a constraint: ------
flatten (List (F (G Int))) ==> (xi, cc)
where
xi = List alpha
cc = { G Int ~ beta[flat = G Int],
F beta ~ alpha[flat = F beta] }
Here
* alpha and beta are 'flattening skolem variables'.
* All the constraints in cc are 'given', and all their coercion terms
are the identity.
NB: Flattening Skolems only occur in canonical constraints, which
are never zonked, so we don't need to worry about zonking doing
accidental unflattening.
Note that we prefer to leave type synonyms unexpanded when possible,
so when the flattener encounters one, it first asks whether its
transitive expansion contains any type function applications. If so,
it expands the synonym and proceeds; if not, it simply returns the
unexpanded synonym.
TODO: caching the information about whether transitive synonym
expansions contain any type function applications would speed things
up a bit; right now we waste a lot of energy traversing the same types
multiple times.
\begin{code}
flattenMany :: CtFlavor -> [Type] -> TcS ([Xi], [Coercion], CanonicalCts)
flattenMany ctxt tys
= do { (xis, cos, cts_s) <- mapAndUnzip3M (flatten ctxt) tys
; return (xis, cos, andCCans cts_s) }
flatten :: CtFlavor -> TcType -> TcS (Xi, Coercion, CanonicalCts)
flatten ctxt ty
| Just ty' <- tcView ty
= do { (xi, co, ccs) <- flatten ctxt ty'
; if isReflCo co then
return (ty, mkReflCo ty, emptyCCan)
else
return (xi, co, ccs) }
flatten _ v@(TyVarTy _)
= return (v, mkReflCo v, emptyCCan)
flatten ctxt (AppTy ty1 ty2)
= do { (xi1,co1,c1) <- flatten ctxt ty1
; (xi2,co2,c2) <- flatten ctxt ty2
; return (mkAppTy xi1 xi2, mkAppCo co1 co2, c1 `andCCan` c2) }
flatten ctxt (FunTy ty1 ty2)
= do { (xi1,co1,c1) <- flatten ctxt ty1
; (xi2,co2,c2) <- flatten ctxt ty2
; return (mkFunTy xi1 xi2, mkFunCo co1 co2, c1 `andCCan` c2) }
flatten fl (TyConApp tc tys)
| not (isSynFamilyTyCon tc)
= do { (xis,cos,ccs) <- flattenMany fl tys
; return (mkTyConApp tc xis, mkTyConAppCo tc cos, ccs) }
| otherwise
= ASSERT( tyConArity tc <= length tys )
do { (xis, cos, ccs) <- flattenMany fl tys
; let (xi_args, xi_rest) = splitAt (tyConArity tc) xis
(cos_args, cos_rest) = splitAt (tyConArity tc) cos
fam_ty = mkTyConApp tc xi_args
; (ret_co, rhs_var, ct) <-
do { is_cached <- lookupFlatCacheMap tc xi_args fl
; case is_cached of
Just (rhs_var,ret_co,_fl) -> return (ret_co, rhs_var, emptyCCan)
Nothing
| isGivenOrSolved fl ->
do { rhs_var <- newFlattenSkolemTy fam_ty
; cv <- newGivenCoVar fam_ty rhs_var (mkReflCo fam_ty)
; let ct = CFunEqCan { cc_id = cv
, cc_flavor = fl
, cc_fun = tc
, cc_tyargs = xi_args
, cc_rhs = rhs_var }
; let ret_co = mkCoVarCo cv
; updateFlatCacheMap tc xi_args rhs_var fl ret_co
; return $ (ret_co, rhs_var, singleCCan ct) }
| otherwise ->
do { rhs_var <- newFlexiTcSTy (typeKind fam_ty)
; cv <- newCoVar fam_ty rhs_var
; let ct = CFunEqCan { cc_id = cv
, cc_flavor = mkWantedFlavor fl
, cc_fun = tc
, cc_tyargs = xi_args
, cc_rhs = rhs_var }
; let ret_co = mkCoVarCo cv
; updateFlatCacheMap tc xi_args rhs_var fl ret_co
; return $ (ret_co, rhs_var, singleCCan ct) } }
; return ( foldl AppTy rhs_var xi_rest
, foldl AppCo (mkSymCo ret_co
`mkTransCo` mkTyConAppCo tc cos_args)
cos_rest
, ccs `andCCan` ct) }
flatten ctxt (PredTy pred)
= do { (pred', co, ccs) <- flattenPred ctxt pred
; return (PredTy pred', co, ccs) }
flatten ctxt ty@(ForAllTy {})
= do { let (tvs, rho) = splitForAllTys ty
; (rho', co, ccs) <- flatten ctxt rho
; let bad_eqs = filterBag is_bad ccs
is_bad c = tyVarsOfCanonical c `intersectsVarSet` tv_set
tv_set = mkVarSet tvs
; unless (isEmptyBag bad_eqs)
(flattenForAllErrorTcS ctxt ty bad_eqs)
; return (mkForAllTys tvs rho', foldr mkForAllCo co tvs, ccs) }
flattenPred :: CtFlavor -> TcPredType -> TcS (TcPredType, Coercion, CanonicalCts)
flattenPred ctxt (ClassP cls tys)
= do { (tys', cos, ccs) <- flattenMany ctxt tys
; return (ClassP cls tys', mkPredCo $ ClassP cls cos, ccs) }
flattenPred ctxt (IParam nm ty)
= do { (ty', co, ccs) <- flatten ctxt ty
; return (IParam nm ty', mkPredCo $ IParam nm co, ccs) }
flattenPred ctxt (EqPred ty1 ty2)
= do { (ty1', co1, ccs1) <- flatten ctxt ty1
; (ty2', co2, ccs2) <- flatten ctxt ty2
; return (EqPred ty1' ty2', mkPredCo $ EqPred co1 co2, ccs1 `andCCan` ccs2) }
\end{code}
%************************************************************************
%* *
%* Canonicalising given constraints *
%* *
%************************************************************************
\begin{code}
canWanteds :: [WantedEvVar] -> TcS WorkList
canWanteds = fmap unionWorkLists . mapM (\(EvVarX ev loc) -> mkCanonical (Wanted loc) ev)
canGivens :: GivenLoc -> [EvVar] -> TcS WorkList
canGivens loc givens = do { ccs <- mapM (mkCanonical (Given loc GivenOrig)) givens
; return (unionWorkLists ccs) }
mkCanonicals :: CtFlavor -> [EvVar] -> TcS WorkList
mkCanonicals fl vs = fmap unionWorkLists (mapM (mkCanonical fl) vs)
mkCanonicalFEV :: FlavoredEvVar -> TcS WorkList
mkCanonicalFEV (EvVarX ev fl) = mkCanonical fl ev
mkCanonicalFEVs :: Bag FlavoredEvVar -> TcS WorkList
mkCanonicalFEVs = foldrBagM canon_one emptyWorkList
where
canon_one fev wl = do { wl' <- mkCanonicalFEV fev
; return (unionWorkList wl' wl) }
mkCanonical :: CtFlavor -> EvVar -> TcS WorkList
mkCanonical fl ev = case evVarPred ev of
ClassP clas tys -> canClassToWorkList fl ev clas tys
IParam ip ty -> canIPToWorkList fl ev ip ty
EqPred ty1 ty2 -> canEqToWorkList fl ev ty1 ty2
canClassToWorkList :: CtFlavor -> EvVar -> Class -> [TcType] -> TcS WorkList
canClassToWorkList fl v cn tys
= do { (xis,cos,ccs) <- flattenMany fl tys
; let no_flattening_happened = all isReflCo cos
dict_co = mkTyConAppCo (classTyCon cn) cos
; v_new <- if no_flattening_happened then return v
else if isGivenOrSolved fl then return v
else do { v' <- newDictVar cn xis
; when (isWanted fl) $ setDictBind v (EvCast v' dict_co)
; when (isGivenOrSolved fl) $ setDictBind v' (EvCast v (mkSymCo dict_co))
; return v' }
; sctx <- getTcSContext
; sc_cts <- if simplEqsOnly sctx then return emptyWorkList
else newSCWorkFromFlavored v_new fl cn xis
; return (sc_cts `unionWorkList`
workListFromEqs ccs `unionWorkList`
workListFromNonEq CDictCan { cc_id = v_new
, cc_flavor = fl
, cc_class = cn
, cc_tyargs = xis }) }
\end{code}
Note [Adding superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Since dictionaries are canonicalized only once in their lifetime, the
place to add their superclasses is canonicalisation (The alternative
would be to do it during constraint solving, but we'd have to be
extremely careful to not repeatedly introduced the same superclass in
our worklist). Here is what we do:
For Givens:
We add all their superclasses as Givens.
For Wanteds:
Generally speaking we want to be able to add superclasses of
wanteds for two reasons:
(1) Oportunities for improvement. Example:
class (a ~ b) => C a b
Wanted constraint is: C alpha beta
We'd like to simply have C alpha alpha. Similar
situations arise in relation to functional dependencies.
(2) To have minimal constraints to quantify over:
For instance, if our wanted constraint is (Eq a, Ord a)
we'd only like to quantify over Ord a.
To deal with (1) above we only add the superclasses of wanteds
which may lead to improvement, that is: equality superclasses or
superclasses with functional dependencies.
We deal with (2) completely independently in TcSimplify. See
Note [Minimize by SuperClasses] in TcSimplify.
Moreover, in all cases the extra improvement constraints are
Derived. Derived constraints have an identity (for now), but
we don't do anything with their evidence. For instance they
are never used to rewrite other constraints.
See also [New Wanted Superclass Work] in TcInteract.
For Deriveds:
We do nothing.
Here's an example that demonstrates why we chose to NOT add
superclasses during simplification: [Comes from ticket #4497]
class Num (RealOf t) => Normed t
type family RealOf x
Assume the generated wanted constraint is:
RealOf e ~ e, Normed e
If we were to be adding the superclasses during simplification we'd get:
Num uf, Normed e, RealOf e ~ e, RealOf e ~ uf
==>
e ~ uf, Num uf, Normed e, RealOf e ~ e
==> [Spontaneous solve]
Num uf, Normed uf, RealOf uf ~ uf
While looks exactly like our original constraint. If we add the superclass again we'd loop.
By adding superclasses definitely only once, during canonicalisation, this situation can't
happen.
\begin{code}
newSCWorkFromFlavored :: EvVar -> CtFlavor -> Class -> [Xi] -> TcS WorkList
newSCWorkFromFlavored ev orig_flavor cls xis
| isDerived orig_flavor
= return emptyWorkList
| Just gk <- isGiven_maybe orig_flavor
= case gk of
GivenOrig -> do { let sc_theta = immSuperClasses cls xis
flavor = orig_flavor
; sc_vars <- mapM newEvVar sc_theta
; _ <- zipWithM_ setEvBind sc_vars [EvSuperClass ev n | n <- [0..]]
; mkCanonicals flavor sc_vars }
GivenSolved -> return emptyWorkList
| isEmptyVarSet (tyVarsOfTypes xis)
= return emptyWorkList
| otherwise
= do { let sc_rec_theta = transSuperClasses cls xis
impr_theta = filter is_improvement_pty sc_rec_theta
Wanted wloc = orig_flavor
; der_ids <- mapM newDerivedId impr_theta
; mkCanonicals (Derived wloc) der_ids }
is_improvement_pty :: PredType -> Bool
is_improvement_pty (EqPred {}) = True
is_improvement_pty (ClassP cls _ty) = not $ null fundeps
where (_,fundeps,_,_,_,_) = classExtraBigSig cls
is_improvement_pty _ = False
canIPToWorkList :: CtFlavor -> EvVar -> IPName Name -> TcType -> TcS WorkList
canIPToWorkList fl v nm ty
= return $ workListFromNonEq (CIPCan { cc_id = v
, cc_flavor = fl
, cc_ip_nm = nm
, cc_ip_ty = ty })
canEqToWorkList :: CtFlavor -> EvVar -> Type -> Type -> TcS WorkList
canEqToWorkList fl cv ty1 ty2 = do { cts <- canEq fl cv ty1 ty2
; return $ workListFromEqs cts }
canEq :: CtFlavor -> EvVar -> Type -> Type -> TcS CanonicalCts
canEq fl cv ty1 ty2
| eqType ty1 ty2
= do { when (isWanted fl) (setCoBind cv (mkReflCo ty1))
; return emptyCCan }
canEq fl cv ty1@(TyVarTy {}) ty2
= do { untch <- getUntouchables
; canEqLeaf untch fl cv (classify ty1) (classify ty2) }
canEq fl cv ty1 ty2@(TyVarTy {})
= do { untch <- getUntouchables
; canEqLeaf untch fl cv (classify ty1) (classify ty2) }
canEq fl cv (FunTy s1 t1) (FunTy s2 t2)
= do { (argv, resv) <-
if isWanted fl then
do { argv <- newCoVar s1 s2
; resv <- newCoVar t1 t2
; setCoBind cv $
mkFunCo (mkCoVarCo argv) (mkCoVarCo resv)
; return (argv,resv) }
else if isGivenOrSolved fl then
let [arg,res] = decomposeCo 2 (mkCoVarCo cv)
in do { argv <- newGivenCoVar s1 s2 arg
; resv <- newGivenCoVar t1 t2 res
; return (argv,resv) }
else
do { argv <- newDerivedId (EqPred s1 s2)
; resv <- newDerivedId (EqPred t1 t2)
; return (argv,resv) }
; cc1 <- canEq fl argv s1 s2
; cc2 <- canEq fl resv t1 t2
; return (cc1 `andCCan` cc2) }
canEq fl cv (TyConApp fn tys) ty2
| isSynFamilyTyCon fn, length tys == tyConArity fn
= do { untch <- getUntouchables
; canEqLeaf untch fl cv (FunCls fn tys) (classify ty2) }
canEq fl cv ty1 (TyConApp fn tys)
| isSynFamilyTyCon fn, length tys == tyConArity fn
= do { untch <- getUntouchables
; canEqLeaf untch fl cv (classify ty1) (FunCls fn tys) }
canEq fl cv (TyConApp tc1 tys1) (TyConApp tc2 tys2)
| isDecomposableTyCon tc1 && isDecomposableTyCon tc2
, tc1 == tc2
, length tys1 == length tys2
=
do { argsv
<- if isWanted fl then
do { argsv <- zipWithM newCoVar tys1 tys2
; setCoBind cv $
mkTyConAppCo tc1 (map mkCoVarCo argsv)
; return argsv }
else if isGivenOrSolved fl then
let cos = decomposeCo (length tys1) (mkCoVarCo cv)
in zipWith3M newGivenCoVar tys1 tys2 cos
else
zipWithM (\t1 t2 -> newDerivedId (EqPred t1 t2)) tys1 tys2
; andCCans <$> zipWith3M (canEq fl) argsv tys1 tys2 }
canEq fl cv ty1 ty2
| Nothing <- tcView ty1
, Nothing <- tcView ty2
, Just (s1,t1) <- tcSplitAppTy_maybe ty1
, Just (s2,t2) <- tcSplitAppTy_maybe ty2
= if isWanted fl
then do { cv1 <- newCoVar s1 s2
; cv2 <- newCoVar t1 t2
; setCoBind cv $
mkAppCo (mkCoVarCo cv1) (mkCoVarCo cv2)
; cc1 <- canEq fl cv1 s1 s2
; cc2 <- canEq fl cv2 t1 t2
; return (cc1 `andCCan` cc2) }
else if isDerived fl
then do { cv1 <- newDerivedId (EqPred s1 s2)
; cv2 <- newDerivedId (EqPred t1 t2)
; cc1 <- canEq fl cv1 s1 s2
; cc2 <- canEq fl cv2 t1 t2
; return (cc1 `andCCan` cc2) }
else do { traceTcS "canEq/(app case)" $
text "Ommitting decomposition of given equality between: "
<+> ppr ty1 <+> text "and" <+> ppr ty2
; return emptyCCan
}
canEq fl cv s1@(ForAllTy {}) s2@(ForAllTy {})
| tcIsForAllTy s1, tcIsForAllTy s2,
Wanted {} <- fl
= canEqFailure fl cv
| otherwise
= do { traceTcS "Ommitting decomposition of given polytype equality" (pprEq s1 s2)
; return emptyCCan }
canEq fl cv ty1 ty2 | Just ty1' <- tcView ty1 = canEq fl cv ty1' ty2
canEq fl cv ty1 ty2 | Just ty2' <- tcView ty2 = canEq fl cv ty1 ty2'
canEq fl cv _ _ = canEqFailure fl cv
canEqFailure :: CtFlavor -> EvVar -> TcS CanonicalCts
canEqFailure fl cv = return (singleCCan (mkFrozenError fl cv))
\end{code}
Note [Naked given applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
data A a
type T a = A a
and the given equality:
[G] A a ~ T Int
We will reach the case canEq where we do a tcSplitAppTy_maybe, but if
we dont have the guards (Nothing <- tcView ty1) (Nothing <- tcView
ty2) then the given equation is going to fall through and get
completely forgotten!
What we want instead is this clause to apply only when there is no
immediate top-level synonym; if there is one it will be later on
unfolded by the later stages of canEq.
Test-case is in typecheck/should_compile/GivenTypeSynonym.hs
Note [Equality between type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see an equality of the form s1 t1 ~ s2 t2 we can always split
it up into s1 ~ s2 /\ t1 ~ t2, since s1 and s2 can't be type
functions (type functions use the TyConApp constructor, which never
shows up as the LHS of an AppTy). Other than type functions, types
in Haskell are always
(1) generative: a b ~ c d implies a ~ c, since different type
constructors always generate distinct types
(2) injective: a b ~ a d implies b ~ d; we never generate the
same type from different type arguments.
Note [Canonical ordering for equality constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Implemented as (<+=) below:
- Type function applications always come before anything else.
- Variables always come before non-variables (other than type
function applications).
Note that we don't need to unfold type synonyms on the RHS to check
the ordering; that is, in the rules above it's OK to consider only
whether something is *syntactically* a type function application or
not. To illustrate why this is OK, suppose we have an equality of the
form 'tv ~ S a b c', where S is a type synonym which expands to a
top-level application of the type function F, something like
type S a b c = F d e
Then to canonicalize 'tv ~ S a b c' we flatten the RHS, and since S's
expansion contains type function applications the flattener will do
the expansion and then generate a skolem variable for the type
function application, so we end up with something like this:
tv ~ x
F d e ~ x
where x is the skolem variable. This is one extra equation than
absolutely necessary (we could have gotten away with just 'F d e ~ tv'
if we had noticed that S expanded to a top-level type function
application and flipped it around in the first place) but this way
keeps the code simpler.
Unlike the OutsideIn(X) draft of May 7, 2010, we do not care about the
ordering of tv ~ tv constraints. There are several reasons why we
might:
(1) In order to be able to extract a substitution that doesn't
mention untouchable variables after we are done solving, we might
prefer to put touchable variables on the left. However, in and
of itself this isn't necessary; we can always re-orient equality
constraints at the end if necessary when extracting a substitution.
(2) To ensure termination we might think it necessary to put
variables in lexicographic order. However, this isn't actually
necessary as outlined below.
While building up an inert set of canonical constraints, we maintain
the invariant that the equality constraints in the inert set form an
acyclic rewrite system when viewed as L-R rewrite rules. Moreover,
the given constraints form an idempotent substitution (i.e. none of
the variables on the LHS occur in any of the RHS's, and type functions
never show up in the RHS at all), the wanted constraints also form an
idempotent substitution, and finally the LHS of a given constraint
never shows up on the RHS of a wanted constraint. There may, however,
be a wanted LHS that shows up in a given RHS, since we do not rewrite
given constraints with wanted constraints.
Suppose we have an inert constraint set
tg_1 ~ xig_1 -- givens
tg_2 ~ xig_2
...
tw_1 ~ xiw_1 -- wanteds
tw_2 ~ xiw_2
...
where each t_i can be either a type variable or a type function
application. Now suppose we take a new canonical equality constraint,
t' ~ xi' (note among other things this means t' does not occur in xi')
and try to react it with the existing inert set. We show by induction
on the number of t_i which occur in t' ~ xi' that this process will
terminate.
There are several ways t' ~ xi' could react with an existing constraint:
TODO: finish this proof. The below was for the case where the entire
inert set is an idempotent subustitution...
(b) We could have t' = t_j for some j. Then we obtain the new
equality xi_j ~ xi'; note that neither xi_j or xi' contain t_j. We
now canonicalize the new equality, which may involve decomposing it
into several canonical equalities, and recurse on these. However,
none of the new equalities will contain t_j, so they have fewer
occurrences of the t_i than the original equation.
(a) We could have t_j occurring in xi' for some j, with t' /=
t_j. Then we substitute xi_j for t_j in xi' and continue. However,
since none of the t_i occur in xi_j, we have decreased the
number of t_i that occur in xi', since we eliminated t_j and did not
introduce any new ones.
\begin{code}
data TypeClassifier
= FskCls TcTyVar
| VarCls TcTyVar
| FunCls TyCon [Type]
| OtherCls TcType
unClassify :: TypeClassifier -> TcType
unClassify (VarCls tv) = TyVarTy tv
unClassify (FskCls tv) = TyVarTy tv
unClassify (FunCls fn tys) = TyConApp fn tys
unClassify (OtherCls ty) = ty
classify :: TcType -> TypeClassifier
classify (TyVarTy tv)
| isTcTyVar tv,
FlatSkol {} <- tcTyVarDetails tv = FskCls tv
| otherwise = VarCls tv
classify (TyConApp tc tys) | isSynFamilyTyCon tc
, tyConArity tc == length tys
= FunCls tc tys
classify ty | Just ty' <- tcView ty
= case classify ty' of
OtherCls {} -> OtherCls ty
var_or_fn -> var_or_fn
| otherwise
= OtherCls ty
reOrient :: CtFlavor -> TypeClassifier -> TypeClassifier -> Bool
reOrient _fl (OtherCls {}) (FunCls {}) = True
reOrient _fl (OtherCls {}) (FskCls {}) = True
reOrient _fl (OtherCls {}) (VarCls {}) = True
reOrient _fl (OtherCls {}) (OtherCls {}) = panic "reOrient"
reOrient _fl (FunCls {}) (VarCls _tv) = False
reOrient _fl (FunCls {}) _ = False
reOrient _fl (VarCls {}) (FunCls {}) = True
reOrient _fl (VarCls {}) (FskCls {}) = False
reOrient _fl (VarCls {}) (OtherCls {}) = False
reOrient _fl (VarCls tv1) (VarCls tv2)
| isMetaTyVar tv2 && not (isMetaTyVar tv1) = True
| otherwise = False
reOrient _fl (FskCls {}) (VarCls tv2) = isMetaTyVar tv2
reOrient _fl (FskCls {}) (FskCls {}) = False
reOrient _fl (FskCls {}) (FunCls {}) = True
reOrient _fl (FskCls {}) (OtherCls {}) = False
canEqLeaf :: TcsUntouchables
-> CtFlavor -> CoVar
-> TypeClassifier -> TypeClassifier -> TcS CanonicalCts
canEqLeaf _untch fl cv cls1 cls2
| cls1 `re_orient` cls2
= do { cv' <- if isWanted fl
then do { cv' <- newCoVar s2 s1
; setCoBind cv $ mkSymCo (mkCoVarCo cv')
; return cv' }
else if isGivenOrSolved fl then
newGivenCoVar s2 s1 (mkSymCo (mkCoVarCo cv))
else
newDerivedId (EqPred s2 s1)
; canEqLeafOriented fl cv' cls2 s1 }
| otherwise
= do { traceTcS "canEqLeaf" (ppr (unClassify cls1) $$ ppr (unClassify cls2))
; canEqLeafOriented fl cv cls1 s2 }
where
re_orient = reOrient fl
s1 = unClassify cls1
s2 = unClassify cls2
canEqLeafOriented :: CtFlavor -> CoVar
-> TypeClassifier -> TcType -> TcS CanonicalCts
canEqLeafOriented fl cv cls1@(FunCls fn tys1) s2
| let k1 = kindAppResult (tyConKind fn) tys1,
let k2 = typeKind s2,
not (k1 `compatKind` k2)
= canEqFailure fl cv
| otherwise
= ASSERT2( isSynFamilyTyCon fn, ppr (unClassify cls1) )
do { (xis1,cos1,ccs1) <- flattenMany fl tys1
; (xi2, co2, ccs2) <- flatten fl s2
; let ccs = ccs1 `andCCan` ccs2
no_flattening_happened = all isReflCo (co2:cos1)
; cv_new <- if no_flattening_happened then return cv
else if isGivenOrSolved fl then return cv
else if isWanted fl then
do { cv' <- newCoVar (unClassify (FunCls fn xis1)) xi2
; let
fun_co = mkTyConAppCo fn cos1
want_co = mkSymCo fun_co
`mkTransCo` mkCoVarCo cv'
`mkTransCo` co2
; setCoBind cv want_co
; return cv' }
else
newDerivedId (EqPred (unClassify (FunCls fn xis1)) xi2)
; let final_cc = CFunEqCan { cc_id = cv_new
, cc_flavor = fl
, cc_fun = fn
, cc_tyargs = xis1
, cc_rhs = xi2 }
; return $ ccs `extendCCans` final_cc }
canEqLeafOriented fl cv (FskCls tv) s2
= canEqLeafTyVarLeft fl cv tv s2
canEqLeafOriented fl cv (VarCls tv) s2
= canEqLeafTyVarLeft fl cv tv s2
canEqLeafOriented _ cv (OtherCls ty1) ty2
= pprPanic "canEqLeaf" (ppr cv $$ ppr ty1 $$ ppr ty2)
canEqLeafTyVarLeft :: CtFlavor -> CoVar -> TcTyVar -> TcType -> TcS CanonicalCts
canEqLeafTyVarLeft fl cv tv s2
| not (k1 `compatKind` k2)
= canEqFailure fl cv
| otherwise
= do { (xi2, co, ccs2) <- flatten fl s2
; mxi2' <- canOccursCheck fl tv xi2
; case mxi2' of {
Nothing -> canEqFailure fl cv ;
Just xi2' ->
do { let no_flattening_happened = isReflCo co
; cv_new <- if no_flattening_happened then return cv
else if isGivenOrSolved fl then return cv
else if isWanted fl then
do { cv' <- newCoVar (mkTyVarTy tv) xi2'
; setCoBind cv (mkCoVarCo cv' `mkTransCo` co)
; return cv' }
else
newDerivedId (EqPred (mkTyVarTy tv) xi2')
; return $ ccs2 `extendCCans` CTyEqCan { cc_id = cv_new
, cc_flavor = fl
, cc_tyvar = tv
, cc_rhs = xi2' } } } }
where
k1 = tyVarKind tv
k2 = typeKind s2
canOccursCheck :: CtFlavor -> TcTyVar -> Xi -> TcS (Maybe Xi)
canOccursCheck _gw tv xi = return (expandAway tv xi)
\end{code}
@expandAway tv xi@ expands synonyms in xi just enough to get rid of
occurrences of tv, if that is possible; otherwise, it returns Nothing.
For example, suppose we have
type F a b = [a]
Then
expandAway b (F Int b) = Just [Int]
but
expandAway a (F a Int) = Nothing
We don't promise to do the absolute minimum amount of expanding
necessary, but we try not to do expansions we don't need to. We
prefer doing inner expansions first. For example,
type F a b = (a, Int, a, [a])
type G b = Char
We have
expandAway b (F (G b)) = F Char
even though we could also expand F to get rid of b.
\begin{code}
expandAway :: TcTyVar -> Xi -> Maybe Xi
expandAway tv t@(TyVarTy tv')
| tv == tv' = Nothing
| otherwise = Just t
expandAway tv xi
| not (tv `elemVarSet` tyVarsOfType xi) = Just xi
expandAway tv (AppTy ty1 ty2)
= do { ty1' <- expandAway tv ty1
; ty2' <- expandAway tv ty2
; return (mkAppTy ty1' ty2') }
expandAway tv (FunTy ty1 ty2)
= do { ty1' <- expandAway tv ty1
; ty2' <- expandAway tv ty2
; return (mkFunTy ty1' ty2') }
expandAway tv ty@(ForAllTy {})
= let (tvs,rho) = splitForAllTys ty
tvs_knds = map tyVarKind tvs
in if tv `elemVarSet` tyVarsOfTypes tvs_knds then
Nothing
else do { rho' <- expandAway tv rho
; return (mkForAllTys tvs rho') }
expandAway tv (PredTy pred)
= do { pred' <- expandAwayPred tv pred
; return (PredTy pred') }
expandAway tv ty@(TyConApp tc tys)
= (mkTyConApp tc <$> mapM (expandAway tv) tys) <|> (tcView ty >>= expandAway tv)
expandAwayPred :: TcTyVar -> TcPredType -> Maybe TcPredType
expandAwayPred tv (ClassP cls tys)
= do { tys' <- mapM (expandAway tv) tys; return (ClassP cls tys') }
expandAwayPred tv (EqPred ty1 ty2)
= do { ty1' <- expandAway tv ty1
; ty2' <- expandAway tv ty2
; return (EqPred ty1' ty2') }
expandAwayPred tv (IParam nm ty)
= do { ty' <- expandAway tv ty
; return (IParam nm ty') }
\end{code}
Note [Type synonyms and canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat type synonym applications as xi types, that is, they do not
count as type function applications. However, we do need to be a bit
careful with type synonyms: like type functions they may not be
generative or injective. However, unlike type functions, they are
parametric, so there is no problem in expanding them whenever we see
them, since we do not need to know anything about their arguments in
order to expand them; this is what justifies not having to treat them
as specially as type function applications. The thing that causes
some subtleties is that we prefer to leave type synonym applications
*unexpanded* whenever possible, in order to generate better error
messages.
If we encounter an equality constraint with type synonym applications
on both sides, or a type synonym application on one side and some sort
of type application on the other, we simply must expand out the type
synonyms in order to continue decomposing the equality constraint into
primitive equality constraints. For example, suppose we have
type F a = [Int]
and we encounter the equality
F a ~ [b]
In order to continue we must expand F a into [Int], giving us the
equality
[Int] ~ [b]
which we can then decompose into the more primitive equality
constraint
Int ~ b.
However, if we encounter an equality constraint with a type synonym
application on one side and a variable on the other side, we should
NOT (necessarily) expand the type synonym, since for the purpose of
good error messages we want to leave type synonyms unexpanded as much
as possible.
However, there is a subtle point with type synonyms and the occurs
check that takes place for equality constraints of the form tv ~ xi.
As an example, suppose we have
type F a = Int
and we come across the equality constraint
a ~ F a
This should not actually fail the occurs check, since expanding out
the type synonym results in the legitimate equality constraint a ~
Int. We must actually do this expansion, because unifying a with F a
will lead the type checker into infinite loops later. Put another
way, canonical equality constraints should never *syntactically*
contain the LHS variable in the RHS type. However, we don't always
need to expand type synonyms when doing an occurs check; for example,
the constraint
a ~ F b
is obviously fine no matter what F expands to. And in this case we
would rather unify a with F b (rather than F b's expansion) in order
to get better error messages later.
So, when doing an occurs check with a type synonym application on the
RHS, we use some heuristics to find an expansion of the RHS which does
not contain the variable from the LHS. In particular, given
a ~ F t1 ... tn
we first try expanding each of the ti to types which no longer contain
a. If this turns out to be impossible, we next try expanding F
itself, and so on.
%************************************************************************
%* *
%* Functional dependencies, instantiation of equations
%* *
%************************************************************************
When we spot an equality arising from a functional dependency,
we now use that equality (a "wanted") to rewrite the work-item
constraint right away. This avoids two dangers
Danger 1: If we send the original constraint on down the pipeline
it may react with an instance declaration, and in delicate
situations (when a Given overlaps with an instance) that
may produce new insoluble goals: see Trac #4952
Danger 2: If we don't rewrite the constraint, it may re-react
with the same thing later, and produce the same equality
again --> termination worries.
To achieve this required some refactoring of FunDeps.lhs (nicer
now!).
\begin{code}
rewriteWithFunDeps :: [Equation]
-> [Xi]
-> WantedLoc
-> TcS (Maybe ([Xi], [Coercion], [(EvVar,WantedLoc)]))
rewriteWithFunDeps eqn_pred_locs xis wloc
= do { fd_ev_poss <- mapM (instFunDepEqn wloc) eqn_pred_locs
; let fd_ev_pos :: [(Int,(EvVar,WantedLoc))]
fd_ev_pos = concat fd_ev_poss
(rewritten_xis, cos) = unzip (rewriteDictParams fd_ev_pos xis)
; if null fd_ev_pos then return Nothing
else return (Just (rewritten_xis, cos, map snd fd_ev_pos)) }
instFunDepEqn :: WantedLoc -> Equation -> TcS [(Int,(EvVar,WantedLoc))]
instFunDepEqn wl (FDEqn { fd_qtvs = qtvs, fd_eqs = eqs
, fd_pred1 = d1, fd_pred2 = d2 })
= do { let tvs = varSetElems qtvs
; tvs' <- mapM instFlexiTcS tvs
; let subst = zipTopTvSubst tvs (mkTyVarTys tvs')
; foldM (do_one subst) [] eqs }
where
do_one subst ievs (FDEq { fd_pos = i, fd_ty_left = ty1, fd_ty_right = ty2 })
= let sty1 = Type.substTy subst ty1
sty2 = Type.substTy subst ty2
in if eqType sty1 sty2 then return ievs
else do { ev <- newCoVar sty1 sty2
; let wl' = push_ctx wl
; return $ (i,(ev,wl')):ievs }
push_ctx :: WantedLoc -> WantedLoc
push_ctx loc = pushErrCtxt FunDepOrigin (False, mkEqnMsg d1 d2) loc
mkEqnMsg :: (TcPredType, SDoc)
-> (TcPredType, SDoc) -> TidyEnv -> TcM (TidyEnv, SDoc)
mkEqnMsg (pred1,from1) (pred2,from2) tidy_env
= do { zpred1 <- TcM.zonkTcPredType pred1
; zpred2 <- TcM.zonkTcPredType pred2
; let { tpred1 = tidyPred tidy_env zpred1
; tpred2 = tidyPred tidy_env zpred2 }
; let msg = vcat [ptext (sLit "When using functional dependencies to combine"),
nest 2 (sep [ppr tpred1 <> comma, nest 2 from1]),
nest 2 (sep [ppr tpred2 <> comma, nest 2 from2])]
; return (tidy_env, msg) }
rewriteDictParams :: [(Int,(EvVar,WantedLoc))]
-> [Type]
-> [(Type,Coercion)]
rewriteDictParams param_eqs tys
= zipWith do_one tys [0..]
where
do_one :: Type -> Int -> (Type,Coercion)
do_one ty n = case lookup n param_eqs of
Just wev -> (get_fst_ty wev, mkCoVarCo (fst wev))
Nothing -> (ty, mkReflCo ty)
get_fst_ty (wev,_wloc)
| EqPred ty1 _ <- evVarPred wev
= ty1
| otherwise
= panic "rewriteDictParams: non equality fundep!?"
mkCanonicalFDAsWanted :: [(EvVar,WantedLoc)] -> TcS WorkList
mkCanonicalFDAsWanted evlocs
= do { ws <- mapM can_as_wanted evlocs
; return (unionWorkLists ws) }
where can_as_wanted (ev,loc) = mkCanonicalFEV (EvVarX ev (Wanted loc))
mkCanonicalFDAsDerived :: [(EvVar,WantedLoc)] -> TcS WorkList
mkCanonicalFDAsDerived evlocs
= do { ws <- mapM can_as_derived evlocs
; return (unionWorkLists ws) }
where can_as_derived (ev,loc) = mkCanonicalFEV (EvVarX ev (Derived loc))
\end{code}