% % (c) The University of Glasgow 2006 % \begin{code}
module TcEnv(
	TyThing(..), TcTyThing(..), TcId,

	-- Instance environment, and InstInfo type
	InstInfo(..), iDFunId, pprInstInfo, pprInstInfoDetails,
	simpleInstInfoClsTy, simpleInstInfoTy, simpleInstInfoTyCon, 
	InstBindings(..),

	-- Global environment
	tcExtendGlobalEnv, setGlobalTypeEnv,
	tcExtendGlobalValEnv,
	tcLookupLocatedGlobal,	tcLookupGlobal, 
	tcLookupField, tcLookupTyCon, tcLookupClass, tcLookupDataCon,
	tcLookupLocatedGlobalId, tcLookupLocatedTyCon,
	tcLookupLocatedClass, 
	tcLookupFamInst, tcLookupDataFamInst,
	
	-- Local environment
	tcExtendKindEnv, tcExtendKindEnvTvs,
	tcExtendTyVarEnv, tcExtendTyVarEnv2, 
	tcExtendGhciEnv,
	tcExtendIdEnv, tcExtendIdEnv1, tcExtendIdEnv2, 
	tcLookup, tcLookupLocated, tcLookupLocalIds, 
	tcLookupId, tcLookupTyVar, getScopedTyVarBinds,
	getInLocalScope,
	wrongThingErr, pprBinders,

	tcExtendRecEnv,    	-- For knot-tying

	-- Rules
 	tcExtendRules,

	-- Defaults
	tcGetDefaultTys,

	-- Global type variables
	tcGetGlobalTyVars,

	-- Template Haskell stuff
	checkWellStaged, tcMetaTy, thLevel, 
	topIdLvl, thTopLevelId, thRnBrack, isBrackStage,

	-- New Ids
	newLocalName, newDFunName, newFamInstTyConName, 
	mkStableIdFromString, mkStableIdFromName
  ) where

#include "HsVersions.h"

import HsSyn
import IfaceEnv
import TcRnMonad
import TcMType
import TcType
import TcIface	
import PrelNames
import TysWiredIn
-- import qualified Type
import Id
import Coercion
import Var
import VarSet
-- import VarEnv
import RdrName
import InstEnv
import FamInstEnv
import DataCon
import TyCon
import TypeRep
import Class
import Name
import NameEnv
import HscTypes
import DynFlags
import SrcLoc
import Outputable
import Unique
import FastString
\end{code} %************************************************************************ %* * %* tcLookupGlobal * %* * %************************************************************************ Using the Located versions (eg. tcLookupLocatedGlobal) is preferred, unless you know that the SrcSpan in the monad is already set to the span of the Name. \begin{code}
tcLookupLocatedGlobal :: Located Name -> TcM TyThing
-- c.f. IfaceEnvEnv.tcIfaceGlobal
tcLookupLocatedGlobal name
  = addLocM tcLookupGlobal name

tcLookupGlobal :: Name -> TcM TyThing
-- The Name is almost always an ExternalName, but not always
-- In GHCi, we may make command-line bindings (ghci> let x = True)
-- that bind a GlobalId, but with an InternalName
tcLookupGlobal name
  = do	{ env <- getGblEnv
	
		-- Try local envt
	; case lookupNameEnv (tcg_type_env env) name of { 
		Just thing -> return thing ;
		Nothing	   -> do 
	 
		-- Try global envt
	{ hsc_env <- getTopEnv
        ; mb_thing <- liftIO (lookupTypeHscEnv hsc_env name)
	; case mb_thing of  {
	    Just thing -> return thing ;
	    Nothing    -> do

		-- Should it have been in the local envt?
	{ case nameModule_maybe name of
		Nothing -> notFound name -- Internal names can happen in GHCi

		Just mod | mod == tcg_mod env 	-- Names from this module 
			 -> notFound name -- should be in tcg_type_env
			 | otherwise
		         -> tcImportDecl name	-- Go find it in an interface
	}}}}}

tcLookupField :: Name -> TcM Id		-- Returns the selector Id
tcLookupField name 
  = tcLookupId name	-- Note [Record field lookup]

{- Note [Record field lookup]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think we should have tcLookupGlobal here, since record fields
are always top level.  But consider
	f = e { f = True }
Then the renamer (which does not keep track of what is a record selector
and what is not) will rename the definition thus
	f_7 = e { f_7 = True }
Now the type checker will find f_7 in the *local* type environment, not
the global (imported) one. It's wrong, of course, but we want to report a tidy
error, not in TcEnv.notFound.  -}

tcLookupDataCon :: Name -> TcM DataCon
tcLookupDataCon name = do
    thing <- tcLookupGlobal name
    case thing of
	ADataCon con -> return con
	_            -> wrongThingErr "data constructor" (AGlobal thing) name

tcLookupClass :: Name -> TcM Class
tcLookupClass name = do
    thing <- tcLookupGlobal name
    case thing of
	AClass cls -> return cls
	_          -> wrongThingErr "class" (AGlobal thing) name

tcLookupTyCon :: Name -> TcM TyCon
tcLookupTyCon name = do
    thing <- tcLookupGlobal name
    case thing of
	ATyCon tc -> return tc
	_         -> wrongThingErr "type constructor" (AGlobal thing) name

tcLookupLocatedGlobalId :: Located Name -> TcM Id
tcLookupLocatedGlobalId = addLocM tcLookupId

tcLookupLocatedClass :: Located Name -> TcM Class
tcLookupLocatedClass = addLocM tcLookupClass

tcLookupLocatedTyCon :: Located Name -> TcM TyCon
tcLookupLocatedTyCon = addLocM tcLookupTyCon

-- Look up the instance tycon of a family instance.
--
-- The match may be ambiguous (as we know that overlapping instances have
-- identical right-hand sides under overlapping substitutions - see
-- 'FamInstEnv.lookupFamInstEnvConflicts').  However, the type arguments used
-- for matching must be equal to or be more specific than those of the family
-- instance declaration.  We pick one of the matches in case of ambiguity; as
-- the right-hand sides are identical under the match substitution, the choice
-- does not matter.
--
-- Return the instance tycon and its type instance.  For example, if we have
--
--  tcLookupFamInst 'T' '[Int]' yields (':R42T', 'Int')
--
-- then we have a coercion (ie, type instance of family instance coercion)
--
--  :Co:R42T Int :: T [Int] ~ :R42T Int
--
-- which implies that :R42T was declared as 'data instance T [a]'.
--
tcLookupFamInst :: TyCon -> [Type] -> TcM (Maybe (TyCon, [Type]))
tcLookupFamInst tycon tys
  | not (isFamilyTyCon tycon)
  = return Nothing
  | otherwise
  = do { env <- getGblEnv
       ; eps <- getEps
       ; let instEnv = (eps_fam_inst_env eps, tcg_fam_inst_env env)
       ; traceTc "lookupFamInst" ((ppr tycon <+> ppr tys) $$ ppr instEnv)
       ; case lookupFamInstEnv instEnv tycon tys of
	   []                      -> return Nothing
	   ((fam_inst, rep_tys):_) 
             -> return $ Just (famInstTyCon fam_inst, rep_tys)
       }

tcLookupDataFamInst :: TyCon -> [Type] -> TcM (TyCon, [Type])
-- Find the instance of a data family
-- Note [Looking up family instances for deriving]
tcLookupDataFamInst tycon tys
  | not (isFamilyTyCon tycon)
  = return (tycon, tys)
  | otherwise
  = ASSERT( isAlgTyCon tycon )
    do { maybeFamInst <- tcLookupFamInst tycon tys
       ; case maybeFamInst of
           Nothing      -> famInstNotFound tycon tys
           Just famInst -> return famInst }

famInstNotFound :: TyCon -> [Type] -> TcM a
famInstNotFound tycon tys 
  = failWithTc (ptext (sLit "No family instance for")
			<+> quotes (pprTypeApp tycon tys))
\end{code} Note [Looking up family instances for deriving] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcLookupFamInstExact is an auxiliary lookup wrapper which requires that looked-up family instances exist. If called with a vanilla tycon, the old type application is simply returned. If we have data instance F () = ... deriving Eq data instance F () = ... deriving Eq then tcLookupFamInstExact will be confused by the two matches; but that can't happen because tcInstDecls1 doesn't call tcDeriving if there are any overlaps. There are two other things that might go wrong with the lookup. First, we might see a standalone deriving clause deriving Eq (F ()) when there is no data instance F () in scope. Note that it's OK to have data instance F [a] = ... deriving Eq (F [(a,b)]) where the match is not exact; the same holds for ordinary data types with standalone deriving declrations. \begin{code}
instance MonadThings (IOEnv (Env TcGblEnv TcLclEnv)) where
    lookupThing = tcLookupGlobal
\end{code} %************************************************************************ %* * Extending the global environment %* * %************************************************************************ \begin{code}
setGlobalTypeEnv :: TcGblEnv -> TypeEnv -> TcM TcGblEnv
-- Use this to update the global type env 
-- It updates both  * the normal tcg_type_env field
-- 	   	    * the tcg_type_env_var field seen by interface files
setGlobalTypeEnv tcg_env new_type_env
  = do  {     -- Sync the type-envt variable seen by interface files
    	   writeMutVar (tcg_type_env_var tcg_env) new_type_env
	 ; return (tcg_env { tcg_type_env = new_type_env }) }

tcExtendGlobalEnv :: [TyThing] -> TcM r -> TcM r
  -- Given a mixture of Ids, TyCons, Classes, all from the
  -- module being compiled, extend the global environment
tcExtendGlobalEnv things thing_inside
   = do	{ tcg_env <- getGblEnv
	; let ge'  = extendTypeEnvList (tcg_type_env tcg_env) things
	; tcg_env' <- setGlobalTypeEnv tcg_env ge'
	; setGblEnv tcg_env' thing_inside }

tcExtendGlobalValEnv :: [Id] -> TcM a -> TcM a
  -- Same deal as tcExtendGlobalEnv, but for Ids
tcExtendGlobalValEnv ids thing_inside 
  = tcExtendGlobalEnv [AnId id | id <- ids] thing_inside

tcExtendRecEnv :: [(Name,TyThing)] -> TcM r -> TcM r
-- Extend the global environments for the type/class knot tying game
-- Just like tcExtendGlobalEnv, except the argument is a list of pairs
tcExtendRecEnv gbl_stuff thing_inside
 = do  { tcg_env <- getGblEnv
       ; let ge' = extendNameEnvList (tcg_type_env tcg_env) gbl_stuff 
       ; tcg_env' <- setGlobalTypeEnv tcg_env ge'
       ; setGblEnv tcg_env' thing_inside }
\end{code} %************************************************************************ %* * \subsection{The local environment} %* * %************************************************************************ \begin{code}
tcLookupLocated :: Located Name -> TcM TcTyThing
tcLookupLocated = addLocM tcLookup

tcLookup :: Name -> TcM TcTyThing
tcLookup name = do
    local_env <- getLclTypeEnv
    case lookupNameEnv local_env name of
	Just thing -> return thing
	Nothing    -> AGlobal <$> tcLookupGlobal name

tcLookupTyVar :: Name -> TcM TcTyVar
tcLookupTyVar name = do
    thing <- tcLookup name
    case thing of
	ATyVar _ ty -> return (tcGetTyVar "tcLookupTyVar" ty)
	_           -> pprPanic "tcLookupTyVar" (ppr name)

tcLookupId :: Name -> TcM Id
-- Used when we aren't interested in the binding level, nor refinement. 
-- The "no refinement" part means that we return the un-refined Id regardless
-- 
-- The Id is never a DataCon. (Why does that matter? see TcExpr.tcId)
tcLookupId name = do
    thing <- tcLookup name
    case thing of
        ATcId { tct_id = id} -> return id
        AGlobal (AnId id)    -> return id
        _                    -> pprPanic "tcLookupId" (ppr name)

tcLookupLocalIds :: [Name] -> TcM [TcId]
-- We expect the variables to all be bound, and all at
-- the same level as the lookup.  Only used in one place...
tcLookupLocalIds ns = do
    env <- getLclEnv
    return (map (lookup (tcl_env env) (thLevel (tcl_th_ctxt env))) ns)
  where
    lookup lenv lvl name 
	= case lookupNameEnv lenv name of
		Just (ATcId { tct_id = id, tct_level = lvl1 }) 
			-> ASSERT( lvl == lvl1 ) id
		_ -> pprPanic "tcLookupLocalIds" (ppr name)

getInLocalScope :: TcM (Name -> Bool)
  -- Ids only
getInLocalScope = do { lcl_env <- getLclTypeEnv
                     ; return (`elemNameEnv` lcl_env) }
\end{code} \begin{code}
tcExtendKindEnv :: [(Name, TcKind)] -> TcM r -> TcM r
tcExtendKindEnv things thing_inside
  = updLclEnv upd thing_inside
  where
    upd lcl_env = lcl_env { tcl_env = extend (tcl_env lcl_env) }
    extend env  = extendNameEnvList env [(n, AThing k) | (n,k) <- things]

tcExtendKindEnvTvs :: [LHsTyVarBndr Name] -> ([LHsTyVarBndr Name] -> TcM r) -> TcM r
tcExtendKindEnvTvs bndrs thing_inside
  = tcExtendKindEnv (map (hsTyVarNameKind . unLoc) bndrs)
                    (thing_inside bndrs)

tcExtendTyVarEnv :: [TyVar] -> TcM r -> TcM r
tcExtendTyVarEnv tvs thing_inside
  = tcExtendTyVarEnv2 [(tyVarName tv, mkTyVarTy tv) | tv <- tvs] thing_inside

tcExtendTyVarEnv2 :: [(Name,TcType)] -> TcM r -> TcM r
tcExtendTyVarEnv2 binds thing_inside = do
    env@(TcLclEnv {tcl_env = le,
                   tcl_tyvars = gtvs,
                   tcl_rdr = rdr_env}) <- getLclEnv
    let
	rdr_env'   = extendLocalRdrEnvList rdr_env (map fst binds)
	new_tv_set = tcTyVarsOfTypes (map snd binds)
 	le'        = extendNameEnvList le [(name, ATyVar name ty) | (name, ty) <- binds]

	-- It's important to add the in-scope tyvars to the global tyvar set
	-- as well.  Consider
	--	f (_::r) = let g y = y::r in ...
	-- Here, g mustn't be generalised.  This is also important during
	-- class and instance decls, when we mustn't generalise the class tyvars
	-- when typechecking the methods.
    gtvs' <- tcExtendGlobalTyVars gtvs new_tv_set
    setLclEnv (env {tcl_env = le', tcl_tyvars = gtvs', tcl_rdr = rdr_env'}) thing_inside

getScopedTyVarBinds :: TcM [(Name, TcType)]
getScopedTyVarBinds
  = do	{ lcl_env <- getLclEnv
	; return [(name, ty) | ATyVar name ty <- nameEnvElts (tcl_env lcl_env)] }
\end{code} \begin{code}
tcExtendIdEnv :: [TcId] -> TcM a -> TcM a
tcExtendIdEnv ids thing_inside = tcExtendIdEnv2 [(idName id, id) | id <- ids] thing_inside

tcExtendIdEnv1 :: Name -> TcId -> TcM a -> TcM a
tcExtendIdEnv1 name id thing_inside = tcExtendIdEnv2 [(name,id)] thing_inside

tcExtendIdEnv2 :: [(Name,TcId)] -> TcM a -> TcM a
-- Invariant: the TcIds are fully zonked (see tcExtendIdEnv above)
tcExtendIdEnv2 names_w_ids thing_inside
  = do	{ env <- getLclEnv
	; tc_extend_local_id_env env (thLevel (tcl_th_ctxt env)) names_w_ids thing_inside }

tcExtendGhciEnv :: [TcId] -> TcM a -> TcM a
-- Used to bind Ids for GHCi identifiers bound earlier in the user interaction
-- Note especially that we bind them at TH level 'impLevel'.  That's because it's
-- OK to use a variable bound earlier in the interaction in a splice, becuase
-- GHCi has already compiled it to bytecode
tcExtendGhciEnv ids thing_inside
  = do	{ env <- getLclEnv
	; tc_extend_local_id_env env impLevel [(idName id, id) | id <- ids] thing_inside }

tc_extend_local_id_env		-- This is the guy who does the work
	:: TcLclEnv
	-> ThLevel
	-> [(Name,TcId)]
	-> TcM a -> TcM a
-- Invariant: the TcIds are fully zonked. Reasons:
--	(a) The kinds of the forall'd type variables are defaulted
--	    (see Kind.defaultKind, done in zonkQuantifiedTyVar)
--	(b) There are no via-Indirect occurrences of the bound variables
--	    in the types, because instantiation does not look through such things
--	(c) The call to tyVarsOfTypes is ok without looking through refs

tc_extend_local_id_env env th_lvl names_w_ids thing_inside
  = do	{ traceTc "env2" (ppr extra_env)
	; gtvs' <- tcExtendGlobalTyVars (tcl_tyvars env) extra_global_tyvars
	; let env' = env {tcl_env = le', tcl_tyvars = gtvs', tcl_rdr = rdr_env'}
	; setLclEnv env' thing_inside }
  where
    extra_global_tyvars = tcTyVarsOfTypes [idType id | (_,id) <- names_w_ids]
    extra_env	    = [ (name, ATcId { tct_id = id, 
    				       tct_level = th_lvl })
    		      | (name,id) <- names_w_ids]
    le'		    = extendNameEnvList (tcl_env env) extra_env
    rdr_env'	    = extendLocalRdrEnvList (tcl_rdr env) [name | (name,_) <- names_w_ids]

tcExtendGlobalTyVars :: IORef VarSet -> VarSet -> TcM (IORef VarSet)
tcExtendGlobalTyVars gtv_var extra_global_tvs
  = do { global_tvs <- readMutVar gtv_var
       ; newMutVar (global_tvs `unionVarSet` extra_global_tvs) }
\end{code} %************************************************************************ %* * \subsection{Rules} %* * %************************************************************************ \begin{code}
tcExtendRules :: [LRuleDecl Id] -> TcM a -> TcM a
	-- Just pop the new rules into the EPS and envt resp
	-- All the rules come from an interface file, not source
	-- Nevertheless, some may be for this module, if we read
	-- its interface instead of its source code
tcExtendRules lcl_rules thing_inside
 = do { env <- getGblEnv
      ; let
	  env' = env { tcg_rules = lcl_rules ++ tcg_rules env }
      ; setGblEnv env' thing_inside }
\end{code} %************************************************************************ %* * Meta level %* * %************************************************************************ \begin{code}
checkWellStaged :: SDoc		-- What the stage check is for
		-> ThLevel 	-- Binding level (increases inside brackets)
	        -> ThLevel	-- Use stage
		-> TcM ()	-- Fail if badly staged, adding an error
checkWellStaged pp_thing bind_lvl use_lvl
  | use_lvl >= bind_lvl 	-- OK! Used later than bound
  = return ()			-- E.g.  \x -> [| $(f x) |]

  | bind_lvl == outerLevel	-- GHC restriction on top level splices
  = failWithTc $ 
    sep [ptext (sLit "GHC stage restriction:") <+>  pp_thing,
	 nest 2 (vcat [ ptext (sLit "is used in a top-level splice or annotation,")
                      , ptext (sLit "and must be imported, not defined locally")])]

  | otherwise			-- Badly staged
  = failWithTc $ 		-- E.g.  \x -> $(f x)
    ptext (sLit "Stage error:") <+> pp_thing <+> 
	hsep   [ptext (sLit "is bound at stage") <+> ppr bind_lvl,
		ptext (sLit "but used at stage") <+> ppr use_lvl]

topIdLvl :: Id -> ThLevel
-- Globals may either be imported, or may be from an earlier "chunk" 
-- (separated by declaration splices) of this module.  The former
--  *can* be used inside a top-level splice, but the latter cannot.
-- Hence we give the former impLevel, but the latter topLevel
-- E.g. this is bad:
--	x = [| foo |]
--	$( f x )
-- By the time we are prcessing the $(f x), the binding for "x" 
-- will be in the global env, not the local one.
topIdLvl id | isLocalId id = outerLevel
	    | otherwise    = impLevel

tcMetaTy :: Name -> TcM Type
-- Given the name of a Template Haskell data type, 
-- return the type
-- E.g. given the name "Expr" return the type "Expr"
tcMetaTy tc_name = do
    t <- tcLookupTyCon tc_name
    return (mkTyConApp t [])

thRnBrack :: ThStage
-- Used *only* to indicate that we are inside a TH bracket during renaming
-- Tested by TcEnv.isBrackStage
-- See Note [Top-level Names in Template Haskell decl quotes]
thRnBrack = Brack (panic "thRnBrack1") (panic "thRnBrack2") (panic "thRnBrack3") 

isBrackStage :: ThStage -> Bool
isBrackStage (Brack {}) = True
isBrackStage _other     = False

thTopLevelId :: Id -> Bool
-- See Note [What is a top-level Id?] in TcSplice
thTopLevelId id = isGlobalId id || isExternalName (idName id)
\end{code} %************************************************************************ %* * getDefaultTys %* * %************************************************************************ \begin{code}
tcGetDefaultTys :: Bool		-- True <=> interactive context
                -> TcM ([Type], -- Default types
                        (Bool,	-- True <=> Use overloaded strings
                         Bool)) -- True <=> Use extended defaulting rules
tcGetDefaultTys interactive
  = do	{ dflags <- getDOpts
        ; let ovl_strings = xopt Opt_OverloadedStrings dflags
              extended_defaults = interactive
                               || xopt Opt_ExtendedDefaultRules dflags
				        -- See also Trac #1974 
              flags = (ovl_strings, extended_defaults)
    
        ; mb_defaults <- getDeclaredDefaultTys
	; case mb_defaults of {
	   Just tys -> return (tys, flags) ;
	   	   	       	-- User-supplied defaults
	   Nothing  -> do

	-- No use-supplied default
	-- Use [Integer, Double], plus modifications
	{ integer_ty <- tcMetaTy integerTyConName
	; checkWiredInTyCon doubleTyCon
	; string_ty <- tcMetaTy stringTyConName
        ; let deflt_tys = opt_deflt extended_defaults unitTy  -- Note [Default unitTy]
			  ++ [integer_ty, doubleTy]
			  ++ opt_deflt ovl_strings string_ty
        ; return (deflt_tys, flags) } } }
  where
    opt_deflt True  ty = [ty]
    opt_deflt False _  = []
\end{code} Note [Default unitTy] ~~~~~~~~~~~~~~~~~~~~~ In interative mode (or with -XExtendedDefaultRules) we add () as the first type we try when defaulting. This has very little real impact, except in the following case. Consider: Text.Printf.printf "hello" This has type (forall a. IO a); it prints "hello", and returns 'undefined'. We don't want the GHCi repl loop to try to print that 'undefined'. The neatest thing is to default the 'a' to (), rather than to Integer (which is what would otherwise happen; and then GHCi doesn't attempt to print the (). So in interactive mode, we add () to the list of defaulting types. See Trac #1200. %************************************************************************ %* * \subsection{The InstInfo type} %* * %************************************************************************ The InstInfo type summarises the information in an instance declaration instance c => k (t tvs) where b It is used just for *local* instance decls (not ones from interface files). But local instance decls includes - derived ones - generic ones as well as explicit user written ones. \begin{code}
data InstInfo a
  = InstInfo {
      iSpec   :: Instance,        -- Includes the dfun id.  Its forall'd type
      iBinds  :: InstBindings a   -- variables scope over the stuff in InstBindings!
    }

iDFunId :: InstInfo a -> DFunId
iDFunId info = instanceDFunId (iSpec info)

data InstBindings a
  = VanillaInst 		-- The normal case
	(LHsBinds a)		-- Bindings for the instance methods
	[LSig a]		-- User pragmas recorded for generating 
				-- specialised instances
	Bool			-- True <=> This code came from a standalone deriving clause
                                --          Used only to improve error messages

  | NewTypeDerived      -- Used for deriving instances of newtypes, where the
			-- witness dictionary is identical to the argument 
			-- dictionary.  Hence no bindings, no pragmas.

	Coercion	-- The coercion maps from newtype to the representation type
			-- (mentioning type variables bound by the forall'd iSpec variables)
			-- E.g.   newtype instance N [a] = N1 (Tree a)
			-- 	  co : N [a] ~ Tree a

	TyCon		-- The TyCon is the newtype N.  If it's indexed, then it's the 
			-- representation TyCon, so that tyConDataCons returns [N1], 
			-- the "data constructor".
			-- See Note [Newtype deriving and unused constructors]
                        -- in TcDeriv

pprInstInfo :: InstInfo a -> SDoc
pprInstInfo info = hang (ptext (sLit "instance"))
                      2 (sep [ ifPprDebug (pprForAll tvs)
                             , pprThetaArrowTy theta, ppr tau
                             , ptext (sLit "where")])
  where
    (tvs, theta, tau) = tcSplitSigmaTy (idType (iDFunId info))


pprInstInfoDetails :: OutputableBndr a => InstInfo a -> SDoc
pprInstInfoDetails info = pprInstInfo info $$ nest 2 (details (iBinds info))
  where
    details (VanillaInst b _ _) = pprLHsBinds b
    details (NewTypeDerived {}) = text "Derived from the representation type"

simpleInstInfoClsTy :: InstInfo a -> (Class, Type)
simpleInstInfoClsTy info = case instanceHead (iSpec info) of
                           (_, _, cls, [ty]) -> (cls, ty)
                           _ -> panic "simpleInstInfoClsTy"

simpleInstInfoTy :: InstInfo a -> Type
simpleInstInfoTy info = snd (simpleInstInfoClsTy info)

simpleInstInfoTyCon :: InstInfo a -> TyCon
  -- Gets the type constructor for a simple instance declaration,
  -- i.e. one of the form 	instance (...) => C (T a b c) where ...
simpleInstInfoTyCon inst = tcTyConAppTyCon (simpleInstInfoTy inst)
\end{code} Make a name for the dict fun for an instance decl. It's an *external* name, like otber top-level names, and hence must be made with newGlobalBinder. \begin{code}
newDFunName :: Class -> [Type] -> SrcSpan -> TcM Name
newDFunName clas tys loc
  = do	{ is_boot <- tcIsHsBoot
	; mod     <- getModule
	; let info_string = occNameString (getOccName clas) ++ 
			    concatMap (occNameString.getDFunTyKey) tys
        ; dfun_occ <- chooseUniqueOccTc (mkDFunOcc info_string is_boot)
	; newGlobalBinder mod dfun_occ loc }
\end{code} Make a name for the representation tycon of a family instance. It's an *external* name, like other top-level names, and hence must be made with newGlobalBinder. \begin{code}
newFamInstTyConName :: Name -> [Type] -> SrcSpan -> TcM Name
newFamInstTyConName tc_name tys loc
  = do	{ mod   <- getModule
	; let info_string = occNameString (getOccName tc_name) ++ 
			    concatMap (occNameString.getDFunTyKey) tys
        ; occ   <- chooseUniqueOccTc (mkInstTyTcOcc info_string)
	; newGlobalBinder mod occ loc }
\end{code} Stable names used for foreign exports and annotations. For stable names, the name must be unique (see #1533). If the same thing has several stable Ids based on it, the top-level bindings generated must not have the same name. Hence we create an External name (doesn't change), and we append a Unique to the string right here. \begin{code}
mkStableIdFromString :: String -> Type -> SrcSpan -> (OccName -> OccName) -> TcM TcId
mkStableIdFromString str sig_ty loc occ_wrapper = do
    uniq <- newUnique
    mod <- getModule
    let uniq_str = showSDoc (pprUnique uniq) :: String
        occ = mkVarOcc (str ++ '_' : uniq_str) :: OccName
        gnm = mkExternalName uniq mod (occ_wrapper occ) loc :: Name
	id  = mkExportedLocalId gnm sig_ty :: Id
    return id

mkStableIdFromName :: Name -> Type -> SrcSpan -> (OccName -> OccName) -> TcM TcId
mkStableIdFromName nm = mkStableIdFromString (getOccString nm)
\end{code} %************************************************************************ %* * \subsection{Errors} %* * %************************************************************************ \begin{code}
pprBinders :: [Name] -> SDoc
-- Used in error messages
-- Use quotes for a single one; they look a bit "busy" for several
pprBinders [bndr] = quotes (ppr bndr)
pprBinders bndrs  = pprWithCommas ppr bndrs

notFound :: Name -> TcM TyThing
notFound name 
  = do { (gbl,lcl) <- getEnvs
       ; failWithTc (vcat[ptext (sLit "GHC internal error:") <+> quotes (ppr name) <+> 
                     ptext (sLit "is not in scope during type checking, but it passed the renamer"),
                     ptext (sLit "tcg_type_env of environment:") <+> ppr (tcg_type_env gbl),
                     ptext (sLit "tcl_env of environment:") <+> ppr (tcl_env lcl)]
                    ) }

wrongThingErr :: String -> TcTyThing -> Name -> TcM a
wrongThingErr expected thing name
  = failWithTc (pprTcTyThingCategory thing <+> quotes (ppr name) <+> 
		ptext (sLit "used as a") <+> text expected)
\end{code}