% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % This module converts Template Haskell syntax into HsSyn \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module Convert( convertToHsExpr, convertToPat, convertToHsDecls,
                convertToHsType,
                thRdrNameGuesses ) where

import HsSyn as Hs
import qualified Class
import RdrName
import qualified Name
import Module
import RdrHsSyn
import qualified OccName
import OccName
import SrcLoc
import Type
import TysWiredIn
import BasicTypes as Hs
import ForeignCall
import Unique
import MonadUtils
import ErrUtils
import Bag
import Util
import FastString
import Outputable

import Control.Monad( unless )

import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH

import GHC.Exts

-------------------------------------------------------------------
--		The external interface

convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either Message [LHsDecl RdrName]
convertToHsDecls loc ds = initCvt loc (mapM cvt_dec ds)
  where
    cvt_dec d = wrapMsg "declaration" d (cvtDec d)

convertToHsExpr :: SrcSpan -> TH.Exp -> Either Message (LHsExpr RdrName)
convertToHsExpr loc e 
  = initCvt loc $ wrapMsg "expression" e $ cvtl e

convertToPat :: SrcSpan -> TH.Pat -> Either Message (LPat RdrName)
convertToPat loc p
  = initCvt loc $ wrapMsg "pattern" p $ cvtPat p

convertToHsType :: SrcSpan -> TH.Type -> Either Message (LHsType RdrName)
convertToHsType loc t
  = initCvt loc $ wrapMsg "type" t $ cvtType t

-------------------------------------------------------------------
newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either Message a }
	-- Push down the source location;
	-- Can fail, with a single error message

-- NB: If the conversion succeeds with (Right x), there should 
--     be no exception values hiding in x
-- Reason: so a (head []) in TH code doesn't subsequently
-- 	   make GHC crash when it tries to walk the generated tree

-- Use the loc everywhere, for lack of anything better
-- In particular, we want it on binding locations, so that variables bound in
-- the spliced-in declarations get a location that at least relates to the splice point

instance Monad CvtM where
  return x       = CvtM $ \_   -> Right x
  (CvtM m) >>= k = CvtM $ \loc -> case m loc of
				    Left err -> Left err
				    Right v  -> unCvtM (k v) loc

initCvt :: SrcSpan -> CvtM a -> Either Message a
initCvt loc (CvtM m) = m loc

force :: a -> CvtM ()
force a = a `seq` return ()

failWith :: Message -> CvtM a
failWith m = CvtM (\_ -> Left m)

getL :: CvtM SrcSpan
getL = CvtM (\loc -> Right loc)

returnL :: a -> CvtM (Located a)
returnL x = CvtM (\loc -> Right (L loc x))

wrapParL :: (Located a -> a) -> a -> CvtM a
wrapParL add_par x = CvtM (\loc -> Right (add_par (L loc x)))

wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
-- E.g  wrapMsg "declaration" dec thing
wrapMsg what item (CvtM m)
  = CvtM (\loc -> case m loc of
                     Left err -> Left (err $$ getPprStyle msg)
                     Right v  -> Right v)
  where
	-- Show the item in pretty syntax normally, 
	-- but with all its constructors if you say -dppr-debug
    msg sty = hang (ptext (sLit "When splicing a TH") <+> text what <> colon)
                 2 (if debugStyle sty 
                    then text (show item)
                    else text (pprint item))

wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM (\loc -> case m loc of
			  Left err -> Left err
			  Right v  -> Right (L loc v))

-------------------------------------------------------------------
cvtDec :: TH.Dec -> CvtM (LHsDecl RdrName)
cvtDec (TH.ValD pat body ds) 
  | TH.VarP s <- pat
  = do	{ s' <- vNameL s
	; cl' <- cvtClause (Clause [] body ds)
	; returnL $ Hs.ValD $ mkFunBind s' [cl'] }

  | otherwise
  = do	{ pat' <- cvtPat pat
	; body' <- cvtGuard body
	; ds' <- cvtLocalDecs (ptext (sLit "a where clause")) ds
	; returnL $ Hs.ValD $
          PatBind { pat_lhs = pat', pat_rhs = GRHSs body' ds' 
                  , pat_rhs_ty = void, bind_fvs = placeHolderNames
                  , pat_ticks = (Nothing,[]) } }

cvtDec (TH.FunD nm cls)   
  | null cls
  = failWith (ptext (sLit "Function binding for")
    	     	    <+> quotes (text (TH.pprint nm))
    	     	    <+> ptext (sLit "has no equations"))
  | otherwise
  = do	{ nm' <- vNameL nm
	; cls' <- mapM cvtClause cls
	; returnL $ Hs.ValD $ mkFunBind nm' cls' }

cvtDec (TH.SigD nm typ)  
  = do  { nm' <- vNameL nm
	; ty' <- cvtType typ
	; returnL $ Hs.SigD (TypeSig [nm'] ty') }

cvtDec (PragmaD prag)
  = do { prag' <- cvtPragmaD prag
       ; returnL $ Hs.SigD prag' }

cvtDec (TySynD tc tvs rhs)
  = do	{ (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
	; rhs' <- cvtType rhs
	; returnL $ TyClD (TySynonym tc' tvs' Nothing rhs') }

cvtDec (DataD ctxt tc tvs constrs derivs)
  = do	{ (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
	; cons' <- mapM cvtConstr constrs
	; derivs' <- cvtDerivs derivs
	; returnL $ TyClD (TyData { tcdND = DataType, tcdLName = tc', tcdCtxt = ctxt'
                                  , tcdTyVars = tvs', tcdTyPats = Nothing, tcdKindSig = Nothing
                                  , tcdCons = cons', tcdDerivs = derivs' }) }

cvtDec (NewtypeD ctxt tc tvs constr derivs)
  = do	{ (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
	; con' <- cvtConstr constr
	; derivs' <- cvtDerivs derivs
	; returnL $ TyClD (TyData { tcdND = NewType, tcdLName = tc', tcdCtxt = ctxt'
	  	    	  	  , tcdTyVars = tvs', tcdTyPats = Nothing, tcdKindSig = Nothing
                                  , tcdCons = [con'], tcdDerivs = derivs'}) }

cvtDec (ClassD ctxt cl tvs fds decs)
  = do	{ (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
	; fds'  <- mapM cvt_fundep fds
        ; (binds', sigs', ats') <- cvt_ci_decs (ptext (sLit "a class declaration")) decs
	; returnL $ 
            TyClD $ ClassDecl { tcdCtxt = cxt', tcdLName = tc', tcdTyVars = tvs'
	    	              , tcdFDs = fds', tcdSigs = sigs', tcdMeths = binds'
			      , tcdATs = ats', tcdATDefs = [], tcdDocs = [] }
                                        -- no docs in TH ^^
	}
	
cvtDec (InstanceD ctxt ty decs)
  = do 	{ (binds', sigs', ats') <- cvt_ci_decs (ptext (sLit "an instance declaration")) decs
	; ctxt' <- cvtContext ctxt
	; L loc ty' <- cvtType ty
	; let inst_ty' = L loc $ mkImplicitHsForAllTy ctxt' $ L loc ty'
	; returnL $ InstD (InstDecl inst_ty' binds' sigs' ats') }

cvtDec (ForeignD ford) 
  = do { ford' <- cvtForD ford
       ; returnL $ ForD ford' }

cvtDec (FamilyD flav tc tvs kind)
  = do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
       ; kind' <- cvtMaybeKind kind
       ; returnL $ TyClD (TyFamily (cvtFamFlavour flav) tc' tvs' kind') }
  where
    cvtFamFlavour TypeFam = TypeFamily
    cvtFamFlavour DataFam = DataFamily

cvtDec (DataInstD ctxt tc tys constrs derivs)
  = do { (ctxt', tc', tvs', typats') <- cvt_tyinst_hdr ctxt tc tys
       ; cons' <- mapM cvtConstr constrs
       ; derivs' <- cvtDerivs derivs
       ; returnL $ TyClD (TyData { tcdND = DataType, tcdLName = tc', tcdCtxt = ctxt'
                                  , tcdTyVars = tvs', tcdTyPats = typats', tcdKindSig = Nothing
                                  , tcdCons = cons', tcdDerivs = derivs' }) }

cvtDec (NewtypeInstD ctxt tc tys constr derivs)
  = do { (ctxt', tc', tvs', typats') <- cvt_tyinst_hdr ctxt tc tys
       ; con' <- cvtConstr constr
       ; derivs' <- cvtDerivs derivs
       ; returnL $ TyClD (TyData { tcdND = NewType, tcdLName = tc', tcdCtxt = ctxt'
                                  , tcdTyVars = tvs', tcdTyPats = typats', tcdKindSig = Nothing
                                  , tcdCons = [con'], tcdDerivs = derivs' })
       }

cvtDec (TySynInstD tc tys rhs)
  = do	{ (_, tc', tvs', tys') <- cvt_tyinst_hdr [] tc tys
	; rhs' <- cvtType rhs
	; returnL $ TyClD (TySynonym tc' tvs' tys' rhs') }

----------------
cvt_ci_decs :: Message -> [TH.Dec]
            -> CvtM (LHsBinds RdrName, 
                     [LSig RdrName], 
                     [LTyClDecl RdrName])
-- Convert the declarations inside a class or instance decl
-- ie signatures, bindings, and associated types
cvt_ci_decs doc decs
  = do  { decs' <- mapM cvtDec decs
        ; let (ats', bind_sig_decs') = partitionWith is_tycl decs'
	; let (sigs', prob_binds') = partitionWith is_sig bind_sig_decs'
	; let (binds', bads) = partitionWith is_bind prob_binds'
	; unless (null bads) (failWith (mkBadDecMsg doc bads))
        ; return (listToBag binds', sigs', ats') }

----------------
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr]
             -> CvtM ( LHsContext RdrName
                     , Located RdrName
                     , [LHsTyVarBndr RdrName])
cvt_tycl_hdr cxt tc tvs
  = do { cxt' <- cvtContext cxt
       ; tc'  <- tconNameL tc
       ; tvs' <- cvtTvs tvs
       ; return (cxt', tc', tvs') 
       }

cvt_tyinst_hdr :: TH.Cxt -> TH.Name -> [TH.Type]
               -> CvtM ( LHsContext RdrName
                       , Located RdrName
                       , [LHsTyVarBndr RdrName]
                       , Maybe [LHsType RdrName])
cvt_tyinst_hdr cxt tc tys
  = do { cxt' <- cvtContext cxt
       ; tc'  <- tconNameL tc
       ; tvs  <- concatMapM collect tys
       ; tvs' <- cvtTvs tvs
       ; tys' <- mapM cvtType tys
       ; return (cxt', tc', tvs', Just tys') 
       }
  where
    collect (ForallT _ _ _) 
      = failWith $ text "Forall type not allowed as type parameter"
    collect (VarT tv)    = return [PlainTV tv]
    collect (ConT _)     = return []
    collect (TupleT _)   = return []
    collect (UnboxedTupleT _) = return []
    collect ArrowT       = return []
    collect ListT        = return []
    collect (AppT t1 t2)
      = do { tvs1 <- collect t1
           ; tvs2 <- collect t2
           ; return $ tvs1 ++ tvs2
           }
    collect (SigT (VarT tv) ki) = return [KindedTV tv ki]
    collect (SigT ty _)         = collect ty

-------------------------------------------------------------------
--		Partitioning declarations
-------------------------------------------------------------------

is_tycl :: LHsDecl RdrName -> Either (LTyClDecl RdrName) (LHsDecl RdrName)
is_tycl (L loc (Hs.TyClD tcd)) = Left (L loc tcd)
is_tycl decl                   = Right decl

is_sig :: LHsDecl RdrName -> Either (LSig RdrName) (LHsDecl RdrName)
is_sig (L loc (Hs.SigD sig)) = Left (L loc sig)
is_sig decl                  = Right decl

is_bind :: LHsDecl RdrName -> Either (LHsBind RdrName) (LHsDecl RdrName)
is_bind (L loc (Hs.ValD bind)) = Left (L loc bind)
is_bind decl		       = Right decl

mkBadDecMsg :: Message -> [LHsDecl RdrName] -> Message
mkBadDecMsg doc bads 
  = sep [ ptext (sLit "Illegal declaration(s) in") <+> doc <> colon
        , nest 2 (vcat (map Outputable.ppr bads)) ]

---------------------------------------------------
-- 	Data types
-- Can't handle GADTs yet
---------------------------------------------------

cvtConstr :: TH.Con -> CvtM (LConDecl RdrName)

cvtConstr (NormalC c strtys)
  = do	{ c'   <- cNameL c 
	; cxt' <- returnL []
	; tys' <- mapM cvt_arg strtys
	; returnL $ mkSimpleConDecl c' noExistentials cxt' (PrefixCon tys') }

cvtConstr (RecC c varstrtys)
  = do 	{ c'    <- cNameL c 
	; cxt'  <- returnL []
	; args' <- mapM cvt_id_arg varstrtys
	; returnL $ mkSimpleConDecl c' noExistentials cxt' (RecCon args') }

cvtConstr (InfixC st1 c st2)
  = do 	{ c' <- cNameL c 
	; cxt' <- returnL []
	; st1' <- cvt_arg st1
	; st2' <- cvt_arg st2
	; returnL $ mkSimpleConDecl c' noExistentials cxt' (InfixCon st1' st2') }

cvtConstr (ForallC tvs ctxt con)
  = do	{ tvs'  <- cvtTvs tvs
	; L loc ctxt' <- cvtContext ctxt
	; L _ con' <- cvtConstr con
	; returnL $ con' { con_qvars = tvs' ++ con_qvars con'
                         , con_cxt = L loc (ctxt' ++ (unLoc $ con_cxt con')) } }

cvt_arg :: (TH.Strict, TH.Type) -> CvtM (LHsType RdrName)
cvt_arg (IsStrict, ty)  = do { ty' <- cvtType ty; returnL $ HsBangTy HsStrict ty' }
cvt_arg (NotStrict, ty) = cvtType ty
cvt_arg (Unpacked, ty)  = do { ty' <- cvtType ty; returnL $ HsBangTy HsUnpack ty' }

cvt_id_arg :: (TH.Name, TH.Strict, TH.Type) -> CvtM (ConDeclField RdrName)
cvt_id_arg (i, str, ty) 
  = do	{ i' <- vNameL i
	; ty' <- cvt_arg (str,ty)
	; return (ConDeclField { cd_fld_name = i', cd_fld_type =  ty', cd_fld_doc = Nothing}) }

cvtDerivs :: [TH.Name] -> CvtM (Maybe [LHsType RdrName])
cvtDerivs [] = return Nothing
cvtDerivs cs = do { cs' <- mapM cvt_one cs
		  ; return (Just cs') }
	where
	  cvt_one c = do { c' <- tconName c
			 ; returnL $ HsTyVar c' }

cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep RdrName))
cvt_fundep (FunDep xs ys) = do { xs' <- mapM tName xs; ys' <- mapM tName ys; returnL (xs', ys') }

noExistentials :: [LHsTyVarBndr RdrName]
noExistentials = []

------------------------------------------
-- 	Foreign declarations
------------------------------------------

cvtForD :: Foreign -> CvtM (ForeignDecl RdrName)
cvtForD (ImportF callconv safety from nm ty)
  | Just impspec <- parseCImport (cvt_conv callconv) safety' 
                                 (mkFastString (TH.nameBase nm)) from
  = do { nm' <- vNameL nm
       ; ty' <- cvtType ty
       ; return (ForeignImport nm' ty' noForeignImportCoercionYet impspec)
       }
  | otherwise
  = failWith $ text (show from) <+> ptext (sLit "is not a valid ccall impent")
  where
    safety' = case safety of
                     Unsafe     -> PlayRisky
                     Safe       -> PlaySafe
                     Interruptible -> PlayInterruptible

cvtForD (ExportF callconv as nm ty)
  = do	{ nm' <- vNameL nm
	; ty' <- cvtType ty
	; let e = CExport (CExportStatic (mkFastString as) (cvt_conv callconv))
 	; return $ ForeignExport nm' ty' noForeignExportCoercionYet e }

cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall   = CCallConv
cvt_conv TH.StdCall = StdCallConv

------------------------------------------
--              Pragmas
------------------------------------------

cvtPragmaD :: Pragma -> CvtM (Sig RdrName)
cvtPragmaD (InlineP nm ispec)
  = do { nm'    <- vNameL nm
       ; return $ InlineSig nm' (cvtInlineSpec (Just ispec)) }

cvtPragmaD (SpecialiseP nm ty opt_ispec)
  = do { nm' <- vNameL nm
       ; ty' <- cvtType ty
       ; return $ SpecSig nm' ty' (cvtInlineSpec opt_ispec) }

cvtInlineSpec :: Maybe TH.InlineSpec -> Hs.InlinePragma
cvtInlineSpec Nothing 
  = defaultInlinePragma
cvtInlineSpec (Just (TH.InlineSpec inline conlike opt_activation)) 
  = InlinePragma { inl_act = opt_activation', inl_rule = matchinfo
                 , inl_inline = inl_spec, inl_sat = Nothing }
  where
    matchinfo       = cvtRuleMatchInfo conlike
    opt_activation' = cvtActivation opt_activation

    cvtRuleMatchInfo False = FunLike
    cvtRuleMatchInfo True  = ConLike

    inl_spec | inline    = Inline
             | otherwise = NoInline
 	     -- Currently we have no way to say Inlinable

    cvtActivation Nothing | inline      = AlwaysActive
                          | otherwise   = NeverActive
    cvtActivation (Just (False, phase)) = ActiveBefore phase
    cvtActivation (Just (True , phase)) = ActiveAfter  phase

---------------------------------------------------
--		Declarations
---------------------------------------------------

cvtLocalDecs :: Message -> [TH.Dec] -> CvtM (HsLocalBinds RdrName)
cvtLocalDecs doc ds 
  | null ds
  = return EmptyLocalBinds
  | otherwise
  = do { ds' <- mapM cvtDec ds
       ; let (binds, prob_sigs) = partitionWith is_bind ds'
       ; let (sigs, bads) = partitionWith is_sig prob_sigs
       ; unless (null bads) (failWith (mkBadDecMsg doc bads))
       ; return (HsValBinds (ValBindsIn (listToBag binds) sigs)) }

cvtClause :: TH.Clause -> CvtM (Hs.LMatch RdrName)
cvtClause (Clause ps body wheres)
  = do	{ ps' <- cvtPats ps
	; g'  <- cvtGuard body
	; ds' <- cvtLocalDecs (ptext (sLit "a where clause")) wheres
	; returnL $ Hs.Match ps' Nothing (GRHSs g' ds') }


-------------------------------------------------------------------
--		Expressions
-------------------------------------------------------------------

cvtl :: TH.Exp -> CvtM (LHsExpr RdrName)
cvtl e = wrapL (cvt e)
  where
    cvt (VarE s) 	= do { s' <- vName s; return $ HsVar s' }
    cvt (ConE s) 	= do { s' <- cName s; return $ HsVar s' }
    cvt (LitE l) 
      | overloadedLit l = do { l' <- cvtOverLit l; return $ HsOverLit l' }
      | otherwise	= do { l' <- cvtLit l;     return $ HsLit l' }

    cvt (AppE x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ HsApp x' y' }
    cvt (LamE ps e)    = do { ps' <- cvtPats ps; e' <- cvtl e 
			    ; return $ HsLam (mkMatchGroup [mkSimpleMatch ps' e']) }
    cvt (TupE [e])     = do { e' <- cvtl e; return $ HsPar e' }
    	      	       	         -- Note [Dropping constructors]
                                 -- Singleton tuples treated like nothing (just parens)
    cvt (TupE es)      = do { es' <- mapM cvtl es; return $ ExplicitTuple (map Present es') Boxed }
    cvt (UnboxedTupE es)      = do { es' <- mapM cvtl es; return $ ExplicitTuple (map Present es') Unboxed }
    cvt (CondE x y z)  = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
			    ; return $ HsIf (Just noSyntaxExpr) x' y' z' }
    cvt (LetE ds e)    = do { ds' <- cvtLocalDecs (ptext (sLit "a let expression")) ds
                            ; e' <- cvtl e; return $ HsLet ds' e' }
    cvt (CaseE e ms)   
       | null ms       = failWith (ptext (sLit "Case expression with no alternatives"))
       | otherwise     = do { e' <- cvtl e; ms' <- mapM cvtMatch ms
			    ; return $ HsCase e' (mkMatchGroup ms') }
    cvt (DoE ss)       = cvtHsDo DoExpr ss
    cvt (CompE ss)     = cvtHsDo ListComp ss
    cvt (ArithSeqE dd) = do { dd' <- cvtDD dd; return $ ArithSeq noPostTcExpr dd' }
    cvt (ListE xs)     
      | Just s <- allCharLs xs       = do { l' <- cvtLit (StringL s); return (HsLit l') }
      	     -- Note [Converting strings]
      | otherwise                    = do { xs' <- mapM cvtl xs; return $ ExplicitList void xs' }

    -- Infix expressions
    cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y
					  ; wrapParL HsPar $ 
                                            OpApp (mkLHsPar x') s' undefined (mkLHsPar y') }
  					    -- Parenthesise both arguments and result, 
					    -- to ensure this operator application does
 					    -- does not get re-associated
			    -- See Note [Operator association]
    cvt (InfixE Nothing  s (Just y)) = do { s' <- cvtl s; y' <- cvtl y
					  ; wrapParL HsPar $ SectionR s' y' }
					    -- See Note [Sections in HsSyn] in HsExpr
    cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s
					  ; wrapParL HsPar $ SectionL x' s' }

    cvt (InfixE Nothing  s Nothing ) = do { s' <- cvtl s; return $ HsPar s' }
                                       -- Can I indicate this is an infix thing?
                                       -- Note [Dropping constructors]

    cvt (UInfixE x s y)  = do { x' <- cvtl x
                              ; let x'' = case x' of 
                                            L _ (OpApp {}) -> x'
                                            _ -> mkLHsPar x'
                              ; cvtOpApp x'' s y } --  Note [Converting UInfix]

    cvt (ParensE e)      = do { e' <- cvtl e; return $ HsPar e' }
    cvt (SigE e t)	 = do { e' <- cvtl e; t' <- cvtType t
			      ; return $ ExprWithTySig e' t' }
    cvt (RecConE c flds) = do { c' <- cNameL c
			      ; flds' <- mapM cvtFld flds
			      ; return $ RecordCon c' noPostTcExpr (HsRecFields flds' Nothing)}
    cvt (RecUpdE e flds) = do { e' <- cvtl e
			      ; flds' <- mapM cvtFld flds
			      ; return $ RecordUpd e' (HsRecFields flds' Nothing) [] [] [] }

{- Note [Dropping constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we drop constructors from the input (for instance, when we encounter @TupE [e]@)
we must insert parentheses around the argument. Otherwise, @UInfix@ constructors in @e@
could meet @UInfix@ constructors containing the @TupE [e]@. For example:

  UInfixE x * (TupE [UInfixE y + z])

If we drop the singleton tuple but don't insert parentheses, the @UInfixE@s would meet
and the above expression would be reassociated to

  OpApp (OpApp x * y) + z

which we don't want.
-}

cvtFld :: (TH.Name, TH.Exp) -> CvtM (HsRecField RdrName (LHsExpr RdrName))
cvtFld (v,e) 
  = do	{ v' <- vNameL v; e' <- cvtl e
	; return (HsRecField { hsRecFieldId = v', hsRecFieldArg = e', hsRecPun = False}) }

cvtDD :: Range -> CvtM (ArithSeqInfo RdrName)
cvtDD (FromR x) 	  = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y)       = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }

{- Note [Operator assocation]
We must be quite careful about adding parens:
  * Infix (UInfix ...) op arg      Needs parens round the first arg
  * Infix (Infix ...) op arg       Needs parens round the first arg
  * UInfix (UInfix ...) op arg     No parens for first arg
  * UInfix (Infix ...) op arg      Needs parens round first arg


Note [Converting UInfix]
~~~~~~~~~~~~~~~~~~~~~~~~
When converting @UInfixE@ and @UInfixP@ values, we want to readjust
the trees to reflect the fixities of the underlying operators:

  UInfixE x * (UInfixE y + z) ---> (x * y) + z

This is done by the renamer (see @mkOppAppRn@ and @mkConOppPatRn@ in
RnTypes), which expects that the input will be completely left-biased.
So we left-bias the trees  of @UInfixP@ and @UInfixE@ that we come across.

Sample input:

  UInfixE
   (UInfixE x op1 y)
   op2
   (UInfixE z op3 w)

Sample output:

  OpApp
    (OpApp
      (OpApp x op1 y)
      op2
      z)
    op3
    w

The functions @cvtOpApp@ and @cvtOpAppP@ are responsible for this
left-biasing.
-}

{- | @cvtOpApp x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix expressions will be left-biased, provided @x@ is.

We can see that @cvtOpApp@ is correct as follows. The inductive hypothesis
is that @cvtOpApp x op y@ is left-biased, provided @x@ is. It is clear that
this holds for both branches (of @cvtOpApp@), provided we assume it holds for
the recursive calls to @cvtOpApp@.

When we call @cvtOpApp@ from @cvtl@, the first argument will always be left-biased
since we have already run @cvtl@ on it.
-}
cvtOpApp :: LHsExpr RdrName -> TH.Exp -> TH.Exp -> CvtM (HsExpr RdrName)
cvtOpApp x op1 (UInfixE y op2 z)
  = do { l <- wrapL $ cvtOpApp x op1 y
       ; cvtOpApp l op2 z }
cvtOpApp x op y
  = do { op' <- cvtl op
       ; y' <- cvtl y
       ; return (OpApp x op' undefined y') }

-------------------------------------
-- 	Do notation and statements
-------------------------------------

cvtHsDo :: HsStmtContext Name.Name -> [TH.Stmt] -> CvtM (HsExpr RdrName)
cvtHsDo do_or_lc stmts
  | null stmts = failWith (ptext (sLit "Empty stmt list in do-block"))
  | otherwise
  = do	{ stmts' <- cvtStmts stmts
        ; let Just (stmts'', last') = snocView stmts'
        
	; last'' <- case last' of
		      L loc (ExprStmt body _ _ _) -> return (L loc (mkLastStmt body))
                      _ -> failWith (bad_last last')

	; return $ HsDo do_or_lc (stmts'' ++ [last'']) void }
  where
    bad_last stmt = vcat [ ptext (sLit "Illegal last statement of") <+> pprAStmtContext do_or_lc <> colon
                         , nest 2 $ Outputable.ppr stmt
			 , ptext (sLit "(It should be an expression.)") ]
		
cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt RdrName]
cvtStmts = mapM cvtStmt 

cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt RdrName)
cvtStmt (NoBindS e)    = do { e' <- cvtl e; returnL $ mkExprStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' }
cvtStmt (TH.LetS ds)   = do { ds' <- cvtLocalDecs (ptext (sLit "a let binding")) ds
                            ; returnL $ LetStmt ds' }
cvtStmt (TH.ParS dss)  = do { dss' <- mapM cvt_one dss; returnL $ ParStmt dss' noSyntaxExpr noSyntaxExpr noSyntaxExpr }
		       where
			 cvt_one ds = do { ds' <- cvtStmts ds; return (ds', undefined) }

cvtMatch :: TH.Match -> CvtM (Hs.LMatch RdrName)
cvtMatch (TH.Match p body decs)
  = do 	{ p' <- cvtPat p
	; g' <- cvtGuard body
	; decs' <- cvtLocalDecs (ptext (sLit "a where clause")) decs
	; returnL $ Hs.Match [p'] Nothing (GRHSs g' decs') }

cvtGuard :: TH.Body -> CvtM [LGRHS RdrName]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e)      = do { e' <- cvtl e; g' <- returnL $ GRHS [] e'; return [g'] }

cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS RdrName)
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
			      ; g' <- returnL $ mkExprStmt ge'
			      ; returnL $ GRHS [g'] rhs' }
cvtpair (PatG gs,rhs)    = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
			      ; returnL $ GRHS gs' rhs' }

cvtOverLit :: Lit -> CvtM (HsOverLit RdrName)
cvtOverLit (IntegerL i)  
  = do { force i; return $ mkHsIntegral i placeHolderType}
cvtOverLit (RationalL r) 
  = do { force r; return $ mkHsFractional (cvtFractionalLit r) placeHolderType}
cvtOverLit (StringL s)   
  = do { let { s' = mkFastString s }
       ; force s'
       ; return $ mkHsIsString s' placeHolderType 
       }
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
-- An Integer is like an (overloaded) '3' in a Haskell source program
-- Similarly 3.5 for fractionals

{- Note [Converting strings] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get (ListE [CharL 'x', CharL 'y']) we'd like to convert to
a string literal for "xy".  Of course, we might hope to get 
(LitE (StringL "xy")), but not always, and allCharLs fails quickly
if it isn't a literal string
-}

allCharLs :: [TH.Exp] -> Maybe String
-- Note [Converting strings]
-- NB: only fire up this setup for a non-empty list, else
--     there's a danger of returning "" for [] :: [Int]!
allCharLs xs
  = case xs of 
      LitE (CharL c) : ys -> go [c] ys
      _                   -> Nothing
  where
    go cs []                    = Just (reverse cs)
    go cs (LitE (CharL c) : ys) = go (c:cs) ys
    go _  _                     = Nothing

cvtLit :: Lit -> CvtM HsLit
cvtLit (IntPrimL i)    = do { force i; return $ HsIntPrim i }
cvtLit (WordPrimL w)   = do { force w; return $ HsWordPrim w }
cvtLit (FloatPrimL f)  = do { force f; return $ HsFloatPrim (cvtFractionalLit f) }
cvtLit (DoublePrimL f) = do { force f; return $ HsDoublePrim (cvtFractionalLit f) }
cvtLit (CharL c)       = do { force c; return $ HsChar c }
cvtLit (StringL s)     = do { let { s' = mkFastString s }
       		       	    ; force s'      
       		       	    ; return $ HsString s' }
cvtLit (StringPrimL s) = do { let { s' = mkFastString s }
       			    ; force s'           
       			    ; return $ HsStringPrim s' }
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
	-- cvtLit should not be called on IntegerL, RationalL
	-- That precondition is established right here in
	-- Convert.lhs, hence panic

cvtPats :: [TH.Pat] -> CvtM [Hs.LPat RdrName]
cvtPats pats = mapM cvtPat pats

cvtPat :: TH.Pat -> CvtM (Hs.LPat RdrName)
cvtPat pat = wrapL (cvtp pat)

cvtp :: TH.Pat -> CvtM (Hs.Pat RdrName)
cvtp (TH.LitP l)
  | overloadedLit l    = do { l' <- cvtOverLit l
		 	    ; return (mkNPat l' Nothing) }
		 		  -- Not right for negative patterns; 
		 		  -- need to think about that!
  | otherwise	       = do { l' <- cvtLit l; return $ Hs.LitPat l' }
cvtp (TH.VarP s)       = do { s' <- vName s; return $ Hs.VarPat s' }
cvtp (TupP [p])        = do { p' <- cvtPat p; return $ ParPat p' } -- Note [Dropping constructors]
cvtp (TupP ps)         = do { ps' <- cvtPats ps; return $ TuplePat ps' Boxed void }
cvtp (UnboxedTupP ps)  = do { ps' <- cvtPats ps; return $ TuplePat ps' Unboxed void }
cvtp (ConP s ps)       = do { s' <- cNameL s; ps' <- cvtPats ps
                            ; return $ ConPatIn s' (PrefixCon ps') }
cvtp (InfixP p1 s p2)  = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2
                            ; wrapParL ParPat $ 
                              ConPatIn s' (InfixCon (mkParPat p1') (mkParPat p2')) }
			    -- See Note [Operator association]
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 } -- Note [Converting UInfix]
cvtp (ParensP p)       = do { p' <- cvtPat p; return $ ParPat p' }
cvtp (TildeP p)        = do { p' <- cvtPat p; return $ LazyPat p' }
cvtp (BangP p)         = do { p' <- cvtPat p; return $ BangPat p' }
cvtp (TH.AsP s p)      = do { s' <- vNameL s; p' <- cvtPat p; return $ AsPat s' p' }
cvtp TH.WildP          = return $ WildPat void
cvtp (RecP c fs)       = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs
		       	   ; return $ ConPatIn c' $ Hs.RecCon (HsRecFields fs' Nothing) }
cvtp (ListP ps)        = do { ps' <- cvtPats ps; return $ ListPat ps' void }
cvtp (SigP p t)        = do { p' <- cvtPat p; t' <- cvtType t; return $ SigPatIn p' t' }
cvtp (ViewP e p)       = do { e' <- cvtl e; p' <- cvtPat p; return $ ViewPat e' p' void }

cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (HsRecField RdrName (LPat RdrName))
cvtPatFld (s,p)
  = do	{ s' <- vNameL s; p' <- cvtPat p
	; return (HsRecField { hsRecFieldId = s', hsRecFieldArg = p', hsRecPun = False}) }

{- | @cvtOpAppP x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix patterns will be left-biased, provided @x@ is.

See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppP :: Hs.LPat RdrName -> TH.Name -> TH.Pat -> CvtM (Hs.Pat RdrName)
cvtOpAppP x op1 (UInfixP y op2 z)
  = do { l <- wrapL $ cvtOpAppP x op1 y
       ; cvtOpAppP l op2 z }
cvtOpAppP x op y
  = do { op' <- cNameL op
       ; y' <- cvtPat y
       ; return (ConPatIn op' (InfixCon x y')) }

-----------------------------------------------------------
--	Types and type variables

cvtTvs :: [TH.TyVarBndr] -> CvtM [LHsTyVarBndr RdrName]
cvtTvs tvs = mapM cvt_tv tvs

cvt_tv :: TH.TyVarBndr -> CvtM (LHsTyVarBndr RdrName)
cvt_tv (TH.PlainTV nm) 
  = do { nm' <- tName nm
       ; returnL $ UserTyVar nm' placeHolderKind
       }
cvt_tv (TH.KindedTV nm ki) 
  = do { nm' <- tName nm
       ; ki' <- cvtKind ki
       ; returnL $ KindedTyVar nm' ki' placeHolderKind
       }

cvtContext :: TH.Cxt -> CvtM (LHsContext RdrName)
cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' }

cvtPred :: TH.Pred -> CvtM (LHsType RdrName)
cvtPred (TH.ClassP cla tys)
  = do { cla' <- if isVarName cla then tName cla else tconName cla
       ; tys' <- mapM cvtType tys
       ; mk_apps (HsTyVar cla') tys'
       }
cvtPred (TH.EqualP ty1 ty2)
  = do { ty1' <- cvtType ty1
       ; ty2' <- cvtType ty2
       ; returnL $ HsEqTy ty1' ty2'
       }

cvtType :: TH.Type -> CvtM (LHsType RdrName)
cvtType ty 
  = do { (head_ty, tys') <- split_ty_app ty
       ; case head_ty of
           TupleT n 
             | length tys' == n 	-- Saturated
             -> if n==1 then return (head tys')	-- Singleton tuples treated 
                                                -- like nothing (ie just parens)
                        else returnL (HsTupleTy HsBoxedTuple tys')
             | n == 1    
             -> failWith (ptext (sLit "Illegal 1-tuple type constructor"))
             | otherwise 
             -> mk_apps (HsTyVar (getRdrName (tupleTyCon BoxedTuple n))) tys'
           UnboxedTupleT n
             | length tys' == n 	-- Saturated
             -> if n==1 then return (head tys')	-- Singleton tuples treated
                                                -- like nothing (ie just parens)
                        else returnL (HsTupleTy HsUnboxedTuple tys')
             | otherwise
             -> mk_apps (HsTyVar (getRdrName (tupleTyCon UnboxedTuple n))) tys'
           ArrowT 
             | [x',y'] <- tys' -> returnL (HsFunTy x' y')
             | otherwise       -> mk_apps (HsTyVar (getRdrName funTyCon)) tys'
           ListT  
             | [x']    <- tys' -> returnL (HsListTy x')
             | otherwise       -> mk_apps (HsTyVar (getRdrName listTyCon)) tys'
           VarT nm -> do { nm' <- tName nm;    mk_apps (HsTyVar nm') tys' }
           ConT nm -> do { nm' <- tconName nm; mk_apps (HsTyVar nm') tys' }

           ForallT tvs cxt ty 
             | null tys' 
             -> do { tvs' <- cvtTvs tvs
                   ; cxt' <- cvtContext cxt
                   ; ty'  <- cvtType ty
                   ; returnL $ mkExplicitHsForAllTy tvs' cxt' ty' 
                   }

           SigT ty ki
             -> do { ty' <- cvtType ty
                   ; ki' <- cvtKind ki
                   ; mk_apps (HsKindSig ty' ki') tys'
                   }

           _ -> failWith (ptext (sLit "Malformed type") <+> text (show ty))
    }

mk_apps :: HsType RdrName -> [LHsType RdrName] -> CvtM (LHsType RdrName)
mk_apps head_ty []       = returnL head_ty
mk_apps head_ty (ty:tys) = do { head_ty' <- returnL head_ty
                              ; mk_apps (HsAppTy head_ty' ty) tys }

split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType RdrName])
split_ty_app ty = go ty []
  where
    go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') }
    go f as 	      = return (f,as)

cvtKind :: TH.Kind -> CvtM (LHsKind RdrName)
cvtKind StarK          = returnL (HsTyVar (getRdrName liftedTypeKindTyCon))
cvtKind (ArrowK k1 k2) = do
  k1' <- cvtKind k1
  k2' <- cvtKind k2
  returnL (HsFunTy k1' k2')

cvtMaybeKind :: Maybe TH.Kind -> CvtM (Maybe (LHsKind RdrName))
cvtMaybeKind Nothing = return Nothing
cvtMaybeKind (Just ki) = cvtKind ki >>= return . Just

-----------------------------------------------------------


-----------------------------------------------------------
-- some useful things

overloadedLit :: Lit -> Bool
-- True for literals that Haskell treats as overloaded
overloadedLit (IntegerL  _) = True
overloadedLit (RationalL _) = True
overloadedLit _             = False

void :: Type.Type
void = placeHolderType

cvtFractionalLit :: Rational -> FractionalLit
cvtFractionalLit r = FL { fl_text = show (fromRational r :: Double), fl_value = r }

--------------------------------------------------------------------
--	Turning Name back into RdrName
--------------------------------------------------------------------

-- variable names
vNameL, cNameL, tconNameL :: TH.Name -> CvtM (Located RdrName)
vName,  cName,  tName,  tconName  :: TH.Name -> CvtM RdrName

vNameL n = wrapL (vName n)
vName n = cvtName OccName.varName n

-- Constructor function names; this is Haskell source, hence srcDataName
cNameL n = wrapL (cName n)
cName n = cvtName OccName.dataName n 

-- Type variable names
tName n = cvtName OccName.tvName n

-- Type Constructor names
tconNameL n = wrapL (tconName n)
tconName n = cvtName OccName.tcClsName n

cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
  | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
  | otherwise 		        
  = do { loc <- getL
       ; let rdr_name = thRdrName loc ctxt_ns occ_str flavour 
       ; force rdr_name 
       ; return rdr_name }
  where
    occ_str = TH.occString occ

okOcc :: OccName.NameSpace -> String -> Bool
okOcc _  []      = False
okOcc ns str@(c:_) 
  | OccName.isVarNameSpace ns = startsVarId c || startsVarSym c
  | otherwise 	 	      = startsConId c || startsConSym c || str == "[]"

-- Determine the name space of a name in a type
--
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
  = case TH.occString occ of
      ""    -> False
      (c:_) -> startsVarId c || startsVarSym c

badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ 
  = ptext (sLit "Illegal") <+> pprNameSpace ctxt_ns
	<+> ptext (sLit "name:") <+> quotes (text occ)

thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
-- This turns a TH Name into a RdrName; used for both binders and occurrences
-- See Note [Binders in Template Haskell]
-- The passed-in name space tells what the context is expecting;
--	use it unless the TH name knows what name-space it comes
-- 	from, in which case use the latter
--
-- We pass in a SrcSpan (gotten from the monad) because this function
-- is used for *binders* and if we make an Exact Name we want it
-- to have a binding site inside it.  (cf Trac #5434)
--
-- ToDo: we may generate silly RdrNames, by passing a name space
--       that doesn't match the string, like VarName ":+", 
-- 	 which will give confusing error messages later
-- 
-- The strict applications ensure that any buried exceptions get forced
thRdrName loc ctxt_ns th_occ th_name
  = case th_name of
     TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
     TH.NameQ mod  -> (mkRdrQual  $! mk_mod mod) $! occ
     TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq uniq) $! occ) loc)
     TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq uniq) $! occ) loc)
     TH.NameS | Just name <- isBuiltInOcc ctxt_ns th_occ -> nameRdrName $! name
              | otherwise			         -> mkRdrUnqual $! occ
  where
    occ :: OccName.OccName
    occ = mk_occ ctxt_ns th_occ

thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod = (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! (mk_occ (mk_ghc_ns th_ns) occ)

thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
  -- This special case for NameG ensures that we don't generate duplicates in the output list
  | TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
  | otherwise                         = [ thRdrName noSrcSpan gns occ_str flavour
			                | gns <- guessed_nss]
  where
    -- guessed_ns are the name spaces guessed from looking at the TH name
    guessed_nss | isLexCon (mkFastString occ_str) = [OccName.tcName,  OccName.dataName]
	        | otherwise			  = [OccName.varName, OccName.tvName]
    occ_str = TH.occString occ

isBuiltInOcc :: OccName.NameSpace -> String -> Maybe Name.Name
-- Built in syntax isn't "in scope" so an Unqual RdrName won't do
-- We must generate an Exact name, just as the parser does
isBuiltInOcc ctxt_ns occ
  = case occ of
	":" 		 -> Just (Name.getName consDataCon)
	"[]"		 -> Just (Name.getName nilDataCon)
	"()"		 -> Just (tup_name 0)
	'(' : ',' : rest -> go_tuple 2 rest
	_                -> Nothing
  where
    go_tuple n ")" 	    = Just (tup_name n)
    go_tuple n (',' : rest) = go_tuple (n+1) rest
    go_tuple _ _            = Nothing

    tup_name n 
	| OccName.isTcClsNameSpace ctxt_ns = Name.getName (tupleTyCon BoxedTuple n)
	| otherwise 		           = Name.getName (tupleCon BoxedTuple n)

-- The packing and unpacking is rather turgid :-(
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ

mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName  = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName   = OccName.varName

mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)

mk_pkg :: TH.PkgName -> PackageId
mk_pkg pkg = stringToPackageId (TH.pkgString pkg)

mk_uniq :: Int# -> Unique
mk_uniq u = mkUniqueGrimily (I# u)
\end{code} Note [Binders in Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this TH term construction: do { x1 <- TH.newName "x" -- newName :: String -> Q TH.Name ; x2 <- TH.newName "x" -- Builds a NameU ; x3 <- TH.newName "x" ; let x = mkName "x" -- mkName :: String -> TH.Name -- Builds a NameL ; return (LamE (..pattern [x1,x2]..) $ LamE (VarPat x3) $ ..tuple (x1,x2,x3,x)) } It represents the term \[x1,x2]. \x3. (x1,x2,x3,x) a) We don't want to complain about "x" being bound twice in the pattern [x1,x2] b) We don't want x3 to shadow the x1,x2 c) We *do* want 'x' (dynamically bound with mkName) to bind to the innermost binding of "x", namely x3. d) When pretty printing, we want to print a unique with x1,x2 etc, else they'll all print as "x" which isn't very helpful When we convert all this to HsSyn, the TH.Names are converted with thRdrName. To achieve (b) we want the binders to be Exact RdrNames. Achieving (a) is a bit awkward, because - We must check for duplicate and shadowed names on Names, not RdrNames, *after* renaming. See Note [Collect binders only after renaming] in HsUtils - But to achieve (a) we must distinguish between the Exact RdrNames arising from TH and the Unqual RdrNames that would come from a user writing \[x,x] -> blah So in Convert.thRdrName we translate TH Name RdrName -------------------------------------------------------- NameU (arising from newName) --> Exact (Name{ System }) NameS (arising from mkName) --> Unqual Notice that the NameUs generate *System* Names. Then, when figuring out shadowing and duplicates, we can filter out System Names. This use of System Names fits with other uses of System Names, eg for temporary variables "a". Since there are lots of things called "a" we usually want to print the name with the unique, and that is indeed the way System Names are printed. There's a small complication of course; see Note [Looking up Exact RdrNames] in RnEnv.