The @FamInst@ type: family instance heads \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module FamInst ( 
        checkFamInstConsistency, tcExtendLocalFamInstEnv,
	tcLookupFamInst, tcLookupDataFamInst,
        tcGetFamInstEnvs
    ) where

import HscTypes
import FamInstEnv
import LoadIface
import TypeRep
import TcMType
import TcRnMonad
import TyCon
import Name
import Module
import SrcLoc
import Outputable
import UniqFM
import FastString

import Maybes
import Control.Monad
import Data.Map (Map)
import qualified Data.Map as Map

#include "HsVersions.h"
\end{code} %************************************************************************ %* * Optimised overlap checking for family instances %* * %************************************************************************ For any two family instance modules that we import directly or indirectly, we check whether the instances in the two modules are consistent, *unless* we can be certain that the instances of the two modules have already been checked for consistency during the compilation of modules that we import. Why do we need to check? Consider module X1 where module X2 where data T1 data T2 type instance F T1 b = Int type instance F a T2 = Char f1 :: F T1 a -> Int f2 :: Char -> F a T2 f1 x = x f2 x = x Now if we import both X1 and X2 we could make (f2 . f1) :: Int -> Char. Notice that neither instance is an orphan. How do we know which pairs of modules have already been checked? Any pair of modules where both modules occur in the `HscTypes.dep_finsts' set (of the `HscTypes.Dependencies') of one of our directly imported modules must have already been checked. Everything else, we check now. (So that we can be certain that the modules in our `HscTypes.dep_finsts' are consistent.) \begin{code}
-- The optimisation of overlap tests is based on determining pairs of modules
-- whose family instances need to be checked for consistency.
--
data ModulePair = ModulePair Module Module

-- canonical order of the components of a module pair
--
canon :: ModulePair -> (Module, Module)
canon (ModulePair m1 m2) | m1 < m2   = (m1, m2)
			 | otherwise = (m2, m1)

instance Eq ModulePair where
  mp1 == mp2 = canon mp1 == canon mp2

instance Ord ModulePair where
  mp1 `compare` mp2 = canon mp1 `compare` canon mp2

-- Sets of module pairs
--
type ModulePairSet = Map ModulePair ()

listToSet :: [ModulePair] -> ModulePairSet
listToSet l = Map.fromList (zip l (repeat ()))

checkFamInstConsistency :: [Module] -> [Module] -> TcM ()
checkFamInstConsistency famInstMods directlyImpMods
  = do { dflags     <- getDOpts
       ; (eps, hpt) <- getEpsAndHpt

       ; let { -- Fetch the iface of a given module.  Must succeed as
 	       -- all directly imported modules must already have been loaded.
	       modIface mod = 
	         case lookupIfaceByModule dflags hpt (eps_PIT eps) mod of
                   Nothing    -> panic "FamInst.checkFamInstConsistency"
                   Just iface -> iface

             ; hmiModule     = mi_module . hm_iface
	     ; hmiFamInstEnv = extendFamInstEnvList emptyFamInstEnv 
                               . md_fam_insts . hm_details
             ; hpt_fam_insts = mkModuleEnv [ (hmiModule hmi, hmiFamInstEnv hmi) 
			                   | hmi <- eltsUFM hpt]
	     ; groups        = map (dep_finsts . mi_deps . modIface) 
				   directlyImpMods
	     ; okPairs       = listToSet $ concatMap allPairs groups
	         -- instances of okPairs are consistent
	     ; criticalPairs = listToSet $ allPairs famInstMods
	         -- all pairs that we need to consider
             ; toCheckPairs  = Map.keys $ criticalPairs `Map.difference` okPairs
	         -- the difference gives us the pairs we need to check now
	     }

       ; mapM_ (check hpt_fam_insts) toCheckPairs
       }
  where
    allPairs []     = []
    allPairs (m:ms) = map (ModulePair m) ms ++ allPairs ms

    check hpt_fam_insts (ModulePair m1 m2)
      = do { env1 <- getFamInsts hpt_fam_insts m1
           ; env2 <- getFamInsts hpt_fam_insts m2
           ; mapM_ (checkForConflicts (emptyFamInstEnv, env2))   
                   (famInstEnvElts env1) }

getFamInsts :: ModuleEnv FamInstEnv -> Module -> TcM FamInstEnv
getFamInsts hpt_fam_insts mod
  | Just env <- lookupModuleEnv hpt_fam_insts mod = return env
  | otherwise = do { _ <- initIfaceTcRn (loadSysInterface doc mod)
                   ; eps <- getEps
                   ; return (expectJust "checkFamInstConsistency" $
                             lookupModuleEnv (eps_mod_fam_inst_env eps) mod) }
  where
    doc = ppr mod <+> ptext (sLit "is a family-instance module")
\end{code} %************************************************************************ %* * Lookup %* * %************************************************************************ Look up the instance tycon of a family instance. The match may be ambiguous (as we know that overlapping instances have identical right-hand sides under overlapping substitutions - see 'FamInstEnv.lookupFamInstEnvConflicts'). However, the type arguments used for matching must be equal to or be more specific than those of the family instance declaration. We pick one of the matches in case of ambiguity; as the right-hand sides are identical under the match substitution, the choice does not matter. Return the instance tycon and its type instance. For example, if we have tcLookupFamInst 'T' '[Int]' yields (':R42T', 'Int') then we have a coercion (ie, type instance of family instance coercion) :Co:R42T Int :: T [Int] ~ :R42T Int which implies that :R42T was declared as 'data instance T [a]'. \begin{code}
tcLookupFamInst :: TyCon -> [Type] -> TcM (Maybe (TyCon, [Type]))
tcLookupFamInst tycon tys
  | not (isFamilyTyCon tycon)
  = return Nothing
  | otherwise
  = do { instEnv <- tcGetFamInstEnvs
       ; traceTc "lookupFamInst" ((ppr tycon <+> ppr tys) $$ ppr instEnv)
       ; case lookupFamInstEnv instEnv tycon tys of
	   []                      -> return Nothing
	   ((fam_inst, rep_tys):_) 
             -> return $ Just (famInstTyCon fam_inst, rep_tys)
       }

tcLookupDataFamInst :: TyCon -> [Type] -> TcM (TyCon, [Type])
-- Find the instance of a data family
-- Note [Looking up family instances for deriving]
tcLookupDataFamInst tycon tys
  | not (isFamilyTyCon tycon)
  = return (tycon, tys)
  | otherwise
  = ASSERT( isAlgTyCon tycon )
    do { maybeFamInst <- tcLookupFamInst tycon tys
       ; case maybeFamInst of
           Nothing      -> famInstNotFound tycon tys
           Just famInst -> return famInst }

famInstNotFound :: TyCon -> [Type] -> TcM a
famInstNotFound tycon tys 
  = failWithTc (ptext (sLit "No family instance for")
			<+> quotes (pprTypeApp tycon tys))
\end{code} Note [Looking up family instances for deriving] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcLookupFamInstExact is an auxiliary lookup wrapper which requires that looked-up family instances exist. If called with a vanilla tycon, the old type application is simply returned. If we have data instance F () = ... deriving Eq data instance F () = ... deriving Eq then tcLookupFamInstExact will be confused by the two matches; but that can't happen because tcInstDecls1 doesn't call tcDeriving if there are any overlaps. There are two other things that might go wrong with the lookup. First, we might see a standalone deriving clause deriving Eq (F ()) when there is no data instance F () in scope. Note that it's OK to have data instance F [a] = ... deriving Eq (F [(a,b)]) where the match is not exact; the same holds for ordinary data types with standalone deriving declrations. %************************************************************************ %* * Extending the family instance environment %* * %************************************************************************ \begin{code}
-- Add new locally-defined family instances
tcExtendLocalFamInstEnv :: [FamInst] -> TcM a -> TcM a
tcExtendLocalFamInstEnv fam_insts thing_inside
 = do { env <- getGblEnv
      ; inst_env' <- foldlM addLocalFamInst (tcg_fam_inst_env env) fam_insts
      ; let env' = env { tcg_fam_insts    = fam_insts ++ tcg_fam_insts env,
			 tcg_fam_inst_env = inst_env' }
      ; setGblEnv env' thing_inside 
      }

-- Check that the proposed new instance is OK, 
-- and then add it to the home inst env
addLocalFamInst :: FamInstEnv -> FamInst -> TcM FamInstEnv
addLocalFamInst home_fie famInst = do
        -- Load imported instances, so that we report
        -- overlaps correctly
    eps <- getEps
    let inst_envs = (eps_fam_inst_env eps, home_fie)

        -- Check for conflicting instance decls
    skol_tvs <- tcInstSkolTyVars (tyConTyVars (famInstTyCon famInst))
    let conflicts = lookupFamInstEnvConflicts inst_envs famInst skol_tvs
    -- If there are any conflicts, we should probably error
    -- But, if we're allowed to overwrite and the conflict is in the home FIE,
    -- then overwrite instead of error.
    traceTc "checkForConflicts" (ppr conflicts $$ ppr famInst $$ ppr inst_envs)
    isGHCi <- getIsGHCi
    case conflicts of
        dup : _ ->  case (isGHCi, home_conflicts) of
                        (True, _ : _) -> return (overwriteFamInstEnv home_fie famInst)
                        (_, _)        -> conflictInstErr famInst (fst dup) >> return (extendFamInstEnv home_fie famInst)
                    where home_conflicts = lookupFamInstEnvConflicts' home_fie famInst skol_tvs
        []      ->  return (extendFamInstEnv home_fie famInst)
\end{code} %************************************************************************ %* * Checking an instance against conflicts with an instance env %* * %************************************************************************ Check whether a single family instance conflicts with those in two instance environments (one for the EPS and one for the HPT). \begin{code}
checkForConflicts :: FamInstEnvs -> FamInst -> TcM ()
checkForConflicts inst_envs famInst
  = do { 	-- To instantiate the family instance type, extend the instance
		-- envt with completely fresh template variables
		-- This is important because the template variables must
		-- not overlap with anything in the things being looked up
		-- (since we do unification).  
		-- We use tcInstSkolType because we don't want to allocate
		-- fresh *meta* type variables.  

       ; skol_tvs <- tcInstSkolTyVars (tyConTyVars (famInstTyCon famInst))
       ; let conflicts = lookupFamInstEnvConflicts inst_envs famInst skol_tvs
       ; unless (null conflicts) $
	   conflictInstErr famInst (fst (head conflicts))
       }

conflictInstErr :: FamInst -> FamInst -> TcRn ()
conflictInstErr famInst conflictingFamInst
  = addFamInstLoc famInst $
    addErr (hang (ptext (sLit "Conflicting family instance declarations:"))
	       2 (pprFamInsts [famInst, conflictingFamInst]))

addFamInstLoc :: FamInst -> TcRn a -> TcRn a
addFamInstLoc famInst thing_inside
  = setSrcSpan (mkSrcSpan loc loc) thing_inside
  where
    loc = getSrcLoc famInst

tcGetFamInstEnvs :: TcM FamInstEnvs
-- Gets both the external-package inst-env
-- and the home-pkg inst env (includes module being compiled)
tcGetFamInstEnvs 
  = do { eps <- getEps; env <- getGblEnv
       ; return (eps_fam_inst_env eps, tcg_fam_inst_env env) }
\end{code}