%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
HsTypes: Abstract syntax: user-defined types
\begin{code}
module HsTypes (
HsType(..), LHsType, HsKind, LHsKind,
HsTyVarBndr(..), LHsTyVarBndr,
HsTupleSort(..), HsExplicitFlag(..),
HsContext, LHsContext,
HsQuasiQuote(..),
HsTyWrapper(..),
LBangType, BangType, HsBang(..),
getBangType, getBangStrictness,
ConDeclField(..), pprConDeclFields,
mkExplicitHsForAllTy, mkImplicitHsForAllTy, hsExplicitTvs,
hsTyVarName, hsTyVarNames, replaceTyVarName, replaceLTyVarName,
hsTyVarKind, hsLTyVarKind, hsTyVarNameKind,
hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsLTyVarLocNames,
splitHsInstDeclTy_maybe, splitLHsInstDeclTy_maybe,
splitHsForAllTy, splitLHsForAllTy,
splitHsClassTy_maybe, splitLHsClassTy_maybe,
splitHsFunType,
splitHsAppTys, mkHsAppTys, mkHsOpTy,
pprParendHsType, pprHsForAll, pprHsContext, ppr_hs_context,
) where
import HsExpr ( HsSplice, pprSplice )
import HsLit
import NameSet( FreeVars )
import Type
import HsDoc
import BasicTypes
import SrcLoc
import StaticFlags
import Outputable
import FastString
import Data.Data
\end{code}
%************************************************************************
%* *
Quasi quotes; used in types and elsewhere
%* *
%************************************************************************
\begin{code}
data HsQuasiQuote id = HsQuasiQuote
id
SrcSpan
FastString
deriving (Data, Typeable)
instance OutputableBndr id => Outputable (HsQuasiQuote id) where
ppr = ppr_qq
ppr_qq :: OutputableBndr id => HsQuasiQuote id -> SDoc
ppr_qq (HsQuasiQuote quoter _ quote) =
char '[' <> ppr quoter <> ptext (sLit "|") <>
ppr quote <> ptext (sLit "|]")
\end{code}
%************************************************************************
%* *
\subsection{Bang annotations}
%* *
%************************************************************************
\begin{code}
type LBangType name = Located (BangType name)
type BangType name = HsType name
getBangType :: LHsType a -> LHsType a
getBangType (L _ (HsBangTy _ ty)) = ty
getBangType ty = ty
getBangStrictness :: LHsType a -> HsBang
getBangStrictness (L _ (HsBangTy s _)) = s
getBangStrictness _ = HsNoBang
\end{code}
%************************************************************************
%* *
\subsection{Data types}
%* *
%************************************************************************
This is the syntax for types as seen in type signatures.
\begin{code}
type LHsContext name = Located (HsContext name)
type HsContext name = [LHsType name]
type LHsType name = Located (HsType name)
type HsKind name = HsType name
type LHsKind name = Located (HsKind name)
data HsType name
= HsForAllTy HsExplicitFlag
[LHsTyVarBndr name]
(LHsContext name)
(LHsType name)
| HsTyVar name
| HsAppTy (LHsType name)
(LHsType name)
| HsFunTy (LHsType name)
(LHsType name)
| HsListTy (LHsType name)
| HsPArrTy (LHsType name)
| HsTupleTy HsTupleSort
[LHsType name]
| HsOpTy (LHsType name) (LHsTyOp name) (LHsType name)
| HsParTy (LHsType name)
| HsIParamTy (IPName name)
(LHsType name)
| HsEqTy (LHsType name)
(LHsType name)
| HsKindSig (LHsType name)
(LHsKind name)
| HsQuasiQuoteTy (HsQuasiQuote name)
| HsSpliceTy (HsSplice name)
FreeVars
PostTcKind
| HsDocTy (LHsType name) LHsDocString
| HsBangTy HsBang (LHsType name)
| HsRecTy [ConDeclField name]
| HsCoreTy Type
| HsExplicitListTy
PostTcKind
[LHsType name]
| HsExplicitTupleTy
[PostTcKind]
[LHsType name]
| HsWrapTy HsTyWrapper (HsType name)
deriving (Data, Typeable)
data HsTyWrapper
= WpKiApps [Kind]
deriving (Data, Typeable)
type LHsTyOp name = HsTyOp (Located name)
type HsTyOp name = (HsTyWrapper, name)
mkHsOpTy :: LHsType name -> Located name -> LHsType name -> HsType name
mkHsOpTy ty1 op ty2 = HsOpTy ty1 (WpKiApps [], op) ty2
\end{code}
Note [Promotions (HsTyVar)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsTyVar: A name in a type or kind.
Here are the allowed namespaces for the name.
In a type:
Var: not allowed
Data: promoted data constructor
Tv: type variable
TcCls before renamer: type constructor, class constructor, or promoted data constructor
TcCls after renamer: type constructor or class constructor
In a kind:
Var, Data: not allowed
Tv: kind variable
TcCls: kind constructor or promoted type constructor
Note [Promoted lists and tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice the difference between
HsListTy HsExplicitListTy
HsTupleTy HsExplicitListTupleTy
E.g. f :: [Int] HsListTy
g3 :: T '[] All these use
g2 :: T '[True] HsExplicitListTy
g1 :: T '[True,False]
g1a :: T [True,False] (can omit ' where unambiguous)
kind of T :: [Bool] -> * This kind uses HsListTy!
E.g. h :: (Int,Bool) HsTupleTy; f is a pair
k :: S '(True,False) HsExplicitTypleTy; S is indexed by
a type-level pair of booleans
kind of S :: (Bool,Bool) -> * This kind uses HsExplicitTupleTy
Note [Distinguishing tuple kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Apart from promotion, tuples can have one of three different kinds:
x :: (Int, Bool) -- Regular boxed tuples
f :: Int# -> (# Int#, Int# #) -- Unboxed tuples
g :: (Eq a, Ord a) => a -- Constraint tuples
For convenience, internally we use a single constructor for all of these,
namely HsTupleTy, but keep track of the tuple kind (in the first argument to
HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing,
because of the #. However, with -XConstraintKinds we can only distinguish
between constraint and boxed tuples during type checking, in general. Hence the
four constructors of HsTupleSort:
HsUnboxedTuple -> Produced by the parser
HsBoxedTuple -> Certainly a boxed tuple
HsConstraintTuple -> Certainly a constraint tuple
HsBoxedOrConstraintTuple -> Could be a boxed or a constraint
tuple. Produced by the parser only,
disappears after type checking
\begin{code}
data HsTupleSort = HsUnboxedTuple
| HsBoxedTuple
| HsConstraintTuple
| HsBoxedOrConstraintTuple
deriving (Data, Typeable)
data HsExplicitFlag = Explicit | Implicit deriving (Data, Typeable)
data ConDeclField name
= ConDeclField { cd_fld_name :: Located name,
cd_fld_type :: LBangType name,
cd_fld_doc :: Maybe LHsDocString }
deriving (Data, Typeable)
mkImplicitHsForAllTy :: LHsContext name -> LHsType name -> HsType name
mkExplicitHsForAllTy :: [LHsTyVarBndr name] -> LHsContext name -> LHsType name -> HsType name
mkImplicitHsForAllTy ctxt ty = mkHsForAllTy Implicit [] ctxt ty
mkExplicitHsForAllTy tvs ctxt ty = mkHsForAllTy Explicit tvs ctxt ty
mkHsForAllTy :: HsExplicitFlag -> [LHsTyVarBndr name] -> LHsContext name -> LHsType name -> HsType name
mkHsForAllTy exp tvs (L _ []) ty = mk_forall_ty exp tvs ty
mkHsForAllTy exp tvs ctxt ty = HsForAllTy exp tvs ctxt ty
mk_forall_ty :: HsExplicitFlag -> [LHsTyVarBndr name] -> LHsType name -> HsType name
mk_forall_ty exp tvs (L _ (HsParTy ty)) = mk_forall_ty exp tvs ty
mk_forall_ty exp1 tvs1 (L _ (HsForAllTy exp2 tvs2 ctxt ty)) = mkHsForAllTy (exp1 `plus` exp2) (tvs1 ++ tvs2) ctxt ty
mk_forall_ty exp tvs ty = HsForAllTy exp tvs (noLoc []) ty
plus :: HsExplicitFlag -> HsExplicitFlag -> HsExplicitFlag
Implicit `plus` Implicit = Implicit
_ `plus` _ = Explicit
hsExplicitTvs :: LHsType name -> [name]
hsExplicitTvs (L _ (HsForAllTy Explicit tvs _ _)) = hsLTyVarNames tvs
hsExplicitTvs _ = []
type LHsTyVarBndr name = Located (HsTyVarBndr name)
data HsTyVarBndr name
= UserTyVar
name
PostTcKind
| KindedTyVar
name
(LHsKind name)
PostTcKind
deriving (Data, Typeable)
hsTyVarName :: HsTyVarBndr name -> name
hsTyVarName (UserTyVar n _) = n
hsTyVarName (KindedTyVar n _ _) = n
hsTyVarKind :: HsTyVarBndr name -> Kind
hsTyVarKind (UserTyVar _ k) = k
hsTyVarKind (KindedTyVar _ _ k) = k
hsLTyVarKind :: LHsTyVarBndr name -> Kind
hsLTyVarKind = hsTyVarKind . unLoc
hsTyVarNameKind :: HsTyVarBndr name -> (name, Kind)
hsTyVarNameKind (UserTyVar n k) = (n,k)
hsTyVarNameKind (KindedTyVar n _ k) = (n,k)
hsLTyVarName :: LHsTyVarBndr name -> name
hsLTyVarName = hsTyVarName . unLoc
hsTyVarNames :: [HsTyVarBndr name] -> [name]
hsTyVarNames tvs = map hsTyVarName tvs
hsLTyVarNames :: [LHsTyVarBndr name] -> [name]
hsLTyVarNames = map hsLTyVarName
hsLTyVarLocName :: LHsTyVarBndr name -> Located name
hsLTyVarLocName = fmap hsTyVarName
hsLTyVarLocNames :: [LHsTyVarBndr name] -> [Located name]
hsLTyVarLocNames = map hsLTyVarLocName
replaceTyVarName :: (Monad m) => HsTyVarBndr name1 -> name2
-> (LHsKind name1 -> m (LHsKind name2))
-> m (HsTyVarBndr name2)
replaceTyVarName (UserTyVar _ k) n' _ = return $ UserTyVar n' k
replaceTyVarName (KindedTyVar _ k tck) n' rn = do
k' <- rn k
return $ KindedTyVar n' k' tck
replaceLTyVarName :: (Monad m) => LHsTyVarBndr name1 -> name2
-> (LHsKind name1 -> m (LHsKind name2))
-> m (LHsTyVarBndr name2)
replaceLTyVarName (L loc n1) n2 rn = replaceTyVarName n1 n2 rn >>= return . L loc
\end{code}
\begin{code}
splitHsAppTys :: LHsType n -> [LHsType n] -> (LHsType n, [LHsType n])
splitHsAppTys (L _ (HsAppTy f a)) as = splitHsAppTys f (a:as)
splitHsAppTys f as = (f,as)
mkHsAppTys :: OutputableBndr n => LHsType n -> [LHsType n] -> HsType n
mkHsAppTys fun_ty [] = pprPanic "mkHsAppTys" (ppr fun_ty)
mkHsAppTys fun_ty (arg_ty:arg_tys)
= foldl mk_app (HsAppTy fun_ty arg_ty) arg_tys
where
mk_app fun arg = HsAppTy (noLoc fun) arg
splitHsInstDeclTy_maybe :: HsType name
-> Maybe ([LHsTyVarBndr name], HsContext name, name, [LHsType name])
splitHsInstDeclTy_maybe ty
= fmap (\(tvs, cxt, L _ n, tys) -> (tvs, cxt, n, tys)) $ splitLHsInstDeclTy_maybe (noLoc ty)
splitLHsInstDeclTy_maybe
:: LHsType name
-> Maybe ([LHsTyVarBndr name], HsContext name, Located name, [LHsType name])
splitLHsInstDeclTy_maybe inst_ty = do
let (tvs, cxt, ty) = splitLHsForAllTy inst_ty
(cls, tys) <- splitLHsClassTy_maybe ty
return (tvs, cxt, cls, tys)
splitHsForAllTy :: HsType name -> ([LHsTyVarBndr name], HsContext name, HsType name)
splitHsForAllTy ty = case splitLHsForAllTy (noLoc ty) of (tvs, cxt, L _ ty) -> (tvs, cxt, ty)
splitLHsForAllTy
:: LHsType name
-> ([LHsTyVarBndr name], HsContext name, LHsType name)
splitLHsForAllTy poly_ty
= case unLoc poly_ty of
HsParTy ty -> splitLHsForAllTy ty
HsForAllTy _ tvs cxt ty -> (tvs, unLoc cxt, ty)
_ -> ([], [], poly_ty)
splitHsClassTy_maybe :: HsType name -> Maybe (name, [LHsType name])
splitHsClassTy_maybe ty = fmap (\(L _ n, tys) -> (n, tys)) $ splitLHsClassTy_maybe (noLoc ty)
splitLHsClassTy_maybe :: LHsType name -> Maybe (Located name, [LHsType name])
splitLHsClassTy_maybe ty
= checkl ty []
where
checkl (L l ty) args = case ty of
HsTyVar t -> Just (L l t, args)
HsAppTy l r -> checkl l (r:args)
HsOpTy l (_, tc) r -> checkl (fmap HsTyVar tc) (l:r:args)
HsParTy t -> checkl t args
HsKindSig ty _ -> checkl ty args
_ -> Nothing
splitHsFunType :: LHsType name -> ([LHsType name], LHsType name)
splitHsFunType (L _ (HsFunTy x y)) = (x:args, res)
where
(args, res) = splitHsFunType y
splitHsFunType (L _ (HsParTy ty)) = splitHsFunType ty
splitHsFunType other = ([], other)
\end{code}
%************************************************************************
%* *
\subsection{Pretty printing}
%* *
%************************************************************************
\begin{code}
instance (OutputableBndr name) => Outputable (HsType name) where
ppr ty = pprHsType ty
instance (OutputableBndr name) => Outputable (HsTyVarBndr name) where
ppr (UserTyVar name _) = ppr name
ppr (KindedTyVar name kind _) = parens $ hsep [ppr name, dcolon, ppr kind]
pprHsForAll :: OutputableBndr name => HsExplicitFlag -> [LHsTyVarBndr name] -> LHsContext name -> SDoc
pprHsForAll exp tvs cxt
| show_forall = forall_part <+> pprHsContext (unLoc cxt)
| otherwise = pprHsContext (unLoc cxt)
where
show_forall = opt_PprStyle_Debug
|| (not (null tvs) && is_explicit)
is_explicit = case exp of {Explicit -> True; Implicit -> False}
forall_part = ptext (sLit "forall") <+> interppSP tvs <> dot
pprHsContext :: (OutputableBndr name) => HsContext name -> SDoc
pprHsContext [] = empty
pprHsContext [L _ pred] = ppr pred <+> darrow
pprHsContext cxt = ppr_hs_context cxt <+> darrow
ppr_hs_context :: (OutputableBndr name) => HsContext name -> SDoc
ppr_hs_context [] = empty
ppr_hs_context cxt = parens (interpp'SP cxt)
pprConDeclFields :: OutputableBndr name => [ConDeclField name] -> SDoc
pprConDeclFields fields = braces (sep (punctuate comma (map ppr_fld fields)))
where
ppr_fld (ConDeclField { cd_fld_name = n, cd_fld_type = ty,
cd_fld_doc = doc })
= ppr n <+> dcolon <+> ppr ty <+> ppr_mbDoc doc
\end{code}
Note [Printing KindedTyVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Trac #3830 reminded me that we should really only print the kind
signature on a KindedTyVar if the kind signature was put there by the
programmer. During kind inference GHC now adds a PostTcKind to UserTyVars,
rather than converting to KindedTyVars as before.
(As it happens, the message in #3830 comes out a different way now,
and the problem doesn't show up; but having the flag on a KindedTyVar
seems like the Right Thing anyway.)
\begin{code}
pREC_TOP, pREC_FUN, pREC_OP, pREC_CON :: Int
pREC_TOP = 0
pREC_FUN = 1
pREC_OP = 2
pREC_CON = 3
maybeParen :: Int
-> Int
-> SDoc -> SDoc
maybeParen ctxt_prec op_prec p | ctxt_prec >= op_prec = parens p
| otherwise = p
pprHsType, pprParendHsType :: (OutputableBndr name) => HsType name -> SDoc
pprHsType ty = getPprStyle $ \sty -> ppr_mono_ty pREC_TOP (prepare sty ty)
pprParendHsType ty = ppr_mono_ty pREC_CON ty
prepare :: PprStyle -> HsType name -> HsType name
prepare sty (HsParTy ty) = prepare sty (unLoc ty)
prepare _ ty = ty
ppr_mono_lty :: (OutputableBndr name) => Int -> LHsType name -> SDoc
ppr_mono_lty ctxt_prec ty = ppr_mono_ty ctxt_prec (unLoc ty)
ppr_mono_ty :: (OutputableBndr name) => Int -> HsType name -> SDoc
ppr_mono_ty ctxt_prec (HsForAllTy exp tvs ctxt ty)
= maybeParen ctxt_prec pREC_FUN $
sep [pprHsForAll exp tvs ctxt, ppr_mono_lty pREC_TOP ty]
ppr_mono_ty _ (HsBangTy b ty) = ppr b <> ppr ty
ppr_mono_ty _ (HsQuasiQuoteTy qq) = ppr qq
ppr_mono_ty _ (HsRecTy flds) = pprConDeclFields flds
ppr_mono_ty _ (HsTyVar name) = ppr name
ppr_mono_ty prec (HsFunTy ty1 ty2) = ppr_fun_ty prec ty1 ty2
ppr_mono_ty _ (HsTupleTy con tys) = tupleParens std_con (interpp'SP tys)
where std_con = case con of
HsUnboxedTuple -> UnboxedTuple
_ -> BoxedTuple
ppr_mono_ty _ (HsKindSig ty kind) = parens (ppr_mono_lty pREC_TOP ty <+> dcolon <+> ppr kind)
ppr_mono_ty _ (HsListTy ty) = brackets (ppr_mono_lty pREC_TOP ty)
ppr_mono_ty _ (HsPArrTy ty) = pabrackets (ppr_mono_lty pREC_TOP ty)
ppr_mono_ty prec (HsIParamTy n ty) = maybeParen prec pREC_FUN (ppr n <+> dcolon <+> ppr_mono_lty pREC_TOP ty)
ppr_mono_ty _ (HsSpliceTy s _ _) = pprSplice s
ppr_mono_ty _ (HsCoreTy ty) = ppr ty
ppr_mono_ty _ (HsExplicitListTy _ tys) = quote $ brackets (interpp'SP tys)
ppr_mono_ty _ (HsExplicitTupleTy _ tys) = quote $ parens (interpp'SP tys)
ppr_mono_ty ctxt_prec (HsWrapTy (WpKiApps _kis) ty)
= ppr_mono_ty ctxt_prec ty
ppr_mono_ty ctxt_prec (HsEqTy ty1 ty2)
= maybeParen ctxt_prec pREC_OP $
ppr_mono_lty pREC_OP ty1 <+> char '~' <+> ppr_mono_lty pREC_OP ty2
ppr_mono_ty ctxt_prec (HsAppTy fun_ty arg_ty)
= maybeParen ctxt_prec pREC_CON $
hsep [ppr_mono_lty pREC_FUN fun_ty, ppr_mono_lty pREC_CON arg_ty]
ppr_mono_ty ctxt_prec (HsOpTy ty1 (wrapper, op) ty2)
= maybeParen ctxt_prec pREC_OP $
ppr_mono_lty pREC_OP ty1 <+> ppr_mono_ty pREC_CON (HsWrapTy wrapper (HsTyVar (unLoc op))) <+> ppr_mono_lty pREC_OP ty2
ppr_mono_ty _ (HsParTy ty)
= parens (ppr_mono_lty pREC_TOP ty)
ppr_mono_ty ctxt_prec (HsDocTy ty doc)
= maybeParen ctxt_prec pREC_OP $
ppr_mono_lty pREC_OP ty <+> ppr (unLoc doc)
ppr_fun_ty :: (OutputableBndr name) => Int -> LHsType name -> LHsType name -> SDoc
ppr_fun_ty ctxt_prec ty1 ty2
= let p1 = ppr_mono_lty pREC_FUN ty1
p2 = ppr_mono_lty pREC_TOP ty2
in
maybeParen ctxt_prec pREC_FUN $
sep [p1, ptext (sLit "->") <+> p2]
pabrackets :: SDoc -> SDoc
pabrackets p = ptext (sLit "[:") <> p <> ptext (sLit ":]")
\end{code}