%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Monadic type operations
This module contains monadic operations over types that contain
mutable type variables
\begin{code}
module TcMType (
TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,
newFlexiTyVar,
newFlexiTyVarTy,
newFlexiTyVarTys,
newMetaKindVar, newMetaKindVars,
mkTcTyVarName,
newMetaTyVar, readMetaTyVar, writeMetaTyVar, writeMetaTyVarRef,
isFilledMetaTyVar, isFlexiMetaTyVar,
newEvVar, newEvVars,
newEq, newIP, newDict,
newWantedEvVar, newWantedEvVars,
newTcEvBinds, addTcEvBind,
tcInstTyVars, tcInstSigTyVars,
tcInstType,
tcInstSkolTyVars, tcInstSuperSkolTyVars,
tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX,
tcInstSkolTyVar, tcInstSkolType,
tcSkolDFunType, tcSuperSkolTyVars,
Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType,
expectedKindInCtxt,
checkValidTheta,
checkValidInstHead, checkValidInstance, validDerivPred,
checkInstTermination, checkValidFamInst, checkTyFamFreeness,
arityErr,
growPredTyVars, growThetaTyVars,
zonkType, zonkKind, zonkTcPredType,
zonkTcTypeCarefully, skolemiseUnboundMetaTyVar,
zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkSigTyVar,
zonkQuantifiedTyVar, zonkQuantifiedTyVars,
zonkTcType, zonkTcTypes, zonkTcThetaType,
zonkTcKind, defaultKindVarToStar, zonkCt, zonkCts,
zonkImplication, zonkEvVar, zonkWantedEvVar,
zonkWC, zonkWantedEvVars,
zonkTcTypeAndSubst,
tcGetGlobalTyVars,
compatKindTcM, isSubKindTcM
) where
#include "HsVersions.h"
import TypeRep
import TcType
import Type
import Kind
import Class
import TyCon
import Var
import HsSyn
import TcRnMonad
import IParam
import Id
import FunDeps
import Name
import VarSet
import ErrUtils
import DynFlags
import Util
import Maybes
import ListSetOps
import BasicTypes
import SrcLoc
import Outputable
import FastString
import Unique( Unique )
import Bag
import Control.Monad
import Data.List ( (\\), partition, mapAccumL )
\end{code}
%************************************************************************
%* *
Kind variables
%* *
%************************************************************************
\begin{code}
newMetaKindVar :: TcM TcKind
newMetaKindVar = do { uniq <- newUnique
; ref <- newMutVar Flexi
; return (mkTyVarTy (mkMetaKindVar uniq ref)) }
newMetaKindVars :: Int -> TcM [TcKind]
newMetaKindVars n = mapM (\ _ -> newMetaKindVar) (nOfThem n ())
\end{code}
%************************************************************************
%* *
Evidence variables; range over constraints we can abstract over
%* *
%************************************************************************
\begin{code}
newEvVars :: TcThetaType -> TcM [EvVar]
newEvVars theta = mapM newEvVar theta
newWantedEvVar :: TcPredType -> TcM EvVar
newWantedEvVar = newEvVar
newWantedEvVars :: TcThetaType -> TcM [EvVar]
newWantedEvVars theta = mapM newWantedEvVar theta
newEvVar :: TcPredType -> TcM EvVar
newEvVar ty = do { name <- newName (predTypeOccName ty)
; return (mkLocalId name ty) }
newEq :: TcType -> TcType -> TcM EvVar
newEq ty1 ty2
= do { name <- newName (mkVarOccFS (fsLit "cobox"))
; return (mkLocalId name (mkEqPred (ty1, ty2))) }
newIP :: IPName Name -> TcType -> TcM IpId
newIP ip ty
= do { name <- newName (mkVarOccFS (ipFastString ip))
; return (mkLocalId name (mkIPPred ip ty)) }
newDict :: Class -> [TcType] -> TcM DictId
newDict cls tys
= do { name <- newName (mkDictOcc (getOccName cls))
; return (mkLocalId name (mkClassPred cls tys)) }
predTypeOccName :: PredType -> OccName
predTypeOccName ty = case classifyPredType ty of
ClassPred cls _ -> mkDictOcc (getOccName cls)
IPPred ip _ -> mkVarOccFS (ipFastString ip)
EqPred _ _ -> mkVarOccFS (fsLit "cobox")
TuplePred _ -> mkVarOccFS (fsLit "tup")
IrredPred _ -> mkVarOccFS (fsLit "irred")
\end{code}
%************************************************************************
%* *
SkolemTvs (immutable)
%* *
%************************************************************************
\begin{code}
tcInstType :: ([TyVar] -> TcM [TcTyVar])
-> TcType
-> TcM ([TcTyVar], TcThetaType, TcType)
tcInstType inst_tyvars ty
= case tcSplitForAllTys ty of
([], rho) -> let
(theta, tau) = tcSplitPhiTy rho
in
return ([], theta, tau)
(tyvars, rho) -> do { tyvars' <- inst_tyvars tyvars
; let tenv = zipTopTvSubst tyvars (mkTyVarTys tyvars')
; let (theta, tau) = tcSplitPhiTy (substTy tenv rho)
; return (tyvars', theta, tau) }
tcSkolDFunType :: Type -> TcM ([TcTyVar], TcThetaType, TcType)
tcSkolDFunType ty = tcInstType (\tvs -> return (tcSuperSkolTyVars tvs)) ty
tcSuperSkolTyVars :: [TyVar] -> [TcTyVar]
tcSuperSkolTyVars = snd . mapAccumL tcSuperSkolTyVar (mkTopTvSubst [])
tcSuperSkolTyVar :: TvSubst -> TyVar -> (TvSubst, TcTyVar)
tcSuperSkolTyVar subst tv
= (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv)
where
kind = substTy subst (tyVarKind tv)
new_tv = mkTcTyVar (tyVarName tv) kind superSkolemTv
tcInstSkolTyVar :: Bool -> TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstSkolTyVar overlappable subst tyvar
= do { uniq <- newUnique
; loc <- getSrcSpanM
; let new_name = mkInternalName uniq occ loc
new_tv = mkTcTyVar new_name kind (SkolemTv overlappable)
; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
where
old_name = tyVarName tyvar
occ = nameOccName old_name
kind = substTy subst (tyVarKind tyvar)
tcInstSkolTyVars' :: Bool -> TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVars' isSuperSkol = mapAccumLM (tcInstSkolTyVar isSuperSkol)
tcInstSkolTyVars, tcInstSuperSkolTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSkolTyVars = fmap snd . tcInstSkolTyVars' False (mkTopTvSubst [])
tcInstSuperSkolTyVars = fmap snd . tcInstSkolTyVars' True (mkTopTvSubst [])
tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX
:: TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVarsX subst = tcInstSkolTyVars' False subst
tcInstSuperSkolTyVarsX subst = tcInstSkolTyVars' True subst
tcInstSkolType :: TcType -> TcM ([TcTyVar], TcThetaType, TcType)
tcInstSkolType ty = tcInstType tcInstSkolTyVars ty
tcInstSigTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSigTyVars = fmap snd . mapAccumLM tcInstSigTyVar (mkTopTvSubst [])
tcInstSigTyVar :: TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstSigTyVar subst tv
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name = setNameUnique (tyVarName tv) uniq
kind = substTy subst (tyVarKind tv)
new_tv = mkTcTyVar name kind (MetaTv SigTv ref)
; return (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv) }
\end{code}
Note [Kind substitution when instantiating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we instantiate a bunch of kind and type variables, first we
expect them to be sorted (kind variables first, then type variables).
Then we have to instantiate the kind variables, build a substitution
from old variables to the new variables, then instantiate the type
variables substituting the original kind.
Exemple: If we want to instantiate
[(k1 :: BOX), (k2 :: BOX), (a :: k1 -> k2), (b :: k1)]
we want
[(?k1 :: BOX), (?k2 :: BOX), (?a :: ?k1 -> ?k2), (?b :: ?k1)]
instead of the buggous
[(?k1 :: BOX), (?k2 :: BOX), (?a :: k1 -> k2), (?b :: k1)]
%************************************************************************
%* *
MetaTvs (meta type variables; mutable)
%* *
%************************************************************************
\begin{code}
newMetaTyVar :: MetaInfo -> Kind -> TcM TcTyVar
newMetaTyVar meta_info kind
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name = mkTcTyVarName uniq s
s = case meta_info of
TauTv -> fsLit "t"
TcsTv -> fsLit "u"
SigTv -> fsLit "a"
; return (mkTcTyVar name kind (MetaTv meta_info ref)) }
mkTcTyVarName :: Unique -> FastString -> Name
mkTcTyVarName uniq str = mkSysTvName uniq str
readMetaTyVar :: TyVar -> TcM MetaDetails
readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
readMutVar (metaTvRef tyvar)
isFilledMetaTyVar :: TyVar -> TcM Bool
isFilledMetaTyVar tv
| not (isTcTyVar tv) = return False
| MetaTv _ ref <- tcTyVarDetails tv
= do { details <- readMutVar ref
; return (isIndirect details) }
| otherwise = return False
isFlexiMetaTyVar :: TyVar -> TcM Bool
isFlexiMetaTyVar tv
| not (isTcTyVar tv) = return False
| MetaTv _ ref <- tcTyVarDetails tv
= do { details <- readMutVar ref
; return (isFlexi details) }
| otherwise = return False
writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
writeMetaTyVar tyvar ty
| not debugIsOn
= writeMetaTyVarRef tyvar (metaTvRef tyvar) ty
| not (isTcTyVar tyvar)
= WARN( True, text "Writing to non-tc tyvar" <+> ppr tyvar )
return ()
| MetaTv _ ref <- tcTyVarDetails tyvar
= writeMetaTyVarRef tyvar ref ty
| otherwise
= WARN( True, text "Writing to non-meta tyvar" <+> ppr tyvar )
return ()
writeMetaTyVarRef :: TcTyVar -> TcRef MetaDetails -> TcType -> TcM ()
writeMetaTyVarRef tyvar ref ty
| not debugIsOn
= do { traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
; writeMutVar ref (Indirect ty) }
| otherwise
= do { meta_details <- readMutVar ref;
; zonked_tv_kind <- zonkTcKind tv_kind
; zonked_ty_kind <- zonkTcKind ty_kind
; ASSERT2( isFlexi meta_details,
hang (text "Double update of meta tyvar")
2 (ppr tyvar $$ ppr meta_details) )
traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
; writeMutVar ref (Indirect ty)
; when ( not (isPredTy tv_kind)
&& not (zonked_ty_kind `isSubKind` zonked_tv_kind))
$ WARN( True, hang (text "Ill-kinded update to meta tyvar")
2 ( ppr tyvar <+> text "::" <+> ppr tv_kind
<+> text ":="
<+> ppr ty <+> text "::" <+> ppr ty_kind) )
(return ()) }
where
tv_kind = tyVarKind tyvar
ty_kind = typeKind ty
\end{code}
%************************************************************************
%* *
MetaTvs: TauTvs
%* *
%************************************************************************
\begin{code}
newFlexiTyVar :: Kind -> TcM TcTyVar
newFlexiTyVar kind = newMetaTyVar TauTv kind
newFlexiTyVarTy :: Kind -> TcM TcType
newFlexiTyVarTy kind = do
tc_tyvar <- newFlexiTyVar kind
return (TyVarTy tc_tyvar)
newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
newFlexiTyVarTys n kind = mapM newFlexiTyVarTy (nOfThem n kind)
tcInstTyVars :: [TyVar] -> TcM ([TcTyVar], [TcType], TvSubst)
tcInstTyVars tyvars = tcInstTyVarsX emptyTvSubst tyvars
tcInstTyVarsX :: TvSubst -> [TyVar] -> TcM ([TcTyVar], [TcType], TvSubst)
tcInstTyVarsX subst tyvars =
do { (subst', tyvars') <- mapAccumLM tcInstTyVar subst tyvars
; return (tyvars', mkTyVarTys tyvars', subst') }
tcInstTyVar :: TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstTyVar subst tyvar
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name = mkSystemName uniq (getOccName tyvar)
kind = substTy subst (tyVarKind tyvar)
new_tv = mkTcTyVar name kind (MetaTv TauTv ref)
; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
\end{code}
%************************************************************************
%* *
MetaTvs: SigTvs
%* *
%************************************************************************
\begin{code}
zonkSigTyVar :: TcTyVar -> TcM TcTyVar
zonkSigTyVar sig_tv
| isSkolemTyVar sig_tv
= return sig_tv
| otherwise
= ASSERT( isSigTyVar sig_tv )
do { ty <- zonkTcTyVar sig_tv
; return (tcGetTyVar "zonkSigTyVar" ty) }
\end{code}
%************************************************************************
%* *
\subsection{Zonking -- the exernal interfaces}
%* *
%************************************************************************
@tcGetGlobalTyVars@ returns a fully-zonked set of tyvars free in the environment.
To improve subsequent calls to the same function it writes the zonked set back into
the environment.
\begin{code}
tcGetGlobalTyVars :: TcM TcTyVarSet
tcGetGlobalTyVars
= do { (TcLclEnv {tcl_tyvars = gtv_var}) <- getLclEnv
; gbl_tvs <- readMutVar gtv_var
; gbl_tvs' <- zonkTcTyVarsAndFV gbl_tvs
; writeMutVar gtv_var gbl_tvs'
; return gbl_tvs' }
\end{code}
----------------- Type variables
\begin{code}
zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
zonkTcTyVars tyvars = mapM zonkTcTyVar tyvars
zonkTcTyVarsAndFV :: TcTyVarSet -> TcM TcTyVarSet
zonkTcTyVarsAndFV tyvars = tyVarsOfTypes <$> mapM zonkTcTyVar (varSetElems tyvars)
zonkTcTypeCarefully :: TcType -> TcM TcType
zonkTcTypeCarefully ty = zonkTcType ty
zonkTcType :: TcType -> TcM TcType
zonkTcType ty = zonkType zonkTcTyVar ty
zonkTcTyVar :: TcTyVar -> TcM TcType
zonkTcTyVar tv
= ASSERT2( isTcTyVar tv, ppr tv ) do
case tcTyVarDetails tv of
SkolemTv {} -> zonk_kind_and_return
RuntimeUnk {} -> zonk_kind_and_return
FlatSkol ty -> zonkTcType ty
MetaTv _ ref -> do { cts <- readMutVar ref
; case cts of
Flexi -> zonk_kind_and_return
Indirect ty -> zonkTcType ty }
where
zonk_kind_and_return = do { z_tv <- zonkTyVarKind tv
; return (TyVarTy z_tv) }
zonkTyVarKind :: TyVar -> TcM TyVar
zonkTyVarKind tv = do { kind' <- zonkTcKind (tyVarKind tv)
; return (setTyVarKind tv kind') }
zonkTcTypeAndSubst :: TvSubst -> TcType -> TcM TcType
zonkTcTypeAndSubst subst ty = zonkType zonk_tv ty
where
zonk_tv tv
= do { z_tv <- updateTyVarKindM zonkTcKind tv
; case tcTyVarDetails tv of
SkolemTv {} -> return (TyVarTy z_tv)
RuntimeUnk {} -> return (TyVarTy z_tv)
FlatSkol ty -> zonkType zonk_tv ty
MetaTv _ ref -> do { cts <- readMutVar ref
; case cts of
Flexi -> zonk_flexi z_tv
Indirect ty -> zonkType zonk_tv ty } }
zonk_flexi tv
= case lookupTyVar subst tv of
Just ty -> zonkType zonk_tv ty
Nothing -> return (TyVarTy tv)
zonkTcTypes :: [TcType] -> TcM [TcType]
zonkTcTypes tys = mapM zonkTcType tys
zonkTcThetaType :: TcThetaType -> TcM TcThetaType
zonkTcThetaType theta = mapM zonkTcPredType theta
zonkTcPredType :: TcPredType -> TcM TcPredType
zonkTcPredType = zonkTcType
\end{code}
------------------- These ...ToType, ...ToKind versions
are used at the end of type checking
\begin{code}
defaultKindVarToStar :: TcTyVar -> TcM Kind
defaultKindVarToStar kv
= do { ASSERT ( isKiVar kv && isMetaTyVar kv )
writeMetaTyVar kv liftedTypeKind
; return liftedTypeKind }
zonkQuantifiedTyVars :: TcTyVarSet -> TcM [TcTyVar]
zonkQuantifiedTyVars tyvars
= do { let (kvs, tvs) = partitionKiTyVars (varSetElems tyvars)
; poly_kinds <- xoptM Opt_PolyKinds
; if poly_kinds then
mapM zonkQuantifiedTyVar (kvs ++ tvs)
else
do { let (meta_kvs, skolem_kvs) = partition isMetaTyVar kvs
; WARN ( not (null skolem_kvs), ppr skolem_kvs )
mapM_ defaultKindVarToStar meta_kvs
; mapM zonkQuantifiedTyVar (skolem_kvs ++ tvs) } }
zonkQuantifiedTyVar :: TcTyVar -> TcM TcTyVar
zonkQuantifiedTyVar tv
= ASSERT2( isTcTyVar tv, ppr tv )
case tcTyVarDetails tv of
SkolemTv {} -> do { kind <- zonkTcKind (tyVarKind tv)
; return $ setTyVarKind tv kind }
MetaTv _ ref ->
do when debugIsOn $ do
cts <- readMutVar ref
case cts of
Flexi -> return ()
Indirect ty -> WARN( True, ppr tv $$ ppr ty )
return ()
skolemiseUnboundMetaTyVar tv vanillaSkolemTv
_other -> pprPanic "zonkQuantifiedTyVar" (ppr tv)
skolemiseUnboundMetaTyVar :: TcTyVar -> TcTyVarDetails -> TcM TyVar
skolemiseUnboundMetaTyVar tv details
= ASSERT2( isMetaTyVar tv, ppr tv )
do { span <- getSrcSpanM
; uniq <- newUnique
; kind <- zonkTcKind (tyVarKind tv)
; let final_kind = defaultKind kind
final_name = mkInternalName uniq (getOccName tv) span
final_tv = mkTcTyVar final_name final_kind details
; writeMetaTyVar tv (mkTyVarTy final_tv)
; return final_tv }
\end{code}
\begin{code}
zonkImplication :: Implication -> TcM Implication
zonkImplication implic@(Implic { ic_given = given
, ic_wanted = wanted
, ic_loc = loc })
= do {
; given' <- mapM zonkEvVar given
; loc' <- zonkGivenLoc loc
; wanted' <- zonkWC wanted
; return (implic { ic_given = given'
, ic_wanted = wanted'
, ic_loc = loc' }) }
zonkEvVar :: EvVar -> TcM EvVar
zonkEvVar var = do { ty' <- zonkTcType (varType var)
; return (setVarType var ty') }
zonkWC :: WantedConstraints -> TcM WantedConstraints
zonkWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
= do { flat' <- mapBagM zonkCt flat
; implic' <- mapBagM zonkImplication implic
; insol' <- mapBagM zonkCt insol
; return (WC { wc_flat = flat', wc_impl = implic', wc_insol = insol' }) }
zonkCt :: Ct -> TcM Ct
zonkCt ct
= do { v' <- zonkEvVar (cc_id ct)
; fl' <- zonkFlavor (cc_flavor ct)
; return $
CNonCanonical { cc_id = v'
, cc_flavor = fl'
, cc_depth = cc_depth ct } }
zonkCts :: Cts -> TcM Cts
zonkCts = mapBagM zonkCt
zonkWantedEvVars :: Bag WantedEvVar -> TcM (Bag WantedEvVar)
zonkWantedEvVars = mapBagM zonkWantedEvVar
zonkWantedEvVar :: WantedEvVar -> TcM WantedEvVar
zonkWantedEvVar (EvVarX v l) = do { v' <- zonkEvVar v; return (EvVarX v' l) }
zonkFlavor :: CtFlavor -> TcM CtFlavor
zonkFlavor (Given loc gk) = do { loc' <- zonkGivenLoc loc; return (Given loc' gk) }
zonkFlavor fl = return fl
zonkGivenLoc :: GivenLoc -> TcM GivenLoc
zonkGivenLoc (CtLoc skol_info span ctxt)
= do { skol_info' <- zonkSkolemInfo skol_info
; return (CtLoc skol_info' span ctxt) }
zonkSkolemInfo :: SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo (SigSkol cx ty) = do { ty' <- zonkTcType ty
; return (SigSkol cx ty') }
zonkSkolemInfo (InferSkol ntys) = do { ntys' <- mapM do_one ntys
; return (InferSkol ntys') }
where
do_one (n, ty) = do { ty' <- zonkTcType ty; return (n, ty') }
zonkSkolemInfo skol_info = return skol_info
\end{code}
Note [Silly Type Synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
type C u a = u -- Note 'a' unused
foo :: (forall a. C u a -> C u a) -> u
foo x = ...
bar :: Num u => u
bar = foo (\t -> t + t)
* From the (\t -> t+t) we get type {Num d} => d -> d
where d is fresh.
* Now unify with type of foo's arg, and we get:
{Num (C d a)} => C d a -> C d a
where a is fresh.
* Now abstract over the 'a', but float out the Num (C d a) constraint
because it does not 'really' mention a. (see exactTyVarsOfType)
The arg to foo becomes
\/\a -> \t -> t+t
* So we get a dict binding for Num (C d a), which is zonked to give
a = ()
[Note Sept 04: now that we are zonking quantified type variables
on construction, the 'a' will be frozen as a regular tyvar on
quantification, so the floated dict will still have type (C d a).
Which renders this whole note moot; happily!]
* Then the \/\a abstraction has a zonked 'a' in it.
All very silly. I think its harmless to ignore the problem. We'll end up with
a \/\a in the final result but all the occurrences of a will be zonked to ()
Note [Zonking to Skolem]
~~~~~~~~~~~~~~~~~~~~~~~~
We used to zonk quantified type variables to regular TyVars. However, this
leads to problems. Consider this program from the regression test suite:
eval :: Int -> String -> String -> String
eval 0 root actual = evalRHS 0 root actual
evalRHS :: Int -> a
evalRHS 0 root actual = eval 0 root actual
It leads to the deferral of an equality (wrapped in an implication constraint)
forall a. () => ((String -> String -> String) ~ a)
which is propagated up to the toplevel (see TcSimplify.tcSimplifyInferCheck).
In the meantime `a' is zonked and quantified to form `evalRHS's signature.
This has the *side effect* of also zonking the `a' in the deferred equality
(which at this point is being handed around wrapped in an implication
constraint).
Finally, the equality (with the zonked `a') will be handed back to the
simplifier by TcRnDriver.tcRnSrcDecls calling TcSimplify.tcSimplifyTop.
If we zonk `a' with a regular type variable, we will have this regular type
variable now floating around in the simplifier, which in many places assumes to
only see proper TcTyVars.
We can avoid this problem by zonking with a skolem. The skolem is rigid
(which we require for a quantified variable), but is still a TcTyVar that the
simplifier knows how to deal with.
%************************************************************************
%* *
\subsection{Zonking -- the main work-horses: zonkType, zonkTyVar}
%* *
%* For internal use only! *
%* *
%************************************************************************
\begin{code}
zonkKind :: (TcTyVar -> TcM Kind) -> TcKind -> TcM Kind
zonkKind = zonkType
zonkType :: (TcTyVar -> TcM Type)
-> TcType -> TcM Type
zonkType zonk_tc_tyvar ty
= go ty
where
go (TyConApp tc tys) = do tys' <- mapM go tys
return (TyConApp tc tys')
go (FunTy arg res) = do arg' <- go arg
res' <- go res
return (FunTy arg' res')
go (AppTy fun arg) = do fun' <- go fun
arg' <- go arg
return (mkAppTy fun' arg')
go (TyVarTy tyvar) | isTcTyVar tyvar = zonk_tc_tyvar tyvar
| otherwise = TyVarTy <$> updateTyVarKindM zonkTcKind tyvar
go (ForAllTy tyvar ty) = ASSERT( isImmutableTyVar tyvar ) do
ty' <- go ty
tyvar' <- updateTyVarKindM zonkTcKind tyvar
return (ForAllTy tyvar' ty')
\end{code}
%************************************************************************
%* *
Zonking kinds
%* *
%************************************************************************
\begin{code}
compatKindTcM :: Kind -> Kind -> TcM Bool
compatKindTcM k1 k2
= do { k1' <- zonkTcKind k1
; k2' <- zonkTcKind k2
; return $ k1' `isSubKind` k2' || k2' `isSubKind` k1' }
isSubKindTcM :: Kind -> Kind -> TcM Bool
isSubKindTcM k1 k2
= do { k1' <- zonkTcKind k1
; k2' <- zonkTcKind k2
; return $ k1' `isSubKind` k2' }
zonkTcKind :: TcKind -> TcM TcKind
zonkTcKind k = zonkTcType k
\end{code}
%************************************************************************
%* *
\subsection{Checking a user type}
%* *
%************************************************************************
When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should
be true about it. We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet. Also, the checks are are rather
diverse, and used to really mess up the other code.
One thing we check for is 'rank'.
Rank 0: monotypes (no foralls)
Rank 1: foralls at the front only, Rank 0 inside
Rank 2: foralls at the front, Rank 1 on left of fn arrow,
basic ::= tyvar | T basic ... basic
r2 ::= forall tvs. cxt => r2a
r2a ::= r1 -> r2a | basic
r1 ::= forall tvs. cxt => r0
r0 ::= r0 -> r0 | basic
Another thing is to check that type synonyms are saturated.
This might not necessarily show up in kind checking.
type A i = i
data T k = MkT (k Int)
f :: T A -- BAD!
\begin{code}
expectedKindInCtxt :: UserTypeCtxt -> Maybe Kind
expectedKindInCtxt (TySynCtxt _) = Nothing
expectedKindInCtxt ThBrackCtxt = Nothing
expectedKindInCtxt GhciCtxt = Nothing
expectedKindInCtxt ResSigCtxt = Just openTypeKind
expectedKindInCtxt ExprSigCtxt = Just openTypeKind
expectedKindInCtxt (ForSigCtxt _) = Just liftedTypeKind
expectedKindInCtxt _ = Just argTypeKind
checkValidType :: UserTypeCtxt -> Type -> TcM ()
checkValidType ctxt ty = do
traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (typeKind ty))
unboxed <- xoptM Opt_UnboxedTuples
rank2 <- xoptM Opt_Rank2Types
rankn <- xoptM Opt_RankNTypes
polycomp <- xoptM Opt_PolymorphicComponents
constraintKinds <- xoptM Opt_ConstraintKinds
let
gen_rank n | rankn = ArbitraryRank
| rank2 = Rank 2
| otherwise = Rank n
rank
= case ctxt of
DefaultDeclCtxt-> MustBeMonoType
ResSigCtxt -> MustBeMonoType
LamPatSigCtxt -> gen_rank 0
BindPatSigCtxt -> gen_rank 0
TySynCtxt _ -> gen_rank 0
ExprSigCtxt -> gen_rank 1
FunSigCtxt _ -> gen_rank 1
InfSigCtxt _ -> ArbitraryRank
ConArgCtxt _ | polycomp -> gen_rank 2
| otherwise -> gen_rank 1
ForSigCtxt _ -> gen_rank 1
SpecInstCtxt -> gen_rank 1
ThBrackCtxt -> gen_rank 1
GhciCtxt -> ArbitraryRank
_ -> panic "checkValidType"
actual_kind = typeKind ty
kind_ok = case expectedKindInCtxt ctxt of
Nothing -> True
Just k -> tcIsSubKind actual_kind k
ubx_tup
| not unboxed = UT_NotOk
| otherwise = case ctxt of
TySynCtxt _ -> UT_Ok
ExprSigCtxt -> UT_Ok
ThBrackCtxt -> UT_Ok
GhciCtxt -> UT_Ok
_ -> UT_NotOk
check_type rank ubx_tup ty
checkTc kind_ok (kindErr actual_kind)
unless constraintKinds
$ checkTc (not (isConstraintKind actual_kind)) (predTupleErr ty)
checkValidMonoType :: Type -> TcM ()
checkValidMonoType ty = check_mono_type MustBeMonoType ty
\end{code}
\begin{code}
data Rank = ArbitraryRank
| MustBeMonoType
| TyConArgMonoType
| SynArgMonoType
| Rank Int
decRank :: Rank -> Rank
decRank (Rank 0) = Rank 0
decRank (Rank n) = Rank (n1)
decRank other_rank = other_rank
nonZeroRank :: Rank -> Bool
nonZeroRank ArbitraryRank = True
nonZeroRank (Rank n) = n>0
nonZeroRank _ = False
data UbxTupFlag = UT_Ok | UT_NotOk
check_mono_type :: Rank -> KindOrType -> TcM ()
check_mono_type rank ty
| isKind ty = return ()
| otherwise
= do { check_type rank UT_NotOk ty
; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
check_type :: Rank -> UbxTupFlag -> Type -> TcM ()
check_type rank ubx_tup ty
| not (null tvs && null theta)
= do { checkTc (nonZeroRank rank) (forAllTyErr rank ty)
; check_valid_theta SigmaCtxt theta
; check_type rank ubx_tup tau
; checkAmbiguity tvs theta (tyVarsOfType tau) }
where
(tvs, theta, tau) = tcSplitSigmaTy ty
check_type _ _ (TyVarTy _) = return ()
check_type rank _ (FunTy arg_ty res_ty)
= do { check_type (decRank rank) UT_NotOk arg_ty
; check_type rank UT_Ok res_ty }
check_type rank _ (AppTy ty1 ty2)
= do { check_arg_type rank ty1
; check_arg_type rank ty2 }
check_type rank ubx_tup ty@(TyConApp tc tys)
| isSynTyCon tc
= do {
checkTc (tyConArity tc <= length tys) arity_msg
; liberal <- xoptM Opt_LiberalTypeSynonyms
; if not liberal || isSynFamilyTyCon tc then
mapM_ (check_mono_type SynArgMonoType) tys
else
case tcView ty of
Just ty' -> check_type rank ubx_tup ty'
Nothing -> pprPanic "check_tau_type" (ppr ty)
}
| isUnboxedTupleTyCon tc
= do { ub_tuples_allowed <- xoptM Opt_UnboxedTuples
; checkTc (ubx_tup_ok ub_tuples_allowed) ubx_tup_msg
; impred <- xoptM Opt_ImpredicativeTypes
; let rank' = if impred then ArbitraryRank else TyConArgMonoType
; mapM_ (check_type rank' UT_Ok) tys }
| otherwise
= mapM_ (check_arg_type rank) tys
where
ubx_tup_ok ub_tuples_allowed = case ubx_tup of
UT_Ok -> ub_tuples_allowed
_ -> False
n_args = length tys
tc_arity = tyConArity tc
arity_msg = arityErr "Type synonym" (tyConName tc) tc_arity n_args
ubx_tup_msg = ubxArgTyErr ty
check_type _ _ ty = pprPanic "check_type" (ppr ty)
check_arg_type :: Rank -> KindOrType -> TcM ()
check_arg_type rank ty
| isKind ty = return ()
| otherwise
= do { impred <- xoptM Opt_ImpredicativeTypes
; let rank' = case rank of
MustBeMonoType -> MustBeMonoType
_other | impred -> ArbitraryRank
| otherwise -> TyConArgMonoType
; check_type rank' UT_NotOk ty
; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
forAllTyErr :: Rank -> Type -> SDoc
forAllTyErr rank ty
= vcat [ hang (ptext (sLit "Illegal polymorphic or qualified type:")) 2 (ppr ty)
, suggestion ]
where
suggestion = case rank of
Rank _ -> ptext (sLit "Perhaps you intended to use -XRankNTypes or -XRank2Types")
TyConArgMonoType -> ptext (sLit "Perhaps you intended to use -XImpredicativeTypes")
SynArgMonoType -> ptext (sLit "Perhaps you intended to use -XLiberalTypeSynonyms")
_ -> empty
unliftedArgErr, ubxArgTyErr :: Type -> SDoc
unliftedArgErr ty = sep [ptext (sLit "Illegal unlifted type:"), ppr ty]
ubxArgTyErr ty = sep [ptext (sLit "Illegal unboxed tuple type as function argument:"), ppr ty]
kindErr :: Kind -> SDoc
kindErr kind = sep [ptext (sLit "Expecting an ordinary type, but found a type of kind"), ppr kind]
\end{code}
Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking. This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
e.g. type T a b = a
type S m = m ()
f :: S (T Int)
Here, T is partially applied, so it's illegal in H98. But if you
expand S first, then T we get just
f :: Int
which is fine.
IMPORTANT: suppose T is a type synonym. Then we must do validity
checking on an appliation (T ty1 ty2)
*either* before expansion (i.e. check ty1, ty2)
*or* after expansion (i.e. expand T ty1 ty2, and then check)
BUT NOT BOTH
If we do both, we get exponential behaviour!!
data TIACons1 i r c = c i ::: r c
type TIACons2 t x = TIACons1 t (TIACons1 t x)
type TIACons3 t x = TIACons2 t (TIACons1 t x)
type TIACons4 t x = TIACons2 t (TIACons2 t x)
type TIACons7 t x = TIACons4 t (TIACons3 t x)
%************************************************************************
%* *
\subsection{Checking a theta or source type}
%* *
%************************************************************************
\begin{code}
checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM ()
checkValidTheta ctxt theta
= addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)
check_valid_theta :: UserTypeCtxt -> [PredType] -> TcM ()
check_valid_theta _ []
= return ()
check_valid_theta ctxt theta = do
dflags <- getDOpts
warnTc (notNull dups) (dupPredWarn dups)
mapM_ (check_pred_ty dflags ctxt) theta
where
(_,dups) = removeDups cmpPred theta
check_pred_ty :: DynFlags -> UserTypeCtxt -> PredType -> TcM ()
check_pred_ty dflags ctxt pred = check_pred_ty' dflags ctxt (shallowPredTypePredTree pred)
check_pred_ty' :: DynFlags -> UserTypeCtxt -> PredTree -> TcM ()
check_pred_ty' dflags ctxt (ClassPred cls tys)
= do {
; checkTc (arity == n_tys) arity_err
; mapM_ checkValidMonoType tys
; checkTc (check_class_pred_tys dflags ctxt tys)
(predTyVarErr (mkClassPred cls tys) $$ how_to_allow)
}
where
class_name = className cls
arity = classArity cls
n_tys = length tys
arity_err = arityErr "Class" class_name arity n_tys
how_to_allow = parens (ptext (sLit "Use -XFlexibleContexts to permit this"))
check_pred_ty' dflags _ctxt (EqPred ty1 ty2)
= do {
; checkTc (xopt Opt_TypeFamilies dflags || xopt Opt_GADTs dflags)
(eqPredTyErr (mkEqPred (ty1, ty2)))
; checkValidMonoType ty1
; checkValidMonoType ty2
}
check_pred_ty' _ _ctxt (IPPred _ ty) = checkValidMonoType ty
check_pred_ty' dflags ctxt t@(TuplePred ts)
= do { checkTc (xopt Opt_ConstraintKinds dflags)
(predTupleErr (predTreePredType t))
; mapM_ (check_pred_ty dflags ctxt) ts }
check_pred_ty' dflags ctxt (IrredPred pred)
= do checkTc (xopt Opt_ConstraintKinds dflags)
(predIrredErr pred)
case tcView pred of
Just pred' ->
check_pred_ty dflags ctxt pred'
Nothing
| xopt Opt_UndecidableInstances dflags -> return ()
| otherwise -> do
checkTc (case ctxt of ClassSCCtxt _ -> False; InstDeclCtxt -> False; _ -> True)
(predIrredBadCtxtErr pred)
check_class_pred_tys :: DynFlags -> UserTypeCtxt -> [KindOrType] -> Bool
check_class_pred_tys dflags ctxt kts
= case ctxt of
SpecInstCtxt -> True
InstDeclCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys
_ -> flexible_contexts || all tyvar_head tys
where
(_, tys) = span isKind kts
flexible_contexts = xopt Opt_FlexibleContexts dflags
undecidable_ok = xopt Opt_UndecidableInstances dflags
tyvar_head :: Type -> Bool
tyvar_head ty
| tcIsTyVarTy ty = True
| otherwise
= case tcSplitAppTy_maybe ty of
Just (ty, _) -> tyvar_head ty
Nothing -> False
\end{code}
Check for ambiguity
~~~~~~~~~~~~~~~~~~~
forall V. P => tau
is ambiguous if P contains generic variables
(i.e. one of the Vs) that are not mentioned in tau
However, we need to take account of functional dependencies
when we speak of 'mentioned in tau'. Example:
class C a b | a -> b where ...
Then the type
forall x y. (C x y) => x
is not ambiguous because x is mentioned and x determines y
NB; the ambiguity check is only used for *user* types, not for types
coming from inteface files. The latter can legitimately have
ambiguous types. Example
class S a where s :: a -> (Int,Int)
instance S Char where s _ = (1,1)
f:: S a => [a] -> Int -> (Int,Int)
f (_::[a]) x = (a*x,b)
where (a,b) = s (undefined::a)
Here the worker for f gets the type
fw :: forall a. S a => Int -> (# Int, Int #)
If the list of tv_names is empty, we have a monotype, and then we
don't need to check for ambiguity either, because the test can't fail
(see is_ambig).
In addition, GHC insists that at least one type variable
in each constraint is in V. So we disallow a type like
forall a. Eq b => b -> b
even in a scope where b is in scope.
\begin{code}
checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
checkAmbiguity forall_tyvars theta tau_tyvars
= mapM_ complain (filter is_ambig theta)
where
complain pred = addErrTc (ambigErr pred)
extended_tau_vars = growThetaTyVars theta tau_tyvars
is_ambig pred = isClassPred pred &&
any ambig_var (varSetElems (tyVarsOfType pred))
ambig_var ct_var = (ct_var `elem` forall_tyvars) &&
not (ct_var `elemVarSet` extended_tau_vars)
ambigErr :: PredType -> SDoc
ambigErr pred
= sep [ptext (sLit "Ambiguous constraint") <+> quotes (pprType pred),
nest 2 (ptext (sLit "At least one of the forall'd type variables mentioned by the constraint") $$
ptext (sLit "must be reachable from the type after the '=>'"))]
\end{code}
Note [Growing the tau-tvs using constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(growInstsTyVars insts tvs) is the result of extending the set
of tyvars tvs using all conceivable links from pred
E.g. tvs = {a}, preds = {H [a] b, K (b,Int) c, Eq e}
Then grow precs tvs = {a,b,c}
\begin{code}
growThetaTyVars :: TcThetaType -> TyVarSet -> TyVarSet
growThetaTyVars theta tvs
| null theta = tvs
| otherwise = fixVarSet mk_next tvs
where
mk_next tvs = foldr grow_one tvs theta
grow_one pred tvs = growPredTyVars pred tvs `unionVarSet` tvs
growPredTyVars :: TcPredType
-> TyVarSet
-> TyVarSet
growPredTyVars pred tvs = go (classifyPredType pred)
where
grow pred_tvs | pred_tvs `intersectsVarSet` tvs = pred_tvs
| otherwise = emptyVarSet
go (IPPred _ ty) = tyVarsOfType ty
go (ClassPred _ tys) = grow (tyVarsOfTypes tys)
go (EqPred ty1 ty2) = grow (tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2)
go (TuplePred ts) = unionVarSets (map (go . classifyPredType) ts)
go (IrredPred ty) = grow (tyVarsOfType ty)
\end{code}
Note [Implicit parameters and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot. For example:
foo :: (?x :: [a]) => Int
foo = length ?x
is fine. The call site will suppply a particular 'x'
Furthermore, the type variables fixed by an implicit parameter
propagate to the others. E.g.
foo :: (Show a, ?x::[a]) => Int
foo = show (?x++?x)
The type of foo looks ambiguous. But it isn't, because at a call site
we might have
let ?x = 5::Int in foo
and all is well. In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff. This is done in the function 'FunDeps.grow'.
\begin{code}
checkThetaCtxt :: UserTypeCtxt -> ThetaType -> SDoc
checkThetaCtxt ctxt theta
= vcat [ptext (sLit "In the context:") <+> pprTheta theta,
ptext (sLit "While checking") <+> pprUserTypeCtxt ctxt ]
eqPredTyErr, predTyVarErr, predTupleErr, predIrredErr, predIrredBadCtxtErr :: PredType -> SDoc
eqPredTyErr pred = ptext (sLit "Illegal equational constraint") <+> pprType pred
$$
parens (ptext (sLit "Use -XGADTs or -XTypeFamilies to permit this"))
predTyVarErr pred = sep [ptext (sLit "Non type-variable argument"),
nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)]
predTupleErr pred = ptext (sLit "Illegal tuple constraint") <+> pprType pred $$
parens (ptext (sLit "Use -XConstraintKinds to permit this"))
predIrredErr pred = ptext (sLit "Illegal irreducible constraint") <+> pprType pred $$
parens (ptext (sLit "Use -XConstraintKinds to permit this"))
predIrredBadCtxtErr pred = ptext (sLit "Illegal irreducible constraint") <+> pprType pred $$
ptext (sLit "in superclass/instance head context") <+>
parens (ptext (sLit "Use -XUndecidableInstances to permit this"))
dupPredWarn :: [[PredType]] -> SDoc
dupPredWarn dups = ptext (sLit "Duplicate constraint(s):") <+> pprWithCommas pprType (map head dups)
arityErr :: Outputable a => String -> a -> Int -> Int -> SDoc
arityErr kind name n m
= hsep [ text kind, quotes (ppr name), ptext (sLit "should have"),
n_arguments <> comma, text "but has been given",
if m==0 then text "none" else int m]
where
n_arguments | n == 0 = ptext (sLit "no arguments")
| n == 1 = ptext (sLit "1 argument")
| True = hsep [int n, ptext (sLit "arguments")]
\end{code}
%************************************************************************
%* *
\subsection{Checking for a decent instance head type}
%* *
%************************************************************************
@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@
The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.
We can also have instances for functions: @instance Foo (a -> b) ...@.
\begin{code}
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead ctxt clas tys
= do { dflags <- getDOpts
; unless spec_inst_prag $
do { checkTc (xopt Opt_TypeSynonymInstances dflags ||
all tcInstHeadTyNotSynonym tys)
(instTypeErr pp_pred head_type_synonym_msg)
; checkTc (xopt Opt_FlexibleInstances dflags ||
all tcInstHeadTyAppAllTyVars tys)
(instTypeErr pp_pred head_type_args_tyvars_msg)
; checkTc (xopt Opt_MultiParamTypeClasses dflags ||
isSingleton (dropWhile isKind tys))
(instTypeErr pp_pred head_one_type_msg) }
; mapM_ checkTyFamFreeness tys
; mapM_ checkValidMonoType tys
}
where
spec_inst_prag = case ctxt of { SpecInstCtxt -> True; _ -> False }
pp_pred = pprClassPred clas tys
head_type_synonym_msg = parens (
text "All instance types must be of the form (T t1 ... tn)" $$
text "where T is not a synonym." $$
text "Use -XTypeSynonymInstances if you want to disable this.")
head_type_args_tyvars_msg = parens (vcat [
text "All instance types must be of the form (T a1 ... an)",
text "where a1 ... an are *distinct type variables*,",
text "and each type variable appears at most once in the instance head.",
text "Use -XFlexibleInstances if you want to disable this."])
head_one_type_msg = parens (
text "Only one type can be given in an instance head." $$
text "Use -XMultiParamTypeClasses if you want to allow more.")
instTypeErr :: SDoc -> SDoc -> SDoc
instTypeErr pp_ty msg
= sep [ptext (sLit "Illegal instance declaration for") <+> quotes pp_ty,
nest 2 msg]
\end{code}
validDeivPred checks for OK 'deriving' context. See Note [Exotic
derived instance contexts] in TcSimplify. However the predicate is
here because it uses sizeTypes, fvTypes.
Also check for a bizarre corner case, when the derived instance decl
would look like
instance C a b => D (T a) where ...
Note that 'b' isn't a parameter of T. This gives rise to all sorts of
problems; in particular, it's hard to compare solutions for equality
when finding the fixpoint, and that means the inferContext loop does
not converge. See Trac #5287.
\begin{code}
validDerivPred :: TyVarSet -> PredType -> Bool
validDerivPred tv_set ty = case getClassPredTys_maybe ty of
Just (_, tys) | let fvs = fvTypes tys
-> hasNoDups fvs
&& sizeTypes tys == length fvs
&& all (`elemVarSet` tv_set) fvs
_ -> False
\end{code}
%************************************************************************
%* *
\subsection{Checking instance for termination}
%* *
%************************************************************************
\begin{code}
checkValidInstance :: UserTypeCtxt -> LHsType Name -> [TyVar] -> ThetaType
-> Class -> [TcType] -> TcM ()
checkValidInstance ctxt hs_type tyvars theta clas inst_tys
= setSrcSpan (getLoc hs_type) $
do { setSrcSpan head_loc (checkValidInstHead ctxt clas inst_tys)
; checkValidTheta ctxt theta
; checkAmbiguity tyvars theta (tyVarsOfTypes inst_tys)
; undecidable_ok <- xoptM Opt_UndecidableInstances
; unless undecidable_ok $
mapM_ addErrTc (checkInstTermination inst_tys theta)
; checkTc (undecidable_ok || checkInstCoverage clas inst_tys)
(instTypeErr (pprClassPred clas inst_tys) msg)
}
where
msg = parens (vcat [ptext (sLit "the Coverage Condition fails for one of the functional dependencies;"),
undecidableMsg])
head_loc = case hs_type of
L _ (HsForAllTy _ _ _ (L loc _)) -> loc
L loc _ -> loc
\end{code}
Note [Paterson conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functionsl dependencies via Constraint Handling Rules,
JFP Jan 2007).
We check that each assertion in the context satisfies:
(1) no variable has more occurrences in the assertion than in the head, and
(2) the assertion has fewer constructors and variables (taken together
and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination.
The underlying idea is that
for any ground substitution, each assertion in the
context has fewer type constructors than the head.
\begin{code}
checkInstTermination :: [TcType] -> ThetaType -> [Message]
checkInstTermination tys theta
= mapCatMaybes check theta
where
fvs = fvTypes tys
size = sizeTypes tys
check pred
| not (null (fvType pred \\ fvs))
= Just (predUndecErr pred nomoreMsg $$ parens undecidableMsg)
| sizePred pred >= size
= Just (predUndecErr pred smallerMsg $$ parens undecidableMsg)
| otherwise
= Nothing
predUndecErr :: PredType -> SDoc -> SDoc
predUndecErr pred msg = sep [msg,
nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)]
nomoreMsg, smallerMsg, undecidableMsg :: SDoc
nomoreMsg = ptext (sLit "Variable occurs more often in a constraint than in the instance head")
smallerMsg = ptext (sLit "Constraint is no smaller than the instance head")
undecidableMsg = ptext (sLit "Use -XUndecidableInstances to permit this")
\end{code}
%************************************************************************
%* *
Checking type instance well-formedness and termination
%* *
%************************************************************************
\begin{code}
checkValidFamInst :: [Type] -> Type -> TcM ()
checkValidFamInst typats rhs
= do {
; mapM_ checkTyFamFreeness typats
; checkValidMonoType rhs
; undecidable_ok <- xoptM Opt_UndecidableInstances
; unless undecidable_ok $
mapM_ addErrTc (checkFamInstRhs typats (tcTyFamInsts rhs))
}
checkFamInstRhs :: [Type]
-> [(TyCon, [Type])]
-> [Message]
checkFamInstRhs lhsTys famInsts
= mapCatMaybes check famInsts
where
size = sizeTypes lhsTys
fvs = fvTypes lhsTys
check (tc, tys)
| not (all isTyFamFree tys)
= Just (famInstUndecErr famInst nestedMsg $$ parens undecidableMsg)
| not (null (fvTypes tys \\ fvs))
= Just (famInstUndecErr famInst nomoreVarMsg $$ parens undecidableMsg)
| size <= sizeTypes tys
= Just (famInstUndecErr famInst smallerAppMsg $$ parens undecidableMsg)
| otherwise
= Nothing
where
famInst = TyConApp tc tys
checkTyFamFreeness :: Type -> TcM ()
checkTyFamFreeness ty
= checkTc (isTyFamFree ty) $
tyFamInstIllegalErr ty
isTyFamFree :: Type -> Bool
isTyFamFree = null . tcTyFamInsts
tyFamInstIllegalErr :: Type -> SDoc
tyFamInstIllegalErr ty
= hang (ptext (sLit "Illegal type synonym family application in instance") <>
colon) 2 $
ppr ty
famInstUndecErr :: Type -> SDoc -> SDoc
famInstUndecErr ty msg
= sep [msg,
nest 2 (ptext (sLit "in the type family application:") <+>
pprType ty)]
nestedMsg, nomoreVarMsg, smallerAppMsg :: SDoc
nestedMsg = ptext (sLit "Nested type family application")
nomoreVarMsg = ptext (sLit "Variable occurs more often than in instance head")
smallerAppMsg = ptext (sLit "Application is no smaller than the instance head")
\end{code}
%************************************************************************
%* *
\subsection{Auxiliary functions}
%* *
%************************************************************************
\begin{code}
fvType :: Type -> [TyVar]
fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
fvType (TyVarTy tv) = [tv]
fvType (TyConApp _ tys) = fvTypes tys
fvType (FunTy arg res) = fvType arg ++ fvType res
fvType (AppTy fun arg) = fvType fun ++ fvType arg
fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)
fvTypes :: [Type] -> [TyVar]
fvTypes tys = concat (map fvType tys)
sizeType :: Type -> Int
sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
sizeType (TyVarTy _) = 1
sizeType (TyConApp _ tys) = sizeTypes tys + 1
sizeType (FunTy arg res) = sizeType arg + sizeType res + 1
sizeType (AppTy fun arg) = sizeType fun + sizeType arg
sizeType (ForAllTy _ ty) = sizeType ty
sizeTypes :: [Type] -> Int
sizeTypes xs = sum (map sizeType tys)
where tys = filter (not . isKind) xs
sizePred :: PredType -> Int
sizePred ty = go (classifyPredType ty)
where
go (ClassPred _ tys') = sizeTypes tys'
go (IPPred {}) = 0
go (EqPred {}) = 0
go (TuplePred ts) = sum (map (go . classifyPredType) ts)
go (IrredPred ty) = sizeType ty
\end{code}
Note [Paterson conditions on PredTypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are considering whether *class* constraints terminate
(see Note [Paterson conditions]). Precisely, the Paterson conditions
would have us check that "the constraint has fewer constructors and variables
(taken together and counting repetitions) than the head.".
However, we can be a bit more refined by looking at which kind of constraint
this actually is. There are two main tricks:
1. It seems like it should be OK not to count the tuple type constructor
for a PredType like (Show a, Eq a) :: Constraint, since we don't
count the "implicit" tuple in the ThetaType itself.
In fact, the Paterson test just checks *each component* of the top level
ThetaType against the size bound, one at a time. By analogy, it should be
OK to return the size of the *largest* tuple component as the size of the
whole tuple.
2. Once we get into an implicit parameter or equality we
can't get back to a class constraint, so it's safe
to say "size 0". See Trac #4200.
NB: we don't want to detect PredTypes in sizeType (and then call
sizePred on them), or we might get an infinite loop if that PredType
is irreducible. See Trac #5581.