%
% (c) The University of Glasgow 2006
% (c) The AQUA Project, Glasgow University, 1996-1998
%
TcTyClsDecls: Typecheck type and class declarations
\begin{code}
module TcTyClsDecls (
tcTyAndClassDecls, tcAddImplicits,
kcDataDecl, tcConDecls, dataDeclChecks, checkValidTyCon,
tcSynFamInstDecl, tcFamTyPats,
wrongKindOfFamily, badATErr, wrongATArgErr
) where
#include "HsVersions.h"
import HsSyn
import HscTypes
import BuildTyCl
import TcUnify
import TcRnMonad
import TcEnv
import TcBinds( tcRecSelBinds )
import TcTyDecls
import TcClassDcl
import TcHsType
import TcMType
import TcType
import TysWiredIn( unitTy )
import Type
import Kind
import Class
import TyCon
import DataCon
import Id
import MkCore ( rEC_SEL_ERROR_ID )
import IdInfo
import Var
import VarSet
import Name
import NameSet
import NameEnv
import Outputable
import Maybes
import Unify
import Util
import SrcLoc
import ListSetOps
import Digraph
import DynFlags
import FastString
import Unique ( mkBuiltinUnique )
import BasicTypes
import Bag
import Control.Monad
import Data.List
\end{code}
%************************************************************************
%* *
\subsection{Type checking for type and class declarations}
%* *
%************************************************************************
Note [Grouping of type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tcTyAndClassDecls is called on a list of `TyClGroup`s. Each group is a strongly
connected component of mutually dependent types and classes. We kind check and
type check each group separately to enhance kind polymorphism. Take the
following example:
type Id a = a
data X = X (Id Int)
If we were to kind check the two declarations together, we would give Id the
kind * -> *, since we apply it to an Int in the definition of X. But we can do
better than that, since Id really is kind polymorphic, and should get kind
forall (k::BOX). k -> k. Since it does not depend on anything else, it can be
kind-checked by itself, hence getting the most general kind. We then kind check
X, which works fine because we then know the polymorphic kind of Id, and simply
instantiate k to *.
\begin{code}
tcTyAndClassDecls :: ModDetails
-> [TyClGroup Name]
-> TcM TcGblEnv
tcTyAndClassDecls boot_details decls_s
= checkNoErrs $ do
{ let tyclds_s = map (filterOut (isFamInstDecl . unLoc)) decls_s
; fold_env tyclds_s }
where
fold_env :: [TyClGroup Name] -> TcM TcGblEnv
fold_env [] = getGblEnv
fold_env (tyclds:tyclds_s)
= do { tcg_env <- tcTyClGroup boot_details tyclds
; setGblEnv tcg_env $ fold_env tyclds_s }
tcTyClGroup :: ModDetails -> TyClGroup Name -> TcM TcGblEnv
tcTyClGroup boot_details tyclds
= do {
names_w_poly_kinds <- kcTyClGroup tyclds
; traceTc "tcTyAndCl generalized kinds" (ppr names_w_poly_kinds)
; tyclss <- fixM $ \ rec_tyclss -> do
{ let rec_flags = calcRecFlags boot_details rec_tyclss
; tcExtendRecEnv (zipRecTyClss tyclds rec_tyclss) $
tcExtendKindEnv names_w_poly_kinds $
concatMapM (tcTyClDecl rec_flags) tyclds }
; tcExtendGlobalEnv tyclss $ do
{ traceTc "Starting validity check" (ppr tyclss)
; mapM_ (addLocM checkValidTyCl) tyclds
; tcExtendGlobalValEnv (mkDefaultMethodIds tyclss) $
tcAddImplicits tyclss } }
tcAddImplicits :: [TyThing] -> TcM TcGblEnv
tcAddImplicits tyclss
= tcExtendGlobalEnvImplicit implicit_things $
tcRecSelBinds rec_sel_binds
where
implicit_things = concatMap implicitTyThings tyclss
rec_sel_binds = mkRecSelBinds tyclss
zipRecTyClss :: TyClGroup Name
-> [TyThing]
-> [(Name,TyThing)]
zipRecTyClss decls rec_things
= [ (name, ATyCon (get name))
| name <- tyClsBinders decls ]
where
rec_type_env :: TypeEnv
rec_type_env = mkTypeEnv rec_things
get name = case lookupTypeEnv rec_type_env name of
Just (ATyCon tc) -> tc
other -> pprPanic "zipRecTyClss" (ppr name <+> ppr other)
tyClsBinders :: TyClGroup Name -> [Name]
tyClsBinders decls
= concatMap get decls
where
get (L _ (ClassDecl { tcdLName = L _ n, tcdATs = ats })) = n : tyClsBinders ats
get (L _ d) = [tcdName d]
\end{code}
%************************************************************************
%* *
Kind checking
%* *
%************************************************************************
Note [Kind checking for type and class decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kind checking is done thus:
1. Make up a kind variable for each parameter of the *data* type,
and class, decls, and extend the kind environment (which is in
the TcLclEnv)
2. Dependency-analyse the type *synonyms* (which must be non-recursive),
and kind-check them in dependency order. Extend the kind envt.
3. Kind check the data type and class decls
Synonyms are treated differently to data type and classes,
because a type synonym can be an unboxed type
type Foo = Int#
and a kind variable can't unify with UnboxedTypeKind
So we infer their kinds in dependency order
We need to kind check all types in the mutually recursive group
before we know the kind of the type variables. For example:
class C a where
op :: D b => a -> b -> b
class D c where
bop :: (Monad c) => ...
Here, the kind of the locally-polymorphic type variable "b"
depends on *all the uses of class D*. For example, the use of
Monad c in bop's type signature means that D must have kind Type->Type.
However type synonyms work differently. They can have kinds which don't
just involve (->) and *:
type R = Int# -- Kind #
type S a = Array# a -- Kind * -> #
type T a b = (# a,b #) -- Kind * -> * -> (# a,b #)
So we must infer their kinds from their right-hand sides *first* and then
use them, whereas for the mutually recursive data types D we bring into
scope kind bindings D -> k, where k is a kind variable, and do inference.
Type families
~~~~~~~~~~~~~
This treatment of type synonyms only applies to Haskell 98-style synonyms.
General type functions can be recursive, and hence, appear in `alg_decls'.
The kind of a type family is solely determinded by its kind signature;
hence, only kind signatures participate in the construction of the initial
kind environment (as constructed by `getInitialKind'). In fact, we ignore
instances of families altogether in the following. However, we need to
include the kinds of *associated* families into the construction of the
initial kind environment. (This is handled by `allDecls').
\begin{code}
kcTyClGroup :: TyClGroup Name -> TcM [(Name,Kind)]
kcTyClGroup decls
= do { mod <- getModule
; traceTc "kcTyClGroup" (ptext (sLit "module") <+> ppr mod $$ vcat (map ppr decls))
; let (syn_decls, non_syn_decls) = partition (isSynDecl . unLoc) decls
; initial_kinds <- concatMapM getInitialKinds non_syn_decls
; tcExtendTcTyThingEnv initial_kinds $ do
{ tcl_env <- kcSynDecls (calcSynCycles syn_decls)
; setLclEnv tcl_env $ do
{ mapM_ (wrapLocM kcTyClDecl) non_syn_decls
; mapM generalise (tyClsBinders decls) }}}
where
generalise :: Name -> TcM (Name, Kind)
generalise name
= do { traceTc "Generalise type of" (ppr name)
; thing <- tcLookup name
; let kc_kind = case thing of
AThing k -> k
_ -> pprPanic "kcTyClGroup" (ppr thing)
; (kvs, kc_kind') <- kindGeneralizeKind kc_kind
; return (name, mkForAllTys kvs kc_kind') }
getInitialKinds :: LTyClDecl Name -> TcM [(Name, TcTyThing)]
getInitialKinds (L _ decl)
= do { arg_kinds <- mapM (mk_arg_kind . unLoc) (tyClDeclTyVars decl)
; res_kind <- mk_res_kind decl
; let main_pair = (tcdName decl, AThing (mkArrowKinds arg_kinds res_kind))
; inner_pairs <- get_inner_kinds decl
; return (main_pair : inner_pairs) }
where
mk_arg_kind (UserTyVar _ _) = newMetaKindVar
mk_arg_kind (KindedTyVar _ kind _) = scDsLHsKind kind
mk_res_kind (TyFamily { tcdKind = Just kind }) = scDsLHsKind kind
mk_res_kind (TyData { tcdKindSig = Just kind }) = scDsLHsKind kind
mk_res_kind (ClassDecl {}) = return constraintKind
mk_res_kind _ = return liftedTypeKind
get_inner_kinds :: TyClDecl Name -> TcM [(Name,TcTyThing)]
get_inner_kinds (TyData { tcdCons = cons })
= return [ (unLoc (con_name con), ANothing) | L _ con <- cons ]
get_inner_kinds (ClassDecl { tcdATs = ats })
= concatMapM getInitialKinds ats
get_inner_kinds _
= return []
kcLookupKind :: Located Name -> TcM Kind
kcLookupKind nm = do
tc_ty_thing <- tcLookupLocated nm
case tc_ty_thing of
AThing k -> return k
AGlobal (ATyCon tc) -> return (tyConKind tc)
_ -> pprPanic "kcLookupKind" (ppr tc_ty_thing)
kcSynDecls :: [SCC (LTyClDecl Name)] -> TcM (TcLclEnv)
kcSynDecls [] = getLclEnv
kcSynDecls (group : groups)
= do { nk <- kcSynDecl1 group
; tcExtendKindEnv [nk] (kcSynDecls groups) }
kcSynDecl1 :: SCC (LTyClDecl Name)
-> TcM (Name,TcKind)
kcSynDecl1 (AcyclicSCC (L _ decl)) = kcSynDecl decl
kcSynDecl1 (CyclicSCC decls) = do { recSynErr decls; failM }
kcSynDecl :: TyClDecl Name -> TcM (Name, TcKind)
kcSynDecl decl
= tcAddDeclCtxt decl $
kcHsTyVars (tcdTyVars decl) $ \ k_tvs ->
do { traceTc "kcd1" (ppr (unLoc (tcdLName decl)) <+> brackets (ppr (tcdTyVars decl))
<+> brackets (ppr k_tvs))
; (_, rhs_kind) <- kcLHsType (tcdSynRhs decl)
; traceTc "kcd2" (ppr (tcdName decl))
; let tc_kind = foldr (mkArrowKind . hsTyVarKind . unLoc) rhs_kind k_tvs
; return (tcdName decl, tc_kind) }
kcTyClDecl :: TyClDecl Name -> TcM ()
kcTyClDecl (ForeignType {})
= return ()
kcTyClDecl decl@(TyFamily {})
= kcFamilyDecl [] decl
kcTyClDecl decl@(TyData {})
= ASSERT( not . isFamInstDecl $ decl )
kcTyClDeclBody decl $ \_ -> kcDataDecl decl
kcTyClDecl decl@(ClassDecl {tcdCtxt = ctxt, tcdSigs = sigs, tcdATs = ats})
= kcTyClDeclBody decl $ \ tvs' ->
do { discardResult (kcHsContext ctxt)
; mapM_ (wrapLocM (kcFamilyDecl tvs')) ats
; mapM_ (wrapLocM kc_sig) sigs }
where
kc_sig (TypeSig _ op_ty) = discardResult (kcHsLiftedSigType op_ty)
kc_sig (GenericSig _ op_ty) = discardResult (kcHsLiftedSigType op_ty)
kc_sig _ = return ()
kcTyClDecl (TySynonym {})
= panic "kcTyClDecl TySynonym"
kcTyClDeclBody :: TyClDecl Name
-> ([LHsTyVarBndr Name] -> TcM a)
-> TcM a
kcTyClDeclBody decl thing_inside
= tcAddDeclCtxt decl $
do { tc_kind <- kcLookupKind (tcdLName decl)
; let (kinds, _) = splitKindFunTys tc_kind
hs_tvs = tcdTyVars decl
kinded_tvs = ASSERT( length kinds >= length hs_tvs )
zipWith add_kind hs_tvs kinds
; tcExtendKindEnvTvs kinded_tvs thing_inside }
where
add_kind (L loc (UserTyVar n _)) k = L loc (UserTyVar n k)
add_kind (L loc (KindedTyVar n hsk _)) k = L loc (KindedTyVar n hsk k)
kcDataDecl :: TyClDecl Name -> TcM ()
kcDataDecl (TyData {tcdND = new_or_data, tcdCtxt = ctxt, tcdCons = cons})
= do { _ <- kcHsContext ctxt
; _ <- mapM (wrapLocM (kcConDecl new_or_data)) cons
; return () }
kcDataDecl d = pprPanic "kcDataDecl" (ppr d)
kcConDecl :: NewOrData -> ConDecl Name -> TcM (ConDecl Name)
kcConDecl new_or_data con_decl@(ConDecl { con_name = name, con_qvars = ex_tvs
, con_cxt = ex_ctxt, con_details = details, con_res = res })
= addErrCtxt (dataConCtxt name) $
kcHsTyVars ex_tvs $ \ex_tvs' ->
do { ex_ctxt' <- kcHsContext ex_ctxt
; details' <- kc_con_details details
; res' <- case res of
ResTyH98 -> return ResTyH98
ResTyGADT ty -> do { ty' <- kcHsSigType ty; return (ResTyGADT ty') }
; return (con_decl { con_qvars = ex_tvs', con_cxt = ex_ctxt'
, con_details = details', con_res = res' }) }
where
kc_con_details (PrefixCon btys)
= do { btys' <- mapM kc_larg_ty btys
; return (PrefixCon btys') }
kc_con_details (InfixCon bty1 bty2)
= do { bty1' <- kc_larg_ty bty1
; bty2' <- kc_larg_ty bty2
; return (InfixCon bty1' bty2') }
kc_con_details (RecCon fields)
= do { fields' <- mapM kc_field fields
; return (RecCon fields') }
kc_field (ConDeclField fld bty d) = do { bty' <- kc_larg_ty bty
; return (ConDeclField fld bty' d) }
kc_larg_ty bty = case new_or_data of
DataType -> kcHsSigType bty
NewType -> kcHsLiftedSigType bty
kcFamilyDecl :: [LHsTyVarBndr Name]
-> TyClDecl Name -> TcM ()
kcFamilyDecl classTvs decl@(TyFamily {tcdKind = kind})
= kcTyClDeclBody decl $ \tvs' ->
do { mapM_ unifyClassParmKinds tvs'
; discardResult (scDsLHsMaybeKind kind) }
where
unifyClassParmKinds (L _ tv)
| (n,k) <- hsTyVarNameKind tv
, Just classParmKind <- lookup n classTyKinds
= let ctxt = ptext ( sLit "When kind checking family declaration")
<+> ppr (tcdLName decl)
in addErrCtxt ctxt $ unifyKind k classParmKind >> return ()
| otherwise = return ()
classTyKinds = [hsTyVarNameKind tv | L _ tv <- classTvs]
kcFamilyDecl _ (TySynonym {}) = return ()
kcFamilyDecl _ d = pprPanic "kcFamilyDecl" (ppr d)
discardResult :: TcM a -> TcM ()
discardResult a = a >> return ()
\end{code}
%************************************************************************
%* *
\subsection{Type checking}
%* *
%************************************************************************
Note [Type checking recursive type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At this point we have completed *kind-checking* of a mutually
recursive group of type/class decls (done in kcTyClGroup). However,
we discarded the kind-checked types (eg RHSs of data type decls);
note that kcTyClDecl returns (). There are two reasons:
* It's convenient, because we don't have to rebuild a
kinded HsDecl (a fairly elaborate type)
* It's necessary, because after kind-generalisation, the
TyCons/Classes may now be kind-polymorphic, and hence need
to be given kind arguments.
Example:
data T f a = MkT (f a) (T f a)
During kind-checking, we give T the kind T :: k1 -> k2 -> *
and figure out constraints on k1, k2 etc. Then we generalise
to get T :: forall k. (k->*) -> k -> *
So now the (T f a) in the RHS must be elaborated to (T k f a).
However, during tcTyClDecl of T (above) we will be in a recursive
"knot". So we aren't allowed to look at the TyCon T itself; we are only
allowed to put it (lazily) in the returned structures. But when
kind-checking the RHS of T's decl, we *do* need to know T's kind (so
that we can correctly elaboarate (T k f a). How can we get T's kind
without looking at T? Delicate answer: during tcTyClDecl, we extend
*Global* env with T -> ATyCon (the (not yet built) TyCon for T)
*Local* env with T -> AThing (polymorphic kind of T)
Then:
* During TcHsType.kcTyVar we look in the *local* env, to get the
known kind for T.
* But in TcHsType.ds_type (and ds_var_app in particular) we look in
the *global* env to get the TyCon. But we must be careful not to
force the TyCon or we'll get a loop.
This fancy footwork (with two bindings for T) is only necesary for the
TyCons or Classes of this recursive group. Earlier, finished groups,
live in the global env only.
\begin{code}
tcTyClDecl :: (Name -> RecFlag) -> LTyClDecl Name -> TcM [TyThing]
tcTyClDecl calc_isrec (L loc decl)
= setSrcSpan loc $ tcAddDeclCtxt decl $
traceTc "tcTyAndCl-x" (ppr decl) >>
tcTyClDecl1 NoParentTyCon calc_isrec decl
tcTyClDecl1 :: TyConParent -> (Name -> RecFlag) -> TyClDecl Name -> TcM [TyThing]
tcTyClDecl1 parent _calc_isrec
(TyFamily {tcdFlavour = TypeFamily, tcdLName = L _ tc_name, tcdTyVars = tvs})
= tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
{ traceTc "type family:" (ppr tc_name)
; checkFamFlag tc_name
; tycon <- buildSynTyCon tc_name tvs' SynFamilyTyCon kind parent Nothing
; return [ATyCon tycon] }
tcTyClDecl1 parent _calc_isrec
(TyFamily {tcdFlavour = DataFamily, tcdLName = L _ tc_name, tcdTyVars = tvs})
= tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
{ traceTc "data family:" (ppr tc_name)
; checkFamFlag tc_name
; extra_tvs <- tcDataKindSig kind
; let final_tvs = tvs' ++ extra_tvs
; tycon <- buildAlgTyCon tc_name final_tvs []
DataFamilyTyCon Recursive True parent Nothing
; return [ATyCon tycon] }
tcTyClDecl1 _parent _calc_isrec
(TySynonym {tcdLName = L _ tc_name, tcdTyVars = tvs, tcdSynRhs = rhs_ty})
= ASSERT( isNoParent _parent )
tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
{ rhs_ty' <- tcCheckHsType rhs_ty kind
; tycon <- buildSynTyCon tc_name tvs' (SynonymTyCon rhs_ty')
kind NoParentTyCon Nothing
; return [ATyCon tycon] }
tcTyClDecl1 _parent calc_isrec
(TyData { tcdND = new_or_data, tcdCtxt = ctxt, tcdTyVars = tvs
, tcdLName = L _ tc_name, tcdKindSig = mb_ksig, tcdCons = cons })
= ASSERT( isNoParent _parent )
let is_rec = calc_isrec tc_name
h98_syntax = consUseH98Syntax cons in
tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
{ extra_tvs <- tcDataKindSig kind
; let final_tvs = tvs' ++ extra_tvs
; stupid_theta <- tcHsKindedContext =<< kcHsContext ctxt
; kind_signatures <- xoptM Opt_KindSignatures
; existential_ok <- xoptM Opt_ExistentialQuantification
; gadt_ok <- xoptM Opt_GADTs
; is_boot <- tcIsHsBoot
; let ex_ok = existential_ok || gadt_ok
; checkTc (kind_signatures || isNothing mb_ksig) (badSigTyDecl tc_name)
; dataDeclChecks tc_name new_or_data stupid_theta cons
; tycon <- fixM (\ tycon -> do
{ let res_ty = mkTyConApp tycon (mkTyVarTys final_tvs)
; data_cons <- tcConDecls new_or_data ex_ok tycon (final_tvs, res_ty) cons
; tc_rhs <-
if null cons && is_boot
then return totallyAbstractTyConRhs
else case new_or_data of
DataType -> return (mkDataTyConRhs data_cons)
NewType -> ASSERT( not (null data_cons) )
mkNewTyConRhs tc_name tycon (head data_cons)
; buildAlgTyCon tc_name final_tvs stupid_theta tc_rhs is_rec
(not h98_syntax) NoParentTyCon Nothing
})
; return [ATyCon tycon] }
tcTyClDecl1 _parent calc_isrec
(ClassDecl { tcdLName = L _ class_name, tcdTyVars = tvs
, tcdCtxt = ctxt, tcdMeths = meths
, tcdFDs = fundeps, tcdSigs = sigs, tcdATs = ats, tcdATDefs = at_defs })
= ASSERT( isNoParent _parent )
do
{ (tvs', ctxt', fds', sig_stuff, gen_dm_env)
<- tcTyClTyVars class_name tvs $ \ tvs' kind -> do
{ MASSERT( isConstraintKind kind )
; ctxt' <- tcHsKindedContext =<< kcHsContext ctxt
; fds' <- mapM (addLocM tc_fundep) fundeps
; (sig_stuff, gen_dm_env) <- tcClassSigs class_name sigs meths
; return (tvs', ctxt', fds', sig_stuff, gen_dm_env) }
; clas <- fixM $ \ clas -> do
{ let
tycon_name = tyConName (classTyCon clas)
tc_isrec = calc_isrec tycon_name
; at_stuff <- tcClassATs class_name (AssocFamilyTyCon clas) ats at_defs
; buildClass False
class_name tvs' ctxt' fds' at_stuff
sig_stuff tc_isrec }
; let gen_dm_ids = [ AnId (mkExportedLocalId gen_dm_name gen_dm_ty)
| (sel_id, GenDefMeth gen_dm_name) <- classOpItems clas
, let gen_dm_tau = expectJust "tcTyClDecl1" $
lookupNameEnv gen_dm_env (idName sel_id)
, let gen_dm_ty = mkSigmaTy tvs'
[mkClassPred clas (mkTyVarTys tvs')]
gen_dm_tau
]
class_ats = map ATyCon (classATs clas)
; return (ATyCon (classTyCon clas) : gen_dm_ids ++ class_ats )
}
where
tc_fundep (tvs1, tvs2) = do { tvs1' <- mapM tcLookupTyVar tvs1 ;
; tvs2' <- mapM tcLookupTyVar tvs2 ;
; return (tvs1', tvs2') }
tcTyClDecl1 _ _
(ForeignType {tcdLName = L _ tc_name, tcdExtName = tc_ext_name})
= return [ATyCon (mkForeignTyCon tc_name tc_ext_name liftedTypeKind 0)]
\end{code}
%************************************************************************
%* *
Typechecking associated types (in class decls)
(including the associated-type defaults)
%* *
%************************************************************************
Note [Associated type defaults]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following is an example of associated type defaults:
class C a where
data D a
type F a b :: *
type F a Z = [a] -- Default
type F a (S n) = F a n -- Default
Note that:
- We can have more than one default definition for a single associated type,
as long as they do not overlap (same rules as for instances)
- We can get default definitions only for type families, not data families
\begin{code}
tcClassATs :: Name
-> TyConParent
-> [LTyClDecl Name]
-> [LTyClDecl Name]
-> TcM [ClassATItem]
tcClassATs class_name parent ats at_defs
= do {
sequence_ [ failWithTc (badATErr class_name n)
| n <- map (tcdName . unLoc) at_defs
, not (n `elemNameSet` at_names) ]
; mapM tc_at ats }
where
at_names = mkNameSet (map (tcdName . unLoc) ats)
at_defs_map :: NameEnv [LTyClDecl Name]
at_defs_map = foldr (\at_def nenv -> extendNameEnv_C (++) nenv (tcdName (unLoc at_def)) [at_def])
emptyNameEnv at_defs
tc_at at = do { [ATyCon fam_tc] <- addLocM (tcTyClDecl1 parent
(const Recursive)) at
; let at_defs = lookupNameEnv at_defs_map (tcdName (unLoc at))
`orElse` []
; atd <- mapM (tcDefaultAssocDecl fam_tc) at_defs
; return (fam_tc, atd) }
tcDefaultAssocDecl :: TyCon
-> LTyClDecl Name
-> TcM ATDefault
tcDefaultAssocDecl fam_tc (L loc decl)
= setSrcSpan loc $
tcAddDefaultAssocDeclCtxt (tcdName decl) $
do { traceTc "tcDefaultAssocDecl" (ppr decl)
; (at_tvs, at_tys, at_rhs) <- tcSynFamInstDecl fam_tc decl
; return (ATD at_tvs at_tys at_rhs loc) }
tcSynFamInstDecl :: TyCon -> TyClDecl Name -> TcM ([TyVar], [Type], Type)
tcSynFamInstDecl fam_tc (TySynonym { tcdTyVars = tvs, tcdTyPats = Just pats
, tcdSynRhs = rhs })
= do { checkTc (isSynTyCon fam_tc) (wrongKindOfFamily fam_tc)
; let kc_rhs rhs kind = kcCheckLHsType rhs (EK kind (ptext (sLit "Expected")))
; tcFamTyPats fam_tc tvs pats (kc_rhs rhs)
$ \tvs' pats' res_kind -> do
{ rhs' <- kc_rhs rhs res_kind
; rhs'' <- tcHsKindedType rhs'
; return (tvs', pats', rhs'') } }
tcSynFamInstDecl _ decl = pprPanic "tcSynFamInstDecl" (ppr decl)
tcFamTyPats :: TyCon
-> [LHsTyVarBndr Name] -> [LHsType Name]
-> (TcKind -> TcM any)
-> ([KindVar] -> [TcKind] -> Kind -> TcM a)
-> TcM a
tcFamTyPats fam_tc tyvars pats kind_checker thing_inside
= kcHsTyVars tyvars $ \tvs ->
do { let (fam_kvs, body) = splitForAllTys (tyConKind fam_tc)
; let fam_arity = tyConArity fam_tc length fam_kvs
; checkTc (length pats == fam_arity) $
wrongNumberOfParmsErr fam_arity
; fam_arg_kinds <- mapM (const newMetaKindVar) fam_kvs
; let body' = substKiWith fam_kvs fam_arg_kinds body
(kinds, resKind) = splitKindFunTysN fam_arity body'
; typats <- zipWithM kcCheckLHsType pats
[ expArgKind (quotes (ppr fam_tc)) kind n
| (kind,n) <- kinds `zip` [1..]]
; _ <- kind_checker resKind
; tcTyVarBndrsKindGen tvs $ \tvs' -> do {
; (t_kvs, fam_arg_kinds') <- kindGeneralizeKinds fam_arg_kinds
; k_typats <- mapM tcHsKindedType typats
; thing_inside (t_kvs ++ tvs') (fam_arg_kinds' ++ k_typats) resKind }
}
\end{code}
Note [Quantifying over family patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to quantify over two different lots of kind variables:
First, the ones that come from tcTyVarBndrsKindGen, as usual
data family Dist a
-- Proxy :: forall k. k -> *
data instance Dist (Proxy a) = DP
-- Generates data DistProxy = DP
-- ax8 k (a::k) :: Dist * (Proxy k a) ~ DistProxy k a
-- The 'k' comes from the tcTyVarBndrsKindGen (a::k)
Second, the ones that come from the kind argument of the type family
which we pick up using kindGeneralizeKinds:
-- Any :: forall k. k
data instance Dist Any = DA
-- Generates data DistAny k = DA
-- ax7 k :: Dist k (Any k) ~ DistAny k
-- The 'k' comes from kindGeneralizeKinds (Any k)
Note [Associated type instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow this:
class C a where
type T x a
instance C Int where
type T (S y) Int = y
type T Z Int = Char
Note that
a) The variable 'x' is not bound by the class decl
b) 'x' is instantiated to a non-type-variable in the instance
c) There are several type instance decls for T in the instance
All this is fine. Of course, you can't give any *more* instances
for (T ty Int) elsewhere, becuase it's an *associated* type.
Note [Checking consistent instantiation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class C a b where
type T a x b
instance C [p] Int
type T [p] y Int = (p,y,y) -- Induces the family instance TyCon
-- type TR p y = (p,y,y)
So we
* Form the mini-envt from the class type variables a,b
to the instance decl types [p],Int: [a->[p], b->Int]
* Look at the tyvars a,x,b of the type family constructor T
(it shares tyvars with the class C)
* Apply the mini-evnt to them, and check that the result is
consistent with the instance types [p] y Int
%************************************************************************
%* *
Data types
%* *
%************************************************************************
\begin{code}
dataDeclChecks :: Name -> NewOrData -> ThetaType -> [LConDecl Name] -> TcM ()
dataDeclChecks tc_name new_or_data stupid_theta cons
= do {
gadtSyntax_ok <- xoptM Opt_GADTSyntax
; let h98_syntax = consUseH98Syntax cons
; checkTc (gadtSyntax_ok || h98_syntax) (badGadtDecl tc_name)
; checkTc (null stupid_theta || h98_syntax) (badStupidTheta tc_name)
; checkTc (new_or_data == DataType || isSingleton cons)
(newtypeConError tc_name (length cons))
; empty_data_decls <- xoptM Opt_EmptyDataDecls
; is_boot <- tcIsHsBoot
; checkTc (not (null cons) || empty_data_decls || is_boot)
(emptyConDeclsErr tc_name) }
tcConDecls :: NewOrData -> Bool -> TyCon -> ([TyVar], Type)
-> [LConDecl Name] -> TcM [DataCon]
tcConDecls new_or_data ex_ok rep_tycon res_tmpl cons
= mapM (addLocM (tcConDecl new_or_data ex_ok rep_tycon res_tmpl)) cons
tcConDecl :: NewOrData
-> Bool
-> TyCon
-> ([TyVar], Type)
-> ConDecl Name
-> TcM DataCon
tcConDecl new_or_data existential_ok rep_tycon res_tmpl
con@(ConDecl {con_name = name})
= do
{ ConDecl { con_qvars = tvs, con_cxt = ctxt
, con_details = details, con_res = res_ty }
<- kcConDecl new_or_data con
; addErrCtxt (dataConCtxt name) $
tcTyVarBndrsKindGen tvs $ \ tvs' -> do
{ ctxt' <- tcHsKindedContext ctxt
; checkTc (existential_ok || conRepresentibleWithH98Syntax con)
(badExistential name)
; traceTc "tcConDecl 1" (ppr con)
; (univ_tvs, ex_tvs, eq_preds, res_ty') <- tcResultType res_tmpl tvs' res_ty
; let
tc_datacon is_infix field_lbls btys
= do { (arg_tys, stricts) <- mapAndUnzipM tcConArg btys
; traceTc "tcConDecl 3" (ppr name)
; buildDataCon (unLoc name) is_infix
stricts field_lbls
univ_tvs ex_tvs eq_preds ctxt' arg_tys
res_ty' rep_tycon }
; traceTc "tcConDecl 2" (ppr name)
; case details of
PrefixCon btys -> tc_datacon False [] btys
InfixCon bty1 bty2 -> tc_datacon True [] [bty1,bty2]
RecCon fields -> tc_datacon False field_names btys
where
field_names = map (unLoc . cd_fld_name) fields
btys = map cd_fld_type fields
} }
tcResultType :: ([TyVar], Type)
-> [TyVar]
-> ResType Name
-> TcM ([TyVar],
[TyVar],
[(TyVar,Type)],
Type)
tcResultType (tmpl_tvs, res_ty) dc_tvs ResTyH98
= return (tmpl_tvs, dc_tvs, [], res_ty)
tcResultType (tmpl_tvs, res_tmpl) dc_tvs (ResTyGADT res_ty)
= do { res_ty' <- tcHsKindedType res_ty
; let Just subst = tcMatchTy (mkVarSet tmpl_tvs) res_tmpl res_ty'
(univ_tvs, eq_spec) = foldr choose ([], []) tidy_tmpl_tvs
choose tmpl (univs, eqs)
| Just ty <- lookupTyVar subst tmpl
= case tcGetTyVar_maybe ty of
Just tv | not (tv `elem` univs)
-> (tv:univs, eqs)
_other -> (new_tmpl:univs, (new_tmpl,ty):eqs)
where
new_tmpl = updateTyVarKind (substTy subst) tmpl
| otherwise = pprPanic "tcResultType" (ppr res_ty)
ex_tvs = dc_tvs `minusList` univ_tvs
; return (univ_tvs, ex_tvs, eq_spec, res_ty') }
where
(_, tidy_tmpl_tvs) = mapAccumL tidy_one init_occ_env tmpl_tvs
init_occ_env = initTidyOccEnv (map getOccName dc_tvs)
tidy_one env tv = (env', setTyVarName tv (tidyNameOcc name occ'))
where
name = tyVarName tv
(env', occ') = tidyOccName env (getOccName name)
consUseH98Syntax :: [LConDecl a] -> Bool
consUseH98Syntax (L _ (ConDecl { con_res = ResTyGADT _ }) : _) = False
consUseH98Syntax _ = True
conRepresentibleWithH98Syntax :: ConDecl Name -> Bool
conRepresentibleWithH98Syntax
(ConDecl {con_qvars = tvs, con_cxt = ctxt, con_res = ResTyH98 })
= null tvs && null (unLoc ctxt)
conRepresentibleWithH98Syntax
(ConDecl {con_qvars = tvs, con_cxt = ctxt, con_res = ResTyGADT (L _ t) })
= null (unLoc ctxt) && f t (map (hsTyVarName . unLoc) tvs)
where
f (HsAppTy (L _ t1) (L _ (HsTyVar v2))) vs
= (v2 `elem` vs) && f t1 (delete v2 vs)
f (HsTyVar _) [] = True
f _ _ = False
tcConArg :: LHsType Name -> TcM (TcType, HsBang)
tcConArg bty
= do { traceTc "tcConArg 1" (ppr bty)
; arg_ty <- tcHsBangType bty
; traceTc "tcConArg 2" (ppr bty)
; strict_mark <- chooseBoxingStrategy arg_ty (getBangStrictness bty)
; return (arg_ty, strict_mark) }
chooseBoxingStrategy :: TcType -> HsBang -> TcM HsBang
chooseBoxingStrategy arg_ty bang
= case bang of
HsNoBang -> return HsNoBang
HsStrict -> do { unbox_strict <- doptM Opt_UnboxStrictFields
; if unbox_strict then return (can_unbox HsStrict arg_ty)
else return HsStrict }
HsNoUnpack -> return HsStrict
HsUnpack -> do { omit_prags <- doptM Opt_OmitInterfacePragmas
; if omit_prags then return HsStrict
else return (can_unbox HsUnpackFailed arg_ty) }
HsUnpackFailed -> pprPanic "chooseBoxingStrategy" (ppr arg_ty)
where
can_unbox :: HsBang -> TcType -> HsBang
can_unbox fail_bang arg_ty
= case splitTyConApp_maybe arg_ty of
Nothing -> fail_bang
Just (arg_tycon, tycon_args)
| isAbstractTyCon arg_tycon -> HsStrict
| not (isRecursiveTyCon arg_tycon)
, isProductTyCon arg_tycon
-> if isNewTyCon arg_tycon
then can_unbox fail_bang (newTyConInstRhs arg_tycon tycon_args)
else HsUnpack
| otherwise -> fail_bang
\end{code}
Note [Don't complain about UNPACK on abstract TyCons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are going to complain about UnpackFailed, but if we say
data T = MkT {-# UNPACK #-} !Wobble
and Wobble is a newtype imported from a module that was compiled
without optimisation, we don't want to complain. Because it might
be fine when optimsation is on. I think this happens when Haddock
is working over (say) GHC souce files.
Note [Recursive unboxing]
~~~~~~~~~~~~~~~~~~~~~~~~~
Be careful not to try to unbox this!
data T = MkT {-# UNPACK #-} !T Int
Reason: consider
data R = MkR {-# UNPACK #-} !S Int
data S = MkS {-# UNPACK #-} !Int
The representation arguments of MkR are the *representation* arguments
of S (plus Int); the rep args of MkS are Int#. This is obviously no
good for T, because then we'd get an infinite number of arguments.
But it's the *argument* type that matters. This is fine:
data S = MkS S !Int
because Int is non-recursive.
%************************************************************************
%* *
Validity checking
%* *
%************************************************************************
Validity checking is done once the mutually-recursive knot has been
tied, so we can look at things freely.
\begin{code}
checkClassCycleErrs :: Class -> TcM ()
checkClassCycleErrs cls
= unless (null cls_cycles) $ mapM_ recClsErr cls_cycles
where cls_cycles = calcClassCycles cls
checkValidTyCl :: TyClDecl Name -> TcM ()
checkValidTyCl decl
= tcAddDeclCtxt decl $
do { traceTc "Validity of 1" (ppr decl)
; env <- getGblEnv
; traceTc "Validity of 1a" (ppr (tcg_type_env env))
; thing <- tcLookupLocatedGlobal (tcdLName decl)
; traceTc "Validity of 2" (ppr decl)
; traceTc "Validity of" (ppr thing)
; case thing of
ATyCon tc -> do
traceTc " of kind" (ppr (tyConKind tc))
checkValidTyCon tc
case decl of
ClassDecl { tcdATs = ats } -> mapM_ (addLocM checkValidTyCl) ats
_ -> return ()
AnId _ -> return ()
_ -> panic "checkValidTyCl"
; traceTc "Done validity of" (ppr thing)
}
checkValidTyCon :: TyCon -> TcM ()
checkValidTyCon tc
| Just cl <- tyConClass_maybe tc
= checkValidClass cl
| isSynTyCon tc
= case synTyConRhs tc of
SynFamilyTyCon {} -> return ()
SynonymTyCon ty -> checkValidType syn_ctxt ty
| otherwise
= do {
; traceTc "cvtc1" (ppr tc)
; checkValidTheta (DataTyCtxt name) (tyConStupidTheta tc)
; traceTc "cvtc2" (ppr tc)
; mapM_ (checkValidDataCon tc) data_cons
; mapM_ check_fields groups }
where
syn_ctxt = TySynCtxt name
name = tyConName tc
data_cons = tyConDataCons tc
groups = equivClasses cmp_fld (concatMap get_fields data_cons)
cmp_fld (f1,_) (f2,_) = f1 `compare` f2
get_fields con = dataConFieldLabels con `zip` repeat con
check_fields ((label, con1) : other_fields)
= recoverM (return ()) $ mapM_ checkOne other_fields
where
(tvs1, _, _, res1) = dataConSig con1
ts1 = mkVarSet tvs1
fty1 = dataConFieldType con1 label
checkOne (_, con2)
= do { checkFieldCompat label con1 con2 ts1 res1 res2 fty1 fty2
; checkFieldCompat label con2 con1 ts2 res2 res1 fty2 fty1 }
where
(tvs2, _, _, res2) = dataConSig con2
ts2 = mkVarSet tvs2
fty2 = dataConFieldType con2 label
check_fields [] = panic "checkValidTyCon/check_fields []"
checkFieldCompat :: Name -> DataCon -> DataCon -> TyVarSet
-> Type -> Type -> Type -> Type -> TcM ()
checkFieldCompat fld con1 con2 tvs1 res1 res2 fty1 fty2
= do { checkTc (isJust mb_subst1) (resultTypeMisMatch fld con1 con2)
; checkTc (isJust mb_subst2) (fieldTypeMisMatch fld con1 con2) }
where
mb_subst1 = tcMatchTy tvs1 res1 res2
mb_subst2 = tcMatchTyX tvs1 (expectJust "checkFieldCompat" mb_subst1) fty1 fty2
checkValidDataCon :: TyCon -> DataCon -> TcM ()
checkValidDataCon tc con
= setSrcSpan (srcLocSpan (getSrcLoc con)) $
addErrCtxt (dataConCtxt con) $
do { traceTc "Validity of data con" (ppr con)
; let tc_tvs = tyConTyVars tc
res_ty_tmpl = mkFamilyTyConApp tc (mkTyVarTys tc_tvs)
actual_res_ty = dataConOrigResTy con
; checkTc (isJust (tcMatchTy (mkVarSet tc_tvs)
res_ty_tmpl
actual_res_ty))
(badDataConTyCon con res_ty_tmpl actual_res_ty)
; checkValidMonoType (dataConOrigResTy con)
; checkValidType ctxt (dataConUserType con)
; when (isNewTyCon tc) (checkNewDataCon con)
; mapM_ check_bang (dataConStrictMarks con `zip` [1..])
; traceTc "Done validity of data con" (ppr con <+> ppr (dataConRepType con))
}
where
ctxt = ConArgCtxt (dataConName con)
check_bang (HsUnpackFailed, n) = addWarnTc (cant_unbox_msg n)
check_bang _ = return ()
cant_unbox_msg n = sep [ ptext (sLit "Ignoring unusable UNPACK pragma on the")
, speakNth n <+> ptext (sLit "argument of") <+> quotes (ppr con)]
checkNewDataCon :: DataCon -> TcM ()
checkNewDataCon con
= do { checkTc (isSingleton arg_tys) (newtypeFieldErr con (length arg_tys))
; checkTc (null eq_spec) (newtypePredError con)
; checkTc (null ex_tvs && null theta) (newtypeExError con)
; checkTc (not (any isBanged (dataConStrictMarks con)))
(newtypeStrictError con)
}
where
(_univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty) = dataConFullSig con
checkValidClass :: Class -> TcM ()
checkValidClass cls
= do { constrained_class_methods <- xoptM Opt_ConstrainedClassMethods
; multi_param_type_classes <- xoptM Opt_MultiParamTypeClasses
; fundep_classes <- xoptM Opt_FunctionalDependencies
; checkTc (notNull tyvars) (nullaryClassErr cls)
; checkTc (multi_param_type_classes || unary) (classArityErr cls)
; checkTc (fundep_classes || null fundeps) (classFunDepsErr cls)
; checkValidTheta (ClassSCCtxt (className cls)) theta
; checkClassCycleErrs cls
; mapM_ (check_op constrained_class_methods) op_stuff
; mapM_ check_at_defs at_stuff }
where
(tyvars, fundeps, theta, _, at_stuff, op_stuff) = classExtraBigSig cls
unary = isSingleton (snd (splitKiTyVars tyvars))
check_op constrained_class_methods (sel_id, dm)
= addErrCtxt (classOpCtxt sel_id tau) $ do
{ checkValidTheta ctxt (tail theta)
; traceTc "class op type" (ppr op_ty <+> ppr tau)
; checkValidType ctxt tau
; let grown_tyvars = growThetaTyVars theta (mkVarSet tyvars)
; checkTc (tyVarsOfType tau `intersectsVarSet` grown_tyvars)
(noClassTyVarErr cls sel_id)
; case dm of
GenDefMeth dm_name -> do { dm_id <- tcLookupId dm_name
; checkValidType (FunSigCtxt op_name) (idType dm_id) }
_ -> return ()
}
where
ctxt = FunSigCtxt op_name
op_name = idName sel_id
op_ty = idType sel_id
(_,theta1,tau1) = tcSplitSigmaTy op_ty
(_,theta2,tau2) = tcSplitSigmaTy tau1
(theta,tau) | constrained_class_methods = (theta1 ++ theta2, tau2)
| otherwise = (theta1, mkPhiTy (tail theta1) tau1)
check_at_defs (fam_tc, defs)
= do mapM_ (\(ATD _tvs pats rhs _loc) -> checkValidFamInst pats rhs) defs
tcAddDefaultAssocDeclCtxt (tyConName fam_tc) $
mapM_ (check_loc_at_def fam_tc) defs
check_loc_at_def fam_tc (ATD _tvs pats _rhs loc)
= setSrcSpan loc $ zipWithM_ check_arg (tyConTyVars fam_tc) pats
check_arg fam_tc_tv at_ty
= checkTc ( not (fam_tc_tv `elem` tyvars)
|| mkTyVarTy fam_tc_tv `eqType` at_ty)
(wrongATArgErr at_ty (mkTyVarTy fam_tc_tv))
checkFamFlag :: Name -> TcM ()
checkFamFlag tc_name
= do { idx_tys <- xoptM Opt_TypeFamilies
; checkTc idx_tys err_msg }
where
err_msg = hang (ptext (sLit "Illegal family declaraion for") <+> quotes (ppr tc_name))
2 (ptext (sLit "Use -XTypeFamilies to allow indexed type families"))
\end{code}
%************************************************************************
%* *
Building record selectors
%* *
%************************************************************************
\begin{code}
mkDefaultMethodIds :: [TyThing] -> [Id]
mkDefaultMethodIds things
= [ mkExportedLocalId dm_name (idType sel_id)
| ATyCon tc <- things
, Just cls <- [tyConClass_maybe tc]
, (sel_id, DefMeth dm_name) <- classOpItems cls ]
\end{code}
Note [Default method Ids and Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (Trac #4169):
class Numeric a where
fromIntegerNum :: a
fromIntegerNum = ...
ast :: Q [Dec]
ast = [d| instance Numeric Int |]
When we typecheck 'ast' we have done the first pass over the class decl
(in tcTyClDecls), but we have not yet typechecked the default-method
declarations (becuase they can mention value declarations). So we
must bring the default method Ids into scope first (so they can be seen
when typechecking the [d| .. |] quote, and typecheck them later.
\begin{code}
mkRecSelBinds :: [TyThing] -> HsValBinds Name
mkRecSelBinds tycons
= ValBindsOut [(NonRecursive, b) | b <- binds] sigs
where
(sigs, binds) = unzip rec_sels
rec_sels = map mkRecSelBind [ (tc,fld)
| ATyCon tc <- tycons
, fld <- tyConFields tc ]
mkRecSelBind :: (TyCon, FieldLabel) -> (LSig Name, LHsBinds Name)
mkRecSelBind (tycon, sel_name)
= (L sel_loc (IdSig sel_id), unitBag (L sel_loc sel_bind))
where
sel_loc = getSrcSpan tycon
sel_id = Var.mkExportedLocalVar rec_details sel_name
sel_ty vanillaIdInfo
rec_details = RecSelId { sel_tycon = tycon, sel_naughty = is_naughty }
all_cons = tyConDataCons tycon
cons_w_field = [ con | con <- all_cons
, sel_name `elem` dataConFieldLabels con ]
con1 = ASSERT( not (null cons_w_field) ) head cons_w_field
field_ty = dataConFieldType con1 sel_name
data_ty = dataConOrigResTy con1
data_tvs = tyVarsOfType data_ty
is_naughty = not (tyVarsOfType field_ty `subVarSet` data_tvs)
(field_tvs, field_theta, field_tau) = tcSplitSigmaTy field_ty
sel_ty | is_naughty = unitTy
| otherwise = mkForAllTys (varSetElemsKvsFirst $
data_tvs `extendVarSetList` field_tvs) $
mkPhiTy (dataConStupidTheta con1) $
mkPhiTy field_theta $
mkFunTy data_ty field_tau
sel_bind | is_naughty = mkTopFunBind sel_lname [mkSimpleMatch [] unit_rhs]
| otherwise = mkTopFunBind sel_lname (map mk_match cons_w_field ++ deflt)
mk_match con = mkSimpleMatch [noLoc (mk_sel_pat con)]
(noLoc (HsVar field_var))
mk_sel_pat con = ConPatIn (noLoc (getName con)) (RecCon rec_fields)
rec_fields = HsRecFields { rec_flds = [rec_field], rec_dotdot = Nothing }
rec_field = HsRecField { hsRecFieldId = sel_lname
, hsRecFieldArg = nlVarPat field_var
, hsRecPun = False }
sel_lname = L sel_loc sel_name
field_var = mkInternalName (mkBuiltinUnique 1) (getOccName sel_name) sel_loc
deflt | not (any is_unused all_cons) = []
| otherwise = [mkSimpleMatch [nlWildPat]
(nlHsApp (nlHsVar (getName rEC_SEL_ERROR_ID))
(nlHsLit msg_lit))]
is_unused con = not (con `elem` cons_w_field
|| dataConCannotMatch inst_tys con)
inst_tys = tyConAppArgs data_ty
unit_rhs = mkLHsTupleExpr []
msg_lit = HsStringPrim $ mkFastString $
occNameString (getOccName sel_name)
tyConFields :: TyCon -> [FieldLabel]
tyConFields tc
| isAlgTyCon tc = nub (concatMap dataConFieldLabels (tyConDataCons tc))
| otherwise = []
\end{code}
Note [Polymorphic selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When a record has a polymorphic field, we pull the foralls out to the front.
data T = MkT { f :: forall a. [a] -> a }
Then f :: forall a. T -> [a] -> a
NOT f :: T -> forall a. [a] -> a
This is horrid. It's only needed in deeply obscure cases, which I hate.
The only case I know is test tc163, which is worth looking at. It's far
from clear that this test should succeed at all!
Note [Naughty record selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "naughty" field is one for which we can't define a record
selector, because an existential type variable would escape. For example:
data T = forall a. MkT { x,y::a }
We obviously can't define
x (MkT v _) = v
Nevertheless we *do* put a RecSelId into the type environment
so that if the user tries to use 'x' as a selector we can bleat
helpfully, rather than saying unhelpfully that 'x' is not in scope.
Hence the sel_naughty flag, to identify record selectors that don't really exist.
In general, a field is "naughty" if its type mentions a type variable that
isn't in the result type of the constructor. Note that this *allows*
GADT record selectors (Note [GADT record selectors]) whose types may look
like sel :: T [a] -> a
For naughty selectors we make a dummy binding
sel = ()
for naughty selectors, so that the later type-check will add them to the
environment, and they'll be exported. The function is never called, because
the tyepchecker spots the sel_naughty field.
Note [GADT record selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For GADTs, we require that all constructors with a common field 'f' have the same
result type (modulo alpha conversion). [Checked in TcTyClsDecls.checkValidTyCon]
E.g.
data T where
T1 { f :: Maybe a } :: T [a]
T2 { f :: Maybe a, y :: b } :: T [a]
T3 :: T Int
and now the selector takes that result type as its argument:
f :: forall a. T [a] -> Maybe a
Details: the "real" types of T1,T2 are:
T1 :: forall r a. (r~[a]) => a -> T r
T2 :: forall r a b. (r~[a]) => a -> b -> T r
So the selector loooks like this:
f :: forall a. T [a] -> Maybe a
f (a:*) (t:T [a])
= case t of
T1 c (g:[a]~[c]) (v:Maybe c) -> v `cast` Maybe (right (sym g))
T2 c d (g:[a]~[c]) (v:Maybe c) (w:d) -> v `cast` Maybe (right (sym g))
T3 -> error "T3 does not have field f"
Note the forall'd tyvars of the selector are just the free tyvars
of the result type; there may be other tyvars in the constructor's
type (e.g. 'b' in T2).
Note the need for casts in the result!
Note [Selector running example]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's OK to combine GADTs and type families. Here's a running example:
data instance T [a] where
T1 { fld :: b } :: T [Maybe b]
The representation type looks like this
data :R7T a where
T1 { fld :: b } :: :R7T (Maybe b)
and there's coercion from the family type to the representation type
:CoR7T a :: T [a] ~ :R7T a
The selector we want for fld looks like this:
fld :: forall b. T [Maybe b] -> b
fld = /\b. \(d::T [Maybe b]).
case d `cast` :CoR7T (Maybe b) of
T1 (x::b) -> x
The scrutinee of the case has type :R7T (Maybe b), which can be
gotten by appying the eq_spec to the univ_tvs of the data con.
%************************************************************************
%* *
Error messages
%* *
%************************************************************************
\begin{code}
tcAddDefaultAssocDeclCtxt :: Name -> TcM a -> TcM a
tcAddDefaultAssocDeclCtxt name thing_inside
= addErrCtxt ctxt thing_inside
where
ctxt = hsep [ptext (sLit "In the type synonym instance default declaration for"),
quotes (ppr name)]
resultTypeMisMatch :: Name -> DataCon -> DataCon -> SDoc
resultTypeMisMatch field_name con1 con2
= vcat [sep [ptext (sLit "Constructors") <+> ppr con1 <+> ptext (sLit "and") <+> ppr con2,
ptext (sLit "have a common field") <+> quotes (ppr field_name) <> comma],
nest 2 $ ptext (sLit "but have different result types")]
fieldTypeMisMatch :: Name -> DataCon -> DataCon -> SDoc
fieldTypeMisMatch field_name con1 con2
= sep [ptext (sLit "Constructors") <+> ppr con1 <+> ptext (sLit "and") <+> ppr con2,
ptext (sLit "give different types for field"), quotes (ppr field_name)]
dataConCtxt :: Outputable a => a -> SDoc
dataConCtxt con = ptext (sLit "In the definition of data constructor") <+> quotes (ppr con)
classOpCtxt :: Var -> Type -> SDoc
classOpCtxt sel_id tau = sep [ptext (sLit "When checking the class method:"),
nest 2 (ppr sel_id <+> dcolon <+> ppr tau)]
nullaryClassErr :: Class -> SDoc
nullaryClassErr cls
= ptext (sLit "No parameters for class") <+> quotes (ppr cls)
classArityErr :: Class -> SDoc
classArityErr cls
= vcat [ptext (sLit "Too many parameters for class") <+> quotes (ppr cls),
parens (ptext (sLit "Use -XMultiParamTypeClasses to allow multi-parameter classes"))]
classFunDepsErr :: Class -> SDoc
classFunDepsErr cls
= vcat [ptext (sLit "Fundeps in class") <+> quotes (ppr cls),
parens (ptext (sLit "Use -XFunctionalDependencies to allow fundeps"))]
noClassTyVarErr :: Class -> Var -> SDoc
noClassTyVarErr clas op
= sep [ptext (sLit "The class method") <+> quotes (ppr op),
ptext (sLit "mentions none of the type variables of the class") <+>
ppr clas <+> hsep (map ppr (classTyVars clas))]
recSynErr :: [LTyClDecl Name] -> TcRn ()
recSynErr syn_decls
= setSrcSpan (getLoc (head sorted_decls)) $
addErr (sep [ptext (sLit "Cycle in type synonym declarations:"),
nest 2 (vcat (map ppr_decl sorted_decls))])
where
sorted_decls = sortLocated syn_decls
ppr_decl (L loc decl) = ppr loc <> colon <+> ppr decl
recClsErr :: [TyCon] -> TcRn ()
recClsErr cycles
= addErr (sep [ptext (sLit "Cycle in class declaration (via superclasses):"),
nest 2 (hsep (intersperse (text "->") (map ppr cycles)))])
sortLocated :: [Located a] -> [Located a]
sortLocated things = sortLe le things
where
le (L l1 _) (L l2 _) = l1 <= l2
badDataConTyCon :: DataCon -> Type -> Type -> SDoc
badDataConTyCon data_con res_ty_tmpl actual_res_ty
= hang (ptext (sLit "Data constructor") <+> quotes (ppr data_con) <+>
ptext (sLit "returns type") <+> quotes (ppr actual_res_ty))
2 (ptext (sLit "instead of an instance of its parent type") <+> quotes (ppr res_ty_tmpl))
badATErr :: Name -> Name -> SDoc
badATErr clas op
= hsep [ptext (sLit "Class"), quotes (ppr clas),
ptext (sLit "does not have an associated type"), quotes (ppr op)]
badGadtDecl :: Name -> SDoc
badGadtDecl tc_name
= vcat [ ptext (sLit "Illegal generalised algebraic data declaration for") <+> quotes (ppr tc_name)
, nest 2 (parens $ ptext (sLit "Use -XGADTs to allow GADTs")) ]
badExistential :: Located Name -> SDoc
badExistential con_name
= hang (ptext (sLit "Data constructor") <+> quotes (ppr con_name) <+>
ptext (sLit "has existential type variables, a context, or a specialised result type"))
2 (parens $ ptext (sLit "Use -XExistentialQuantification or -XGADTs to allow this"))
badStupidTheta :: Name -> SDoc
badStupidTheta tc_name
= ptext (sLit "A data type declared in GADT style cannot have a context:") <+> quotes (ppr tc_name)
newtypeConError :: Name -> Int -> SDoc
newtypeConError tycon n
= sep [ptext (sLit "A newtype must have exactly one constructor,"),
nest 2 $ ptext (sLit "but") <+> quotes (ppr tycon) <+> ptext (sLit "has") <+> speakN n ]
newtypeExError :: DataCon -> SDoc
newtypeExError con
= sep [ptext (sLit "A newtype constructor cannot have an existential context,"),
nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does")]
newtypeStrictError :: DataCon -> SDoc
newtypeStrictError con
= sep [ptext (sLit "A newtype constructor cannot have a strictness annotation,"),
nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does")]
newtypePredError :: DataCon -> SDoc
newtypePredError con
= sep [ptext (sLit "A newtype constructor must have a return type of form T a1 ... an"),
nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does not")]
newtypeFieldErr :: DataCon -> Int -> SDoc
newtypeFieldErr con_name n_flds
= sep [ptext (sLit "The constructor of a newtype must have exactly one field"),
nest 2 $ ptext (sLit "but") <+> quotes (ppr con_name) <+> ptext (sLit "has") <+> speakN n_flds]
badSigTyDecl :: Name -> SDoc
badSigTyDecl tc_name
= vcat [ ptext (sLit "Illegal kind signature") <+>
quotes (ppr tc_name)
, nest 2 (parens $ ptext (sLit "Use -XKindSignatures to allow kind signatures")) ]
emptyConDeclsErr :: Name -> SDoc
emptyConDeclsErr tycon
= sep [quotes (ppr tycon) <+> ptext (sLit "has no constructors"),
nest 2 $ ptext (sLit "(-XEmptyDataDecls permits this)")]
wrongATArgErr :: Type -> Type -> SDoc
wrongATArgErr ty instTy =
sep [ ptext (sLit "Type indexes must match class instance head")
, ptext (sLit "Found") <+> quotes (ppr ty)
<+> ptext (sLit "but expected") <+> quotes (ppr instTy)
]
wrongNumberOfParmsErr :: Arity -> SDoc
wrongNumberOfParmsErr exp_arity
= ptext (sLit "Number of parameters must match family declaration; expected")
<+> ppr exp_arity
wrongKindOfFamily :: TyCon -> SDoc
wrongKindOfFamily family
= ptext (sLit "Wrong category of family instance; declaration was for a")
<+> kindOfFamily
where
kindOfFamily | isSynTyCon family = ptext (sLit "type synonym")
| isAlgTyCon family = ptext (sLit "data type")
| otherwise = pprPanic "wrongKindOfFamily" (ppr family)
\end{code}