% % (c) The University of Glasgow 2006 % (c) The AQUA Project, Glasgow University, 1996-1998 % TcTyClsDecls: Typecheck type and class declarations \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module TcTyClsDecls (
	tcTyAndClassDecls, tcAddImplicits,

	-- Functions used by TcInstDcls to check 
	-- data/type family instance declarations
        kcDataDecl, tcConDecls, dataDeclChecks, checkValidTyCon,
        tcSynFamInstDecl, tcFamTyPats, 
        wrongKindOfFamily, badATErr, wrongATArgErr
    ) where

#include "HsVersions.h"

import HsSyn
import HscTypes
import BuildTyCl
import TcUnify
import TcRnMonad
import TcEnv
import TcBinds( tcRecSelBinds )
import TcTyDecls
import TcClassDcl
import TcHsType
import TcMType
import TcType
import TysWiredIn( unitTy )
import Type
import Kind
import Class
import TyCon
import DataCon
import Id
import MkCore		( rEC_SEL_ERROR_ID )
import IdInfo
import Var
import VarSet
import Name
import NameSet
import NameEnv
import Outputable
import Maybes
import Unify
import Util
import SrcLoc
import ListSetOps
import Digraph
import DynFlags
import FastString
import Unique		( mkBuiltinUnique )
import BasicTypes

import Bag
import Control.Monad
import Data.List
\end{code} %************************************************************************ %* * \subsection{Type checking for type and class declarations} %* * %************************************************************************ Note [Grouping of type and class declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcTyAndClassDecls is called on a list of `TyClGroup`s. Each group is a strongly connected component of mutually dependent types and classes. We kind check and type check each group separately to enhance kind polymorphism. Take the following example: type Id a = a data X = X (Id Int) If we were to kind check the two declarations together, we would give Id the kind * -> *, since we apply it to an Int in the definition of X. But we can do better than that, since Id really is kind polymorphic, and should get kind forall (k::BOX). k -> k. Since it does not depend on anything else, it can be kind-checked by itself, hence getting the most general kind. We then kind check X, which works fine because we then know the polymorphic kind of Id, and simply instantiate k to *. \begin{code}

tcTyAndClassDecls :: ModDetails
                  -> [TyClGroup Name]   -- Mutually-recursive groups in dependency order
                  -> TcM TcGblEnv       -- Input env extended by types and classes
                                        -- and their implicit Ids,DataCons
-- Fails if there are any errors
tcTyAndClassDecls boot_details decls_s
  = checkNoErrs $ do    -- The code recovers internally, but if anything gave rise to
                        -- an error we'd better stop now, to avoid a cascade
  { let tyclds_s = map (filterOut (isFamInstDecl . unLoc)) decls_s
                   -- Remove family instance decls altogether
                   -- They are dealt with by TcInstDcls
  ; fold_env tyclds_s }  -- type check each group in dependency order folding the global env
  where
    fold_env :: [TyClGroup Name] -> TcM TcGblEnv
    fold_env [] = getGblEnv
    fold_env (tyclds:tyclds_s)
      = do { tcg_env <- tcTyClGroup boot_details tyclds
           ; setGblEnv tcg_env $ fold_env tyclds_s }
             -- remaining groups are typecheck in the extended global env

tcTyClGroup :: ModDetails -> TyClGroup Name -> TcM TcGblEnv
-- Typecheck one strongly-connected component of type and class decls
tcTyClGroup boot_details tyclds
  = do {    -- Step 1: kind-check this group and returns the final
            -- (possibly-polymorphic) kind of each TyCon and Class
            -- See Note [Kind checking for type and class decls]
         names_w_poly_kinds <- kcTyClGroup tyclds
       ; traceTc "tcTyAndCl generalized kinds" (ppr names_w_poly_kinds)

	    -- Step 2: type-check all groups together, returning 
	    -- the final TyCons and Classes
       ; tyclss <- fixM $ \ rec_tyclss -> do
           { let rec_flags = calcRecFlags boot_details rec_tyclss

                 -- Populate environment with knot-tied ATyCon for TyCons
                 -- NB: if the decls mention any ill-staged data cons
                 -- (see Note [ANothing] in typecheck/TcRnTypes.lhs) we
                 -- will have failed already in kcTyClGroup, so no worries here
           ; tcExtendRecEnv (zipRecTyClss tyclds rec_tyclss) $

                 -- Also extend the local type envt with bindings giving
                 -- the (polymorphic) kind of each knot-tied TyCon or Class
		 -- See Note [Type checking recursive type and class declarations]
	     tcExtendKindEnv names_w_poly_kinds              $

                 -- Kind and type check declarations for this group
             concatMapM (tcTyClDecl rec_flags) tyclds }

           -- Step 3: Perform the validity chebck
           -- We can do this now because we are done with the recursive knot
           -- Do it before Step 4 (adding implicit things) because the latter
           -- expects well-formed TyCons
       ; tcExtendGlobalEnv tyclss $ do
       { traceTc "Starting validity check" (ppr tyclss)
       ; mapM_ (addLocM checkValidTyCl) tyclds

           -- Step 4: Add the implicit things;
           -- we want them in the environment because
           -- they may be mentioned in interface files
       ; tcExtendGlobalValEnv (mkDefaultMethodIds tyclss) $
         tcAddImplicits tyclss } }

tcAddImplicits :: [TyThing] -> TcM TcGblEnv
tcAddImplicits tyclss
 = tcExtendGlobalEnvImplicit implicit_things $ 
   tcRecSelBinds rec_sel_binds
 where
   implicit_things = concatMap implicitTyThings tyclss
   rec_sel_binds   = mkRecSelBinds tyclss

zipRecTyClss :: TyClGroup Name
             -> [TyThing]           -- Knot-tied
             -> [(Name,TyThing)]
-- Build a name-TyThing mapping for the things bound by decls
-- being careful not to look at the [TyThing]
-- The TyThings in the result list must have a visible ATyCon,
-- because typechecking types (in, say, tcTyClDecl) looks at this outer constructor
zipRecTyClss decls rec_things
  = [ (name, ATyCon (get name))
    | name <- tyClsBinders decls ]
  where
    rec_type_env :: TypeEnv
    rec_type_env = mkTypeEnv rec_things

    get name = case lookupTypeEnv rec_type_env name of
                 Just (ATyCon tc) -> tc
                 other            -> pprPanic "zipRecTyClss" (ppr name <+> ppr other)

tyClsBinders :: TyClGroup Name -> [Name]
-- Just the tycon and class binders of a group (not the data constructors)
tyClsBinders decls
  = concatMap get decls
  where
    get (L _ (ClassDecl { tcdLName = L _ n, tcdATs = ats })) = n : tyClsBinders ats
    get (L _ d)                                              = [tcdName d]
\end{code} %************************************************************************ %* * Kind checking %* * %************************************************************************ Note [Kind checking for type and class decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Kind checking is done thus: 1. Make up a kind variable for each parameter of the *data* type, and class, decls, and extend the kind environment (which is in the TcLclEnv) 2. Dependency-analyse the type *synonyms* (which must be non-recursive), and kind-check them in dependency order. Extend the kind envt. 3. Kind check the data type and class decls Synonyms are treated differently to data type and classes, because a type synonym can be an unboxed type type Foo = Int# and a kind variable can't unify with UnboxedTypeKind So we infer their kinds in dependency order We need to kind check all types in the mutually recursive group before we know the kind of the type variables. For example: class C a where op :: D b => a -> b -> b class D c where bop :: (Monad c) => ... Here, the kind of the locally-polymorphic type variable "b" depends on *all the uses of class D*. For example, the use of Monad c in bop's type signature means that D must have kind Type->Type. However type synonyms work differently. They can have kinds which don't just involve (->) and *: type R = Int# -- Kind # type S a = Array# a -- Kind * -> # type T a b = (# a,b #) -- Kind * -> * -> (# a,b #) So we must infer their kinds from their right-hand sides *first* and then use them, whereas for the mutually recursive data types D we bring into scope kind bindings D -> k, where k is a kind variable, and do inference. Type families ~~~~~~~~~~~~~ This treatment of type synonyms only applies to Haskell 98-style synonyms. General type functions can be recursive, and hence, appear in `alg_decls'. The kind of a type family is solely determinded by its kind signature; hence, only kind signatures participate in the construction of the initial kind environment (as constructed by `getInitialKind'). In fact, we ignore instances of families altogether in the following. However, we need to include the kinds of *associated* families into the construction of the initial kind environment. (This is handled by `allDecls'). \begin{code}
kcTyClGroup :: TyClGroup Name -> TcM [(Name,Kind)]
-- Kind check this group, kind generalize, and return the resulting local env
-- See Note [Kind checking for type and class decls]
kcTyClGroup decls
  = do	{ mod <- getModule
	; traceTc "kcTyClGroup" (ptext (sLit "module") <+> ppr mod $$ vcat (map ppr decls))

          -- Kind checking; 
	  --    1. Bind kind variables for non-synonyms
          --    2. Kind-check synonyms, and bind kinds of those synonyms
          --    3. Kind-check non-synonyms
	  --    4. Generalise the inferred kinds
          -- See Note [Kind checking for type and class decls]

	  -- Step 1: Bind kind variables for non-synonyms
        ; let (syn_decls, non_syn_decls) = partition (isSynDecl . unLoc) decls
	; initial_kinds <- concatMapM getInitialKinds non_syn_decls
	; tcExtendTcTyThingEnv initial_kinds $  do

	   -- Step 2: kind-check the synonyms, and extend envt
        { tcl_env <- kcSynDecls (calcSynCycles syn_decls)
        ; setLclEnv tcl_env $  do

	   -- Step 3: kind-check the synonyms
        { mapM_ (wrapLocM kcTyClDecl) non_syn_decls

	     -- Step 4: generalisation
	     -- Kind checking done for this group
             -- Now we have to kind generalize the flexis
        ; mapM generalise (tyClsBinders decls) }}}

  where
    generalise :: Name -> TcM (Name, Kind)
    generalise name
      = do { traceTc "Generalise type of" (ppr name)
           ; thing <- tcLookup name
           ; let kc_kind = case thing of
                               AThing k -> k
                               _ -> pprPanic "kcTyClGroup" (ppr thing)
           ; (kvs, kc_kind') <- kindGeneralizeKind kc_kind
           ; return (name, mkForAllTys kvs kc_kind') }

getInitialKinds :: LTyClDecl Name -> TcM [(Name, TcTyThing)]
-- Allocate a fresh kind variable for each TyCon and Class
-- For each tycon, return   (tc, AThing k)
--                 where k is the kind of tc, derived from the LHS
--                       of the definition (and probably including
--                       kind unification variables)
--      Example: data T a b = ...
--      return (T, kv1 -> kv2 -> *)
--
-- ALSO for each datacon, return (dc, ANothing)
--      See Note [ANothing] in TcRnTypes

getInitialKinds (L _ decl)
  = do 	{ arg_kinds <- mapM (mk_arg_kind . unLoc) (tyClDeclTyVars decl)
	; res_kind  <- mk_res_kind decl
        ; let main_pair = (tcdName decl, AThing (mkArrowKinds arg_kinds res_kind))
	; inner_pairs <- get_inner_kinds decl
	; return (main_pair : inner_pairs) }
  where
    mk_arg_kind (UserTyVar _ _)        = newMetaKindVar
    mk_arg_kind (KindedTyVar _ kind _) = scDsLHsKind kind

    mk_res_kind (TyFamily { tcdKind    = Just kind }) = scDsLHsKind kind
    mk_res_kind (TyData   { tcdKindSig = Just kind }) = scDsLHsKind kind
	-- On GADT-style declarations we allow a kind signature
	--	data T :: *->* where { ... }
    mk_res_kind (ClassDecl {}) = return constraintKind
    mk_res_kind _              = return liftedTypeKind

    get_inner_kinds :: TyClDecl Name -> TcM [(Name,TcTyThing)]
    get_inner_kinds (TyData { tcdCons = cons })
       = return [ (unLoc (con_name con), ANothing) | L _ con <- cons ]
    get_inner_kinds (ClassDecl { tcdATs = ats })
       = concatMapM getInitialKinds ats
    get_inner_kinds _
       = return []

kcLookupKind :: Located Name -> TcM Kind
kcLookupKind nm = do
    tc_ty_thing <- tcLookupLocated nm
    case tc_ty_thing of
        AThing k            -> return k
        AGlobal (ATyCon tc) -> return (tyConKind tc)
        _                   -> pprPanic "kcLookupKind" (ppr tc_ty_thing)


----------------
kcSynDecls :: [SCC (LTyClDecl Name)] -> TcM (TcLclEnv)	-- Kind bindings
kcSynDecls [] = getLclEnv
kcSynDecls (group : groups)
  = do	{ nk <- kcSynDecl1 group
	; tcExtendKindEnv [nk] (kcSynDecls groups) }

----------------
kcSynDecl1 :: SCC (LTyClDecl Name)
	   -> TcM (Name,TcKind) -- Kind bindings
kcSynDecl1 (AcyclicSCC (L _ decl)) = kcSynDecl decl
kcSynDecl1 (CyclicSCC decls)       = do { recSynErr decls; failM }
	   	      		     -- Fail here to avoid error cascade
				     -- of out-of-scope tycons

kcSynDecl :: TyClDecl Name -> TcM (Name, TcKind)
kcSynDecl decl	      -- Vanilla type synonyoms only, not family instances
  = tcAddDeclCtxt decl $
    kcHsTyVars (tcdTyVars decl) $ \ k_tvs ->
    do { traceTc "kcd1" (ppr (unLoc (tcdLName decl)) <+> brackets (ppr (tcdTyVars decl))
			<+> brackets (ppr k_tvs))
       ; (_, rhs_kind) <- kcLHsType (tcdSynRhs decl)
       ; traceTc "kcd2" (ppr (tcdName decl))
       ; let tc_kind = foldr (mkArrowKind . hsTyVarKind . unLoc) rhs_kind k_tvs
       ; return (tcdName decl, tc_kind) }

------------------------------------------------------------------------
kcTyClDecl :: TyClDecl Name -> TcM ()
-- This function is used solely for its side effect on kind variables

kcTyClDecl (ForeignType {})   
  = return ()
kcTyClDecl decl@(TyFamily {}) 
  = kcFamilyDecl [] decl      -- the empty list signals a toplevel decl

kcTyClDecl decl@(TyData {})
  = ASSERT( not . isFamInstDecl $ decl )   -- must not be a family instance
    kcTyClDeclBody decl	$ \_ -> kcDataDecl decl

kcTyClDecl decl@(ClassDecl {tcdCtxt = ctxt, tcdSigs = sigs, tcdATs = ats})
  = kcTyClDeclBody decl	$ \ tvs' ->
    do	{ discardResult (kcHsContext ctxt)
	; mapM_ (wrapLocM (kcFamilyDecl tvs')) ats
	; mapM_ (wrapLocM kc_sig) sigs }
  where
    kc_sig (TypeSig _ op_ty)    = discardResult (kcHsLiftedSigType op_ty)
    kc_sig (GenericSig _ op_ty) = discardResult (kcHsLiftedSigType op_ty)
    kc_sig _                    = return ()

kcTyClDecl (TySynonym {})     -- Type synonyms are never passed to kcTyClDecl
  = panic "kcTyClDecl TySynonym"

--------------------
kcTyClDeclBody :: TyClDecl Name
	       -> ([LHsTyVarBndr Name] -> TcM a)
	       -> TcM a
-- getInitialKind has made a suitably-shaped kind for the type or class
-- Unpack it, and attribute those kinds to the type variables
-- Extend the env with bindings for the tyvars, taken from
-- the kind of the tycon/class.  Give it to the thing inside, and 
-- check the result kind matches
kcTyClDeclBody decl thing_inside
  = tcAddDeclCtxt decl		$
    do 	{ tc_kind <- kcLookupKind (tcdLName decl)
	; let (kinds, _) = splitKindFunTys tc_kind
	      hs_tvs 	 = tcdTyVars decl
	      kinded_tvs = ASSERT( length kinds >= length hs_tvs )
			   zipWith add_kind hs_tvs kinds
	; tcExtendKindEnvTvs kinded_tvs thing_inside }
  where
    add_kind (L loc (UserTyVar n _))       k = L loc (UserTyVar n k)
    add_kind (L loc (KindedTyVar n hsk _)) k = L loc (KindedTyVar n hsk k)

-------------------
-- Kind check a data declaration, assuming that we already extended the
-- kind environment with the type variables of the left-hand side (these
-- kinded type variables are also passed as the second parameter).
--
kcDataDecl :: TyClDecl Name -> TcM ()
kcDataDecl (TyData {tcdND = new_or_data, tcdCtxt = ctxt, tcdCons = cons})
  = do	{ _ <- kcHsContext ctxt
	; _ <- mapM (wrapLocM (kcConDecl new_or_data)) cons
	; return () }
kcDataDecl d = pprPanic "kcDataDecl" (ppr d)

-------------------
kcConDecl :: NewOrData -> ConDecl Name -> TcM (ConDecl Name)
    -- doc comments are typechecked to Nothing here
kcConDecl new_or_data con_decl@(ConDecl { con_name = name, con_qvars = ex_tvs
                            , con_cxt = ex_ctxt, con_details = details, con_res = res })
  = addErrCtxt (dataConCtxt name) $
    kcHsTyVars ex_tvs $ \ex_tvs' ->
    do { ex_ctxt' <- kcHsContext ex_ctxt
       ; details' <- kc_con_details details
       ; res'     <- case res of
            ResTyH98 -> return ResTyH98
            ResTyGADT ty -> do { ty' <- kcHsSigType ty; return (ResTyGADT ty') }
       ; return (con_decl { con_qvars = ex_tvs', con_cxt = ex_ctxt'
                          , con_details = details', con_res = res' }) }
  where
    kc_con_details (PrefixCon btys)
        = do { btys' <- mapM kc_larg_ty btys
             ; return (PrefixCon btys') }
    kc_con_details (InfixCon bty1 bty2)
        = do { bty1' <- kc_larg_ty bty1
             ; bty2' <- kc_larg_ty bty2
             ; return (InfixCon bty1' bty2') }
    kc_con_details (RecCon fields)
        = do { fields' <- mapM kc_field fields
             ; return (RecCon fields') }

    kc_field (ConDeclField fld bty d) = do { bty' <- kc_larg_ty bty
                                           ; return (ConDeclField fld bty' d) }

    kc_larg_ty bty = case new_or_data of
                        DataType -> kcHsSigType bty
                        NewType  -> kcHsLiftedSigType bty
        -- Can't allow an unlifted type for newtypes, because we're effectively
        -- going to remove the constructor while coercing it to a lifted type.
        -- And newtypes can't be bang'd

-------------------
-- Kind check a family declaration or type family default declaration.
--
kcFamilyDecl :: [LHsTyVarBndr Name]  -- tyvars of enclosing class decl if any
             -> TyClDecl Name -> TcM ()
kcFamilyDecl classTvs decl@(TyFamily {tcdKind = kind})
  = kcTyClDeclBody decl $ \tvs' ->
    do { mapM_ unifyClassParmKinds tvs'
       ; discardResult (scDsLHsMaybeKind kind) }
  where
    unifyClassParmKinds (L _ tv) 
      | (n,k) <- hsTyVarNameKind tv
      , Just classParmKind <- lookup n classTyKinds 
      = let ctxt = ptext (    sLit "When kind checking family declaration")
                          <+> ppr (tcdLName decl)
        in addErrCtxt ctxt $ unifyKind k classParmKind >> return ()
      | otherwise = return ()
    classTyKinds = [hsTyVarNameKind tv | L _ tv <- classTvs]

kcFamilyDecl _ (TySynonym {}) = return ()
   -- We don't have to do anything here for type family defaults:
   -- tcClassATs will use tcAssocDecl to check them
kcFamilyDecl _ d = pprPanic "kcFamilyDecl" (ppr d)

-------------------
discardResult :: TcM a -> TcM ()
discardResult a = a >> return ()
\end{code} %************************************************************************ %* * \subsection{Type checking} %* * %************************************************************************ Note [Type checking recursive type and class declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At this point we have completed *kind-checking* of a mutually recursive group of type/class decls (done in kcTyClGroup). However, we discarded the kind-checked types (eg RHSs of data type decls); note that kcTyClDecl returns (). There are two reasons: * It's convenient, because we don't have to rebuild a kinded HsDecl (a fairly elaborate type) * It's necessary, because after kind-generalisation, the TyCons/Classes may now be kind-polymorphic, and hence need to be given kind arguments. Example: data T f a = MkT (f a) (T f a) During kind-checking, we give T the kind T :: k1 -> k2 -> * and figure out constraints on k1, k2 etc. Then we generalise to get T :: forall k. (k->*) -> k -> * So now the (T f a) in the RHS must be elaborated to (T k f a). However, during tcTyClDecl of T (above) we will be in a recursive "knot". So we aren't allowed to look at the TyCon T itself; we are only allowed to put it (lazily) in the returned structures. But when kind-checking the RHS of T's decl, we *do* need to know T's kind (so that we can correctly elaboarate (T k f a). How can we get T's kind without looking at T? Delicate answer: during tcTyClDecl, we extend *Global* env with T -> ATyCon (the (not yet built) TyCon for T) *Local* env with T -> AThing (polymorphic kind of T) Then: * During TcHsType.kcTyVar we look in the *local* env, to get the known kind for T. * But in TcHsType.ds_type (and ds_var_app in particular) we look in the *global* env to get the TyCon. But we must be careful not to force the TyCon or we'll get a loop. This fancy footwork (with two bindings for T) is only necesary for the TyCons or Classes of this recursive group. Earlier, finished groups, live in the global env only. \begin{code}
tcTyClDecl :: (Name -> RecFlag) -> LTyClDecl Name -> TcM [TyThing]
tcTyClDecl calc_isrec (L loc decl)
  = setSrcSpan loc $ tcAddDeclCtxt decl $
    traceTc "tcTyAndCl-x" (ppr decl) >>
    tcTyClDecl1 NoParentTyCon calc_isrec decl

  -- "type family" declarations
tcTyClDecl1 :: TyConParent -> (Name -> RecFlag) -> TyClDecl Name -> TcM [TyThing]
tcTyClDecl1 parent _calc_isrec
              (TyFamily {tcdFlavour = TypeFamily, tcdLName = L _ tc_name, tcdTyVars = tvs})
  = tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
  { traceTc "type family:" (ppr tc_name)
  ; checkFamFlag tc_name
  ; tycon <- buildSynTyCon tc_name tvs' SynFamilyTyCon kind parent Nothing
  ; return [ATyCon tycon] }

  -- "data family" declaration
tcTyClDecl1 parent _calc_isrec
              (TyFamily {tcdFlavour = DataFamily, tcdLName = L _ tc_name, tcdTyVars = tvs})
  = tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
  { traceTc "data family:" (ppr tc_name)
  ; checkFamFlag tc_name
  ; extra_tvs <- tcDataKindSig kind
  ; let final_tvs = tvs' ++ extra_tvs    -- we may not need these
  ; tycon <- buildAlgTyCon tc_name final_tvs []
               DataFamilyTyCon Recursive True parent Nothing
  ; return [ATyCon tycon] }

  -- "type" synonym declaration
tcTyClDecl1 _parent _calc_isrec
            (TySynonym {tcdLName = L _ tc_name, tcdTyVars = tvs, tcdSynRhs = rhs_ty})
  = ASSERT( isNoParent _parent )
    tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
    { rhs_ty' <- tcCheckHsType rhs_ty kind
    ; tycon <- buildSynTyCon tc_name tvs' (SynonymTyCon rhs_ty')
      	       		     kind NoParentTyCon Nothing
    ; return [ATyCon tycon] }

  -- "newtype" and "data"
  -- NB: not used for newtype/data instances (whether associated or not)
tcTyClDecl1 _parent calc_isrec
              (TyData { tcdND = new_or_data, tcdCtxt = ctxt, tcdTyVars = tvs
	              , tcdLName = L _ tc_name, tcdKindSig = mb_ksig, tcdCons = cons })
  = ASSERT( isNoParent _parent )
    let is_rec   = calc_isrec tc_name
        h98_syntax = consUseH98Syntax cons in
    tcTyClTyVars tc_name tvs $ \ tvs' kind -> do
  { extra_tvs <- tcDataKindSig kind
  ; let final_tvs = tvs' ++ extra_tvs
  ; stupid_theta <- tcHsKindedContext =<< kcHsContext ctxt
  ; kind_signatures <- xoptM Opt_KindSignatures
  ; existential_ok <- xoptM Opt_ExistentialQuantification
  ; gadt_ok      <- xoptM Opt_GADTs
  ; is_boot	 <- tcIsHsBoot	-- Are we compiling an hs-boot file?
  ; let ex_ok = existential_ok || gadt_ok	-- Data cons can have existential context

	-- Check that we don't use kind signatures without Glasgow extensions
  ; checkTc (kind_signatures || isNothing mb_ksig) (badSigTyDecl tc_name)

  ; dataDeclChecks tc_name new_or_data stupid_theta cons

  ; tycon <- fixM (\ tycon -> do
	{ let res_ty = mkTyConApp tycon (mkTyVarTys final_tvs)
	; data_cons <- tcConDecls new_or_data ex_ok tycon (final_tvs, res_ty) cons
	; tc_rhs <-
	    if null cons && is_boot 	      -- In a hs-boot file, empty cons means
	    then return totallyAbstractTyConRhs  -- "don't know"; hence totally Abstract
	    else case new_or_data of
		   DataType -> return (mkDataTyConRhs data_cons)
		   NewType  -> ASSERT( not (null data_cons) )
                               mkNewTyConRhs tc_name tycon (head data_cons)
	; buildAlgTyCon tc_name final_tvs stupid_theta tc_rhs is_rec
	    (not h98_syntax) NoParentTyCon Nothing
	})
  ; return [ATyCon tycon] }

tcTyClDecl1 _parent calc_isrec
            (ClassDecl { tcdLName = L _ class_name, tcdTyVars = tvs
	      , tcdCtxt = ctxt, tcdMeths = meths
	      , tcdFDs = fundeps, tcdSigs = sigs, tcdATs = ats, tcdATDefs = at_defs })
  = ASSERT( isNoParent _parent )
    do 
  { (tvs', ctxt', fds', sig_stuff, gen_dm_env)
       <- tcTyClTyVars class_name tvs $ \ tvs' kind -> do
          { MASSERT( isConstraintKind kind )
          ; ctxt' <- tcHsKindedContext =<< kcHsContext ctxt
          ; fds' <- mapM (addLocM tc_fundep) fundeps
          ; (sig_stuff, gen_dm_env) <- tcClassSigs class_name sigs meths
          ; return (tvs', ctxt', fds', sig_stuff, gen_dm_env) }
  ; clas <- fixM $ \ clas -> do
	    { let 	-- This little knot is just so we can get
			-- hold of the name of the class TyCon, which we
			-- need to look up its recursiveness
		    tycon_name = tyConName (classTyCon clas)
		    tc_isrec = calc_isrec tycon_name

            ; at_stuff <- tcClassATs class_name (AssocFamilyTyCon clas) ats at_defs
            -- NB: 'ats' only contains "type family" and "data family" declarations
            -- and 'at_defs' only contains associated-type defaults

            ; buildClass False {- Must include unfoldings for selectors -}
			 class_name tvs' ctxt' fds' at_stuff
			 sig_stuff tc_isrec }

  ; let gen_dm_ids = [ AnId (mkExportedLocalId gen_dm_name gen_dm_ty)
                     | (sel_id, GenDefMeth gen_dm_name) <- classOpItems clas
                     , let gen_dm_tau = expectJust "tcTyClDecl1" $
                                        lookupNameEnv gen_dm_env (idName sel_id)
		     , let gen_dm_ty = mkSigmaTy tvs' 
                                                 [mkClassPred clas (mkTyVarTys tvs')] 
                                                 gen_dm_tau
                     ]
        class_ats = map ATyCon (classATs clas)

  ; return (ATyCon (classTyCon clas) : gen_dm_ids ++ class_ats )
      -- NB: Order is important due to the call to `mkGlobalThings' when
      --     tying the the type and class declaration type checking knot.
  }
  where
    tc_fundep (tvs1, tvs2) = do { tvs1' <- mapM tcLookupTyVar tvs1 ;
				; tvs2' <- mapM tcLookupTyVar tvs2 ;
				; return (tvs1', tvs2') }

tcTyClDecl1 _ _
  (ForeignType {tcdLName = L _ tc_name, tcdExtName = tc_ext_name})
  = return [ATyCon (mkForeignTyCon tc_name tc_ext_name liftedTypeKind 0)]
\end{code} %************************************************************************ %* * Typechecking associated types (in class decls) (including the associated-type defaults) %* * %************************************************************************ Note [Associated type defaults] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following is an example of associated type defaults: class C a where data D a type F a b :: * type F a Z = [a] -- Default type F a (S n) = F a n -- Default Note that: - We can have more than one default definition for a single associated type, as long as they do not overlap (same rules as for instances) - We can get default definitions only for type families, not data families \begin{code}
tcClassATs :: Name             -- The class name (not knot-tied)
           -> TyConParent      -- The class parent of this associated type
           -> [LTyClDecl Name] -- Associated types. All FamTyCon
           -> [LTyClDecl Name] -- Associated type defaults. All SynTyCon
           -> TcM [ClassATItem]
tcClassATs class_name parent ats at_defs
  = do {  -- Complain about associated type defaults for non associated-types
         sequence_ [ failWithTc (badATErr class_name n)
                   | n <- map (tcdName . unLoc) at_defs
                   , not (n `elemNameSet` at_names) ]
       ; mapM tc_at ats }
  where
    at_names = mkNameSet (map (tcdName . unLoc) ats)

    at_defs_map :: NameEnv [LTyClDecl Name]
    -- Maps an AT in 'ats' to a list of all its default defs in 'at_defs'
    at_defs_map = foldr (\at_def nenv -> extendNameEnv_C (++) nenv (tcdName (unLoc at_def)) [at_def]) 
                        emptyNameEnv at_defs

    tc_at at = do { [ATyCon fam_tc] <- addLocM (tcTyClDecl1 parent
                                                           (const Recursive)) at
                  ; let at_defs = lookupNameEnv at_defs_map (tcdName (unLoc at))
                                        `orElse` []
                  ; atd <- mapM (tcDefaultAssocDecl fam_tc) at_defs
                  ; return (fam_tc, atd) }


-------------------------
tcDefaultAssocDecl :: TyCon              -- ^ Family TyCon
                   -> LTyClDecl Name     -- ^ RHS
                   -> TcM ATDefault      -- ^ Type checked RHS and free TyVars
tcDefaultAssocDecl fam_tc (L loc decl)
  = setSrcSpan loc $
    tcAddDefaultAssocDeclCtxt (tcdName decl) $
    do { traceTc "tcDefaultAssocDecl" (ppr decl)
       ; (at_tvs, at_tys, at_rhs) <- tcSynFamInstDecl fam_tc decl
       ; return (ATD at_tvs at_tys at_rhs loc) }
-- We check for well-formedness and validity later, in checkValidClass
-------------------------

tcSynFamInstDecl :: TyCon -> TyClDecl Name -> TcM ([TyVar], [Type], Type)
tcSynFamInstDecl fam_tc (TySynonym { tcdTyVars = tvs, tcdTyPats = Just pats
                                   , tcdSynRhs = rhs })
  = do { checkTc (isSynTyCon fam_tc) (wrongKindOfFamily fam_tc)

       ; let kc_rhs rhs kind = kcCheckLHsType rhs (EK kind (ptext (sLit "Expected")))

       ; tcFamTyPats fam_tc tvs pats (kc_rhs rhs)
                $ \tvs' pats' res_kind -> do

       { rhs'  <- kc_rhs rhs res_kind
       ; rhs'' <- tcHsKindedType rhs'

       ; return (tvs', pats', rhs'') } }

tcSynFamInstDecl _ decl = pprPanic "tcSynFamInstDecl" (ppr decl)

-------------------------
-- Kind check type patterns and kind annotate the embedded type variables.
--
-- * Here we check that a type instance matches its kind signature, but we do
--   not check whether there is a pattern for each type index; the latter
--   check is only required for type synonym instances.

-----------------
tcFamTyPats :: TyCon
            -> [LHsTyVarBndr Name] -> [LHsType Name]
            -> (TcKind -> TcM any)      -- Kind checker for RHS
                                        -- result is ignored
            -> ([KindVar] -> [TcKind] -> Kind -> TcM a)
            -> TcM a
-- Check the type patterns of a type or data family instance
--     type instance F <pat1> <pat2> = <type>
-- The 'tyvars' are the free type variables of pats
-- 
-- NB: The family instance declaration may be an associated one,
-- nested inside an instance decl, thus
--	  instance C [a] where
--	    type F [a] = ...
-- In that case, the type variable 'a' will *already be in scope*
-- (and, if C is poly-kinded, so will its kind parameter).

tcFamTyPats fam_tc tyvars pats kind_checker thing_inside
  = kcHsTyVars tyvars $ \tvs ->
    do { let (fam_kvs, body) = splitForAllTys (tyConKind fam_tc)

         -- A family instance must have exactly the same number of type
         -- parameters as the family declaration.  You can't write
         --     type family F a :: * -> *
         --     type instance F Int y = y
         -- because then the type (F Int) would be like (\y.y)
       ; let fam_arity = tyConArity fam_tc - length fam_kvs
       ; checkTc (length pats == fam_arity) $
                 wrongNumberOfParmsErr fam_arity

         -- Instantiate with meta kind vars
       ; fam_arg_kinds <- mapM (const newMetaKindVar) fam_kvs
       ; let body' = substKiWith fam_kvs fam_arg_kinds body
             (kinds, resKind) = splitKindFunTysN fam_arity body'
       ; typats <- zipWithM kcCheckLHsType pats
                            [ expArgKind (quotes (ppr fam_tc)) kind n
                            | (kind,n) <- kinds `zip` [1..]]

        -- Kind check the "thing inside"; this just works by 
        -- side-effecting any kind unification variables
       ; _ <- kind_checker resKind

         -- Type check indexed data type declaration
         -- We kind generalize the kind patterns since they contain
         -- all the meta kind variables
         -- See Note [Quantifying over family patterns]
       ; tcTyVarBndrsKindGen tvs $ \tvs' -> do {

       ; (t_kvs, fam_arg_kinds') <- kindGeneralizeKinds fam_arg_kinds
       ; k_typats <- mapM tcHsKindedType typats

       ; thing_inside (t_kvs ++ tvs') (fam_arg_kinds' ++ k_typats) resKind }
       }
\end{code} Note [Quantifying over family patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to quantify over two different lots of kind variables: First, the ones that come from tcTyVarBndrsKindGen, as usual data family Dist a -- Proxy :: forall k. k -> * data instance Dist (Proxy a) = DP -- Generates data DistProxy = DP -- ax8 k (a::k) :: Dist * (Proxy k a) ~ DistProxy k a -- The 'k' comes from the tcTyVarBndrsKindGen (a::k) Second, the ones that come from the kind argument of the type family which we pick up using kindGeneralizeKinds: -- Any :: forall k. k data instance Dist Any = DA -- Generates data DistAny k = DA -- ax7 k :: Dist k (Any k) ~ DistAny k -- The 'k' comes from kindGeneralizeKinds (Any k) Note [Associated type instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We allow this: class C a where type T x a instance C Int where type T (S y) Int = y type T Z Int = Char Note that a) The variable 'x' is not bound by the class decl b) 'x' is instantiated to a non-type-variable in the instance c) There are several type instance decls for T in the instance All this is fine. Of course, you can't give any *more* instances for (T ty Int) elsewhere, becuase it's an *associated* type. Note [Checking consistent instantiation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class C a b where type T a x b instance C [p] Int type T [p] y Int = (p,y,y) -- Induces the family instance TyCon -- type TR p y = (p,y,y) So we * Form the mini-envt from the class type variables a,b to the instance decl types [p],Int: [a->[p], b->Int] * Look at the tyvars a,x,b of the type family constructor T (it shares tyvars with the class C) * Apply the mini-evnt to them, and check that the result is consistent with the instance types [p] y Int %************************************************************************ %* * Data types %* * %************************************************************************ \begin{code}
dataDeclChecks :: Name -> NewOrData -> ThetaType -> [LConDecl Name] -> TcM ()
dataDeclChecks tc_name new_or_data stupid_theta cons
  = do {   -- Check that we don't use GADT syntax in H98 world
         gadtSyntax_ok <- xoptM Opt_GADTSyntax
       ; let h98_syntax = consUseH98Syntax cons
       ; checkTc (gadtSyntax_ok || h98_syntax) (badGadtDecl tc_name)

	   -- Check that the stupid theta is empty for a GADT-style declaration
       ; checkTc (null stupid_theta || h98_syntax) (badStupidTheta tc_name)

	-- Check that a newtype has exactly one constructor
	-- Do this before checking for empty data decls, so that
	-- we don't suggest -XEmptyDataDecls for newtypes
      ; checkTc (new_or_data == DataType || isSingleton cons) 
	        (newtypeConError tc_name (length cons))

 	-- Check that there's at least one condecl,
	-- or else we're reading an hs-boot file, or -XEmptyDataDecls
      ; empty_data_decls <- xoptM Opt_EmptyDataDecls
      ; is_boot <- tcIsHsBoot	-- Are we compiling an hs-boot file?
      ; checkTc (not (null cons) || empty_data_decls || is_boot)
                (emptyConDeclsErr tc_name) }
    
-----------------------------------
tcConDecls :: NewOrData -> Bool -> TyCon -> ([TyVar], Type)
	   -> [LConDecl Name] -> TcM [DataCon]
tcConDecls new_or_data ex_ok rep_tycon res_tmpl cons
  = mapM (addLocM (tcConDecl new_or_data ex_ok rep_tycon res_tmpl)) cons

tcConDecl :: NewOrData
          -> Bool		-- True <=> -XExistentialQuantificaton or -XGADTs
	  -> TyCon 		-- Representation tycon
	  -> ([TyVar], Type)	-- Return type template (with its template tyvars)
	  -> ConDecl Name 
	  -> TcM DataCon

tcConDecl new_or_data existential_ok rep_tycon res_tmpl 	-- Data types
	  con@(ConDecl {con_name = name})
  = do
    { ConDecl { con_qvars = tvs, con_cxt = ctxt
              , con_details = details, con_res = res_ty }
        <- kcConDecl new_or_data con
    ; addErrCtxt (dataConCtxt name) $
    tcTyVarBndrsKindGen tvs $ \ tvs' -> do
    { ctxt' <- tcHsKindedContext ctxt
    ; checkTc (existential_ok || conRepresentibleWithH98Syntax con)
	      (badExistential name)
    ; traceTc "tcConDecl 1" (ppr con)
    ; (univ_tvs, ex_tvs, eq_preds, res_ty') <- tcResultType res_tmpl tvs' res_ty
    ; let
	tc_datacon is_infix field_lbls btys
	  = do { (arg_tys, stricts) <- mapAndUnzipM tcConArg btys
	       ; traceTc "tcConDecl 3" (ppr name)

    	       ; buildDataCon (unLoc name) is_infix
    		    stricts field_lbls
    		    univ_tvs ex_tvs eq_preds ctxt' arg_tys
		    res_ty' rep_tycon }
		-- NB:	we put data_tc, the type constructor gotten from the
		--	constructor type signature into the data constructor;
		--	that way checkValidDataCon can complain if it's wrong.

    ; traceTc "tcConDecl 2" (ppr name)
    ; case details of
	PrefixCon btys     -> tc_datacon False [] btys
	InfixCon bty1 bty2 -> tc_datacon True  [] [bty1,bty2]
	RecCon fields      -> tc_datacon False field_names btys
			   where
			      field_names = map (unLoc . cd_fld_name) fields
			      btys        = map cd_fld_type fields
    } }

-- Example
--   data instance T (b,c) where 
--	TI :: forall e. e -> T (e,e)
--
-- The representation tycon looks like this:
--   data :R7T b c where 
--	TI :: forall b1 c1. (b1 ~ c1) => b1 -> :R7T b1 c1
-- In this case orig_res_ty = T (e,e)

tcResultType :: ([TyVar], Type)	-- Template for result type; e.g.
				-- data instance T [a] b c = ...  
				--      gives template ([a,b,c], T [a] b c)
	     -> [TyVar] 	-- where MkT :: forall x y z. ...
	     -> ResType Name
	     -> TcM ([TyVar],	 	-- Universal
		     [TyVar],		-- Existential (distinct OccNames from univs)
		     [(TyVar,Type)],	-- Equality predicates
		     Type)		-- Typechecked return type
	-- We don't check that the TyCon given in the ResTy is
	-- the same as the parent tycon, because we are in the middle
	-- of a recursive knot; so it's postponed until checkValidDataCon

tcResultType (tmpl_tvs, res_ty) dc_tvs ResTyH98
  = return (tmpl_tvs, dc_tvs, [], res_ty)
	-- In H98 syntax the dc_tvs are the existential ones
	--	data T a b c = forall d e. MkT ...
	-- The {a,b,c} are tc_tvs, and {d,e} are dc_tvs

tcResultType (tmpl_tvs, res_tmpl) dc_tvs (ResTyGADT res_ty)
	-- E.g.  data T [a] b c where
	--	   MkT :: forall x y z. T [(x,y)] z z
	-- Then we generate
	--	Univ tyvars	Eq-spec
	--	    a              a~(x,y)
	--	    b		   b~z
	--	    z		   
	-- Existentials are the leftover type vars: [x,y]
	-- So we return ([a,b,z], [x,y], [a~(x,y),b~z], T [(x,y)] z z)
  = do	{ res_ty' <- tcHsKindedType res_ty
	; let Just subst = tcMatchTy (mkVarSet tmpl_tvs) res_tmpl res_ty'
                -- This 'Just' pattern is sure to match, because if not
                -- checkValidDataCon will complain first. The 'subst'
                -- should not be looked at until after checkValidDataCon
                -- We can't check eagerly because we are in a "knot" in 
                -- which 'tycon' is not yet fully defined

		-- /Lazily/ figure out the univ_tvs etc
		-- Each univ_tv is either a dc_tv or a tmpl_tv
	      (univ_tvs, eq_spec) = foldr choose ([], []) tidy_tmpl_tvs
	      choose tmpl (univs, eqs)
		| Just ty <- lookupTyVar subst tmpl 
		= case tcGetTyVar_maybe ty of
		    Just tv | not (tv `elem` univs)
			    -> (tv:univs,   eqs)
		    _other  -> (new_tmpl:univs, (new_tmpl,ty):eqs)
                               where  -- see Note [Substitution in template variables kinds]
                                 new_tmpl = updateTyVarKind (substTy subst) tmpl
		| otherwise = pprPanic "tcResultType" (ppr res_ty)
	      ex_tvs = dc_tvs `minusList` univ_tvs

	; return (univ_tvs, ex_tvs, eq_spec, res_ty') }
  where
	-- NB: tmpl_tvs and dc_tvs are distinct, but
	-- we want them to be *visibly* distinct, both for
	-- interface files and general confusion.  So rename
	-- the tc_tvs, since they are not used yet (no 
	-- consequential renaming needed)
    (_, tidy_tmpl_tvs) = mapAccumL tidy_one init_occ_env tmpl_tvs
    init_occ_env       = initTidyOccEnv (map getOccName dc_tvs)
    tidy_one env tv    = (env', setTyVarName tv (tidyNameOcc name occ'))
	      where
		 name = tyVarName tv
		 (env', occ') = tidyOccName env (getOccName name) 

{-
Note [Substitution in template variables kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data List a = Nil | Cons a (List a)
data SList s as where
  SNil :: SList s Nil

We call tcResultType with
  tmpl_tvs = [(k :: BOX), (s :: k -> *), (as :: List k)]
  res_tmpl = SList k s as
  res_ty = ResTyGADT (SList k1 (s1 :: k1 -> *) (Nil k1))

We get subst:
  k -> k1
  s -> s1
  as -> Nil k1

Now we want to find out the universal variables and the equivalences
between some of them and types (GADT).

In this example, k and s are mapped to exactly variables which are not
already present in the universal set, so we just add them without any
coercion.

But 'as' is mapped to 'Nil k1', so we add 'as' to the universal set,
and add the equivalence with 'Nil k1' in 'eqs'.

The problem is that with kind polymorphism, as's kind may now contain
kind variables, and we have to apply the template substitution to it,
which is why we create new_tmpl.

The template substitution only maps kind variables to kind variables,
since GADTs are not kind indexed.

-}


consUseH98Syntax :: [LConDecl a] -> Bool
consUseH98Syntax (L _ (ConDecl { con_res = ResTyGADT _ }) : _) = False
consUseH98Syntax _                                             = True
		 -- All constructors have same shape

conRepresentibleWithH98Syntax :: ConDecl Name -> Bool
conRepresentibleWithH98Syntax
    (ConDecl {con_qvars = tvs, con_cxt = ctxt, con_res = ResTyH98 })
        = null tvs && null (unLoc ctxt)
conRepresentibleWithH98Syntax
    (ConDecl {con_qvars = tvs, con_cxt = ctxt, con_res = ResTyGADT (L _ t) })
        = null (unLoc ctxt) && f t (map (hsTyVarName . unLoc) tvs)
    where -- Each type variable should be used exactly once in the
          -- result type, and the result type must just be the type
          -- constructor applied to type variables
          f (HsAppTy (L _ t1) (L _ (HsTyVar v2))) vs
              = (v2 `elem` vs) && f t1 (delete v2 vs)
          f (HsTyVar _) [] = True
          f _ _ = False

-------------------
tcConArg :: LHsType Name -> TcM (TcType, HsBang)
tcConArg bty
  = do  { traceTc "tcConArg 1" (ppr bty)
        ; arg_ty <- tcHsBangType bty
        ; traceTc "tcConArg 2" (ppr bty)
        ; strict_mark <- chooseBoxingStrategy arg_ty (getBangStrictness bty)
	; return (arg_ty, strict_mark) }

-- We attempt to unbox/unpack a strict field when either:
--   (i)  The field is marked '!!', or
--   (ii) The field is marked '!', and the -funbox-strict-fields flag is on.
--
-- We have turned off unboxing of newtypes because coercions make unboxing 
-- and reboxing more complicated
chooseBoxingStrategy :: TcType -> HsBang -> TcM HsBang
chooseBoxingStrategy arg_ty bang
  = case bang of
	HsNoBang -> return HsNoBang
	HsStrict -> do { unbox_strict <- doptM Opt_UnboxStrictFields
                       ; if unbox_strict then return (can_unbox HsStrict arg_ty)
                                         else return HsStrict }
	HsNoUnpack -> return HsStrict
	HsUnpack -> do { omit_prags <- doptM Opt_OmitInterfacePragmas
            -- Do not respect UNPACK pragmas if OmitInterfacePragmas is on
	    -- See Trac #5252: unpacking means we must not conceal the
	    --                 representation of the argument type
                       ; if omit_prags then return HsStrict
                                       else return (can_unbox HsUnpackFailed arg_ty) }
	HsUnpackFailed -> pprPanic "chooseBoxingStrategy" (ppr arg_ty)
		       	  -- Source code never has shtes
  where
    can_unbox :: HsBang -> TcType -> HsBang
    -- Returns   HsUnpack  if we can unpack arg_ty
    -- 		 fail_bang if we know what arg_ty is but we can't unpack it
    -- 		 HsStrict  if it's abstract, so we don't know whether or not we can unbox it
    can_unbox fail_bang arg_ty 
       = case splitTyConApp_maybe arg_ty of
	    Nothing -> fail_bang

	    Just (arg_tycon, tycon_args) 
              | isAbstractTyCon arg_tycon -> HsStrict	
                      -- See Note [Don't complain about UNPACK on abstract TyCons]
              | not (isRecursiveTyCon arg_tycon) 	-- Note [Recusive unboxing]
	      , isProductTyCon arg_tycon 
	      	    -- We can unbox if the type is a chain of newtypes 
		    -- with a product tycon at the end
              -> if isNewTyCon arg_tycon 
                 then can_unbox fail_bang (newTyConInstRhs arg_tycon tycon_args)
                 else HsUnpack

              | otherwise -> fail_bang
\end{code} Note [Don't complain about UNPACK on abstract TyCons] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We are going to complain about UnpackFailed, but if we say data T = MkT {-# UNPACK #-} !Wobble and Wobble is a newtype imported from a module that was compiled without optimisation, we don't want to complain. Because it might be fine when optimsation is on. I think this happens when Haddock is working over (say) GHC souce files. Note [Recursive unboxing] ~~~~~~~~~~~~~~~~~~~~~~~~~ Be careful not to try to unbox this! data T = MkT {-# UNPACK #-} !T Int Reason: consider data R = MkR {-# UNPACK #-} !S Int data S = MkS {-# UNPACK #-} !Int The representation arguments of MkR are the *representation* arguments of S (plus Int); the rep args of MkS are Int#. This is obviously no good for T, because then we'd get an infinite number of arguments. But it's the *argument* type that matters. This is fine: data S = MkS S !Int because Int is non-recursive. %************************************************************************ %* * Validity checking %* * %************************************************************************ Validity checking is done once the mutually-recursive knot has been tied, so we can look at things freely. \begin{code}
checkClassCycleErrs :: Class -> TcM ()
checkClassCycleErrs cls
  = unless (null cls_cycles) $ mapM_ recClsErr cls_cycles
  where cls_cycles = calcClassCycles cls

checkValidTyCl :: TyClDecl Name -> TcM ()
-- We do the validity check over declarations, rather than TyThings
-- only so that we can add a nice context with tcAddDeclCtxt
checkValidTyCl decl
  = tcAddDeclCtxt decl $
    do	{ traceTc "Validity of 1" (ppr decl)
        ; env <- getGblEnv
	; traceTc "Validity of 1a" (ppr (tcg_type_env env))
	; thing <- tcLookupLocatedGlobal (tcdLName decl)
	; traceTc "Validity of 2" (ppr decl)
	; traceTc "Validity of" (ppr thing)
	; case thing of
	    ATyCon tc -> do
                traceTc "  of kind" (ppr (tyConKind tc))
                checkValidTyCon tc
                case decl of
                  ClassDecl { tcdATs = ats } -> mapM_ (addLocM checkValidTyCl) ats
                  _                          -> return ()
            AnId _    -> return ()  -- Generic default methods are checked
	    	      	 	    -- with their parent class
            _         -> panic "checkValidTyCl"
	; traceTc "Done validity of" (ppr thing)	
	}

-------------------------
-- For data types declared with record syntax, we require
-- that each constructor that has a field 'f' 
--	(a) has the same result type
--	(b) has the same type for 'f'
-- module alpha conversion of the quantified type variables
-- of the constructor.
--
-- Note that we allow existentials to match becuase the
-- fields can never meet. E.g
--	data T where
--	  T1 { f1 :: b, f2 :: a, f3 ::Int } :: T
--	  T2 { f1 :: c, f2 :: c, f3 ::Int } :: T  
-- Here we do not complain about f1,f2 because they are existential

checkValidTyCon :: TyCon -> TcM ()
checkValidTyCon tc 
  | Just cl <- tyConClass_maybe tc
  = checkValidClass cl

  | isSynTyCon tc 
  = case synTyConRhs tc of
      SynFamilyTyCon {} -> return ()
      SynonymTyCon ty   -> checkValidType syn_ctxt ty
  | otherwise
  = do { -- Check the context on the data decl
       ; traceTc "cvtc1" (ppr tc)
       ; checkValidTheta (DataTyCtxt name) (tyConStupidTheta tc)
	
	-- Check arg types of data constructors
       ; traceTc "cvtc2" (ppr tc)
       ; mapM_ (checkValidDataCon tc) data_cons

	-- Check that fields with the same name share a type
       ; mapM_ check_fields groups }

  where
    syn_ctxt  = TySynCtxt name
    name      = tyConName tc
    data_cons = tyConDataCons tc

    groups = equivClasses cmp_fld (concatMap get_fields data_cons)
    cmp_fld (f1,_) (f2,_) = f1 `compare` f2
    get_fields con = dataConFieldLabels con `zip` repeat con
	-- dataConFieldLabels may return the empty list, which is fine

    -- See Note [GADT record selectors] in MkId.lhs
    -- We must check (a) that the named field has the same 
    --                   type in each constructor
    --               (b) that those constructors have the same result type
    --
    -- However, the constructors may have differently named type variable
    -- and (worse) we don't know how the correspond to each other.  E.g.
    --     C1 :: forall a b. { f :: a, g :: b } -> T a b
    --     C2 :: forall d c. { f :: c, g :: c } -> T c d
    -- 
    -- So what we do is to ust Unify.tcMatchTys to compare the first candidate's
    -- result type against other candidates' types BOTH WAYS ROUND.
    -- If they magically agrees, take the substitution and
    -- apply them to the latter ones, and see if they match perfectly.
    check_fields ((label, con1) : other_fields)
	-- These fields all have the same name, but are from
	-- different constructors in the data type
	= recoverM (return ()) $ mapM_ checkOne other_fields
                -- Check that all the fields in the group have the same type
		-- NB: this check assumes that all the constructors of a given
		-- data type use the same type variables
        where
	(tvs1, _, _, res1) = dataConSig con1
        ts1 = mkVarSet tvs1
        fty1 = dataConFieldType con1 label

        checkOne (_, con2)    -- Do it bothways to ensure they are structurally identical
	    = do { checkFieldCompat label con1 con2 ts1 res1 res2 fty1 fty2
		 ; checkFieldCompat label con2 con1 ts2 res2 res1 fty2 fty1 }
	    where        
		(tvs2, _, _, res2) = dataConSig con2
	   	ts2 = mkVarSet tvs2
                fty2 = dataConFieldType con2 label
    check_fields [] = panic "checkValidTyCon/check_fields []"

checkFieldCompat :: Name -> DataCon -> DataCon -> TyVarSet
                 -> Type -> Type -> Type -> Type -> TcM ()
checkFieldCompat fld con1 con2 tvs1 res1 res2 fty1 fty2
  = do	{ checkTc (isJust mb_subst1) (resultTypeMisMatch fld con1 con2)
	; checkTc (isJust mb_subst2) (fieldTypeMisMatch fld con1 con2) }
  where
    mb_subst1 = tcMatchTy tvs1 res1 res2
    mb_subst2 = tcMatchTyX tvs1 (expectJust "checkFieldCompat" mb_subst1) fty1 fty2

-------------------------------
checkValidDataCon :: TyCon -> DataCon -> TcM ()
checkValidDataCon tc con
  = setSrcSpan (srcLocSpan (getSrcLoc con))	$
    addErrCtxt (dataConCtxt con)		$ 
    do	{ traceTc "Validity of data con" (ppr con)
        ; let tc_tvs = tyConTyVars tc
	      res_ty_tmpl = mkFamilyTyConApp tc (mkTyVarTys tc_tvs)
	      actual_res_ty = dataConOrigResTy con
	; checkTc (isJust (tcMatchTy (mkVarSet tc_tvs)
				res_ty_tmpl
				actual_res_ty))
		  (badDataConTyCon con res_ty_tmpl actual_res_ty)
             -- IA0_TODO: we should also check that kind variables
             -- are only instantiated with kind variables
	; checkValidMonoType (dataConOrigResTy con)
		-- Disallow MkT :: T (forall a. a->a)
		-- Reason: it's really the argument of an equality constraint
	; checkValidType ctxt (dataConUserType con)
	; when (isNewTyCon tc) (checkNewDataCon con)
        ; mapM_ check_bang (dataConStrictMarks con `zip` [1..])
        ; traceTc "Done validity of data con" (ppr con <+> ppr (dataConRepType con))
    }
  where
    ctxt = ConArgCtxt (dataConName con) 
    check_bang (HsUnpackFailed, n) = addWarnTc (cant_unbox_msg n)
    check_bang _                   = return ()

    cant_unbox_msg n = sep [ ptext (sLit "Ignoring unusable UNPACK pragma on the")
                           , speakNth n <+> ptext (sLit "argument of") <+> quotes (ppr con)]

-------------------------------
checkNewDataCon :: DataCon -> TcM ()
-- Checks for the data constructor of a newtype
checkNewDataCon con
  = do	{ checkTc (isSingleton arg_tys) (newtypeFieldErr con (length arg_tys))
		-- One argument
	; checkTc (null eq_spec) (newtypePredError con)
		-- Return type is (T a b c)
	; checkTc (null ex_tvs && null theta) (newtypeExError con)
		-- No existentials
	; checkTc (not (any isBanged (dataConStrictMarks con))) 
		  (newtypeStrictError con)
		-- No strictness
    }
  where
    (_univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty) = dataConFullSig con

-------------------------------
checkValidClass :: Class -> TcM ()
checkValidClass cls
  = do	{ constrained_class_methods <- xoptM Opt_ConstrainedClassMethods
	; multi_param_type_classes <- xoptM Opt_MultiParamTypeClasses
	; fundep_classes <- xoptM Opt_FunctionalDependencies

    	-- Check that the class is unary, unless GlaExs
	; checkTc (notNull tyvars) (nullaryClassErr cls)
	; checkTc (multi_param_type_classes || unary) (classArityErr cls)
	; checkTc (fundep_classes || null fundeps) (classFunDepsErr cls)

   	-- Check the super-classes
	; checkValidTheta (ClassSCCtxt (className cls)) theta

          -- Now check for cyclic superclasses
        ; checkClassCycleErrs cls

	-- Check the class operations
	; mapM_ (check_op constrained_class_methods) op_stuff

        -- Check the associated type defaults are well-formed and instantiated
        -- See Note [Checking consistent instantiation]
        ; mapM_ check_at_defs at_stuff	}
  where
    (tyvars, fundeps, theta, _, at_stuff, op_stuff) = classExtraBigSig cls
    unary = isSingleton (snd (splitKiTyVars tyvars))  -- IA0_NOTE: only count type arguments

    check_op constrained_class_methods (sel_id, dm) 
      = addErrCtxt (classOpCtxt sel_id tau) $ do
	{ checkValidTheta ctxt (tail theta)
		-- The 'tail' removes the initial (C a) from the
		-- class itself, leaving just the method type

	; traceTc "class op type" (ppr op_ty <+> ppr tau)
	; checkValidType ctxt tau

		-- Check that the type mentions at least one of
		-- the class type variables...or at least one reachable
		-- from one of the class variables.  Example: tc223
		--   class Error e => Game b mv e | b -> mv e where
		--      newBoard :: MonadState b m => m ()
		-- Here, MonadState has a fundep m->b, so newBoard is fine
	; let grown_tyvars = growThetaTyVars theta (mkVarSet tyvars)
	; checkTc (tyVarsOfType tau `intersectsVarSet` grown_tyvars)
	          (noClassTyVarErr cls sel_id)

        ; case dm of
            GenDefMeth dm_name -> do { dm_id <- tcLookupId dm_name
                                     ; checkValidType (FunSigCtxt op_name) (idType dm_id) }
            _                  -> return ()
	}
	where
          ctxt    = FunSigCtxt op_name
	  op_name = idName sel_id
	  op_ty   = idType sel_id
	  (_,theta1,tau1) = tcSplitSigmaTy op_ty
	  (_,theta2,tau2)  = tcSplitSigmaTy tau1
	  (theta,tau) | constrained_class_methods = (theta1 ++ theta2, tau2)
		      | otherwise = (theta1, mkPhiTy (tail theta1) tau1)
		-- Ugh!  The function might have a type like
		-- 	op :: forall a. C a => forall b. (Eq b, Eq a) => tau2
		-- With -XConstrainedClassMethods, we want to allow this, even though the inner 
		-- forall has an (Eq a) constraint.  Whereas in general, each constraint 
		-- in the context of a for-all must mention at least one quantified
		-- type variable.  What a mess!

    check_at_defs (fam_tc, defs)
      = do mapM_ (\(ATD _tvs pats rhs _loc) -> checkValidFamInst pats rhs) defs
           tcAddDefaultAssocDeclCtxt (tyConName fam_tc) $ 
             mapM_ (check_loc_at_def fam_tc) defs

    check_loc_at_def fam_tc (ATD _tvs pats _rhs loc)
      -- Set the location for each of the default declarations
      = setSrcSpan loc $ zipWithM_ check_arg (tyConTyVars fam_tc) pats

    -- We only want to check this on the *class* TyVars,
    -- not the *family* TyVars (there may be more of these)
    check_arg fam_tc_tv at_ty
      = checkTc (   not (fam_tc_tv `elem` tyvars)
                 || mkTyVarTy fam_tc_tv `eqType` at_ty) 
          (wrongATArgErr at_ty (mkTyVarTy fam_tc_tv))

checkFamFlag :: Name -> TcM ()
-- Check that we don't use families without -XTypeFamilies
-- The parser won't even parse them, but I suppose a GHC API
-- client might have a go!
checkFamFlag tc_name
  = do { idx_tys <- xoptM Opt_TypeFamilies
       ; checkTc idx_tys err_msg }
  where
    err_msg = hang (ptext (sLit "Illegal family declaraion for") <+> quotes (ppr tc_name))
	         2 (ptext (sLit "Use -XTypeFamilies to allow indexed type families"))
\end{code} %************************************************************************ %* * Building record selectors %* * %************************************************************************ \begin{code}
mkDefaultMethodIds :: [TyThing] -> [Id]
-- See Note [Default method Ids and Template Haskell]
mkDefaultMethodIds things
  = [ mkExportedLocalId dm_name (idType sel_id)
    | ATyCon tc <- things
    , Just cls <- [tyConClass_maybe tc]
    , (sel_id, DefMeth dm_name) <- classOpItems cls ]
\end{code} Note [Default method Ids and Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this (Trac #4169): class Numeric a where fromIntegerNum :: a fromIntegerNum = ... ast :: Q [Dec] ast = [d| instance Numeric Int |] When we typecheck 'ast' we have done the first pass over the class decl (in tcTyClDecls), but we have not yet typechecked the default-method declarations (becuase they can mention value declarations). So we must bring the default method Ids into scope first (so they can be seen when typechecking the [d| .. |] quote, and typecheck them later. \begin{code}
mkRecSelBinds :: [TyThing] -> HsValBinds Name
-- NB We produce *un-typechecked* bindings, rather like 'deriving'
--    This makes life easier, because the later type checking will add
--    all necessary type abstractions and applications
mkRecSelBinds tycons
  = ValBindsOut [(NonRecursive, b) | b <- binds] sigs
  where
    (sigs, binds) = unzip rec_sels
    rec_sels = map mkRecSelBind [ (tc,fld) 
       	 	     	        | ATyCon tc <- tycons
				, fld <- tyConFields tc ]

mkRecSelBind :: (TyCon, FieldLabel) -> (LSig Name, LHsBinds Name)
mkRecSelBind (tycon, sel_name)
  = (L sel_loc (IdSig sel_id), unitBag (L sel_loc sel_bind))
  where
    sel_loc     = getSrcSpan tycon
    sel_id 	= Var.mkExportedLocalVar rec_details sel_name 
                                         sel_ty vanillaIdInfo
    rec_details = RecSelId { sel_tycon = tycon, sel_naughty = is_naughty }

    -- Find a representative constructor, con1
    all_cons     = tyConDataCons tycon 
    cons_w_field = [ con | con <- all_cons
                   , sel_name `elem` dataConFieldLabels con ] 
    con1 = ASSERT( not (null cons_w_field) ) head cons_w_field

    -- Selector type; Note [Polymorphic selectors]
    field_ty   = dataConFieldType con1 sel_name
    data_ty    = dataConOrigResTy con1
    data_tvs   = tyVarsOfType data_ty
    is_naughty = not (tyVarsOfType field_ty `subVarSet` data_tvs)  
    (field_tvs, field_theta, field_tau) = tcSplitSigmaTy field_ty
    sel_ty | is_naughty = unitTy  -- See Note [Naughty record selectors]
           | otherwise  = mkForAllTys (varSetElemsKvsFirst $
                                       data_tvs `extendVarSetList` field_tvs) $
    	     	          mkPhiTy (dataConStupidTheta con1) $	-- Urgh!
    	     	          mkPhiTy field_theta               $	-- Urgh!
             	          mkFunTy data_ty field_tau

    -- Make the binding: sel (C2 { fld = x }) = x
    --                   sel (C7 { fld = x }) = x
    --    where cons_w_field = [C2,C7]
    sel_bind | is_naughty = mkTopFunBind sel_lname [mkSimpleMatch [] unit_rhs]
             | otherwise  = mkTopFunBind sel_lname (map mk_match cons_w_field ++ deflt)
    mk_match con = mkSimpleMatch [noLoc (mk_sel_pat con)]
                                 (noLoc (HsVar field_var))
    mk_sel_pat con = ConPatIn (noLoc (getName con)) (RecCon rec_fields)
    rec_fields = HsRecFields { rec_flds = [rec_field], rec_dotdot = Nothing }
    rec_field  = HsRecField { hsRecFieldId = sel_lname
                            , hsRecFieldArg = nlVarPat field_var
                            , hsRecPun = False }
    sel_lname = L sel_loc sel_name
    field_var = mkInternalName (mkBuiltinUnique 1) (getOccName sel_name) sel_loc

    -- Add catch-all default case unless the case is exhaustive
    -- We do this explicitly so that we get a nice error message that
    -- mentions this particular record selector
    deflt | not (any is_unused all_cons) = []
	  | otherwise = [mkSimpleMatch [nlWildPat] 
	    	      	    (nlHsApp (nlHsVar (getName rEC_SEL_ERROR_ID))
    	      		    	     (nlHsLit msg_lit))]

	-- Do not add a default case unless there are unmatched
	-- constructors.  We must take account of GADTs, else we
	-- get overlap warning messages from the pattern-match checker
    is_unused con = not (con `elem` cons_w_field 
			 || dataConCannotMatch inst_tys con)
    inst_tys = tyConAppArgs data_ty

    unit_rhs = mkLHsTupleExpr []
    msg_lit = HsStringPrim $ mkFastString $ 
              occNameString (getOccName sel_name)

---------------
tyConFields :: TyCon -> [FieldLabel]
tyConFields tc 
  | isAlgTyCon tc = nub (concatMap dataConFieldLabels (tyConDataCons tc))
  | otherwise     = []
\end{code} Note [Polymorphic selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When a record has a polymorphic field, we pull the foralls out to the front. data T = MkT { f :: forall a. [a] -> a } Then f :: forall a. T -> [a] -> a NOT f :: T -> forall a. [a] -> a This is horrid. It's only needed in deeply obscure cases, which I hate. The only case I know is test tc163, which is worth looking at. It's far from clear that this test should succeed at all! Note [Naughty record selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A "naughty" field is one for which we can't define a record selector, because an existential type variable would escape. For example: data T = forall a. MkT { x,y::a } We obviously can't define x (MkT v _) = v Nevertheless we *do* put a RecSelId into the type environment so that if the user tries to use 'x' as a selector we can bleat helpfully, rather than saying unhelpfully that 'x' is not in scope. Hence the sel_naughty flag, to identify record selectors that don't really exist. In general, a field is "naughty" if its type mentions a type variable that isn't in the result type of the constructor. Note that this *allows* GADT record selectors (Note [GADT record selectors]) whose types may look like sel :: T [a] -> a For naughty selectors we make a dummy binding sel = () for naughty selectors, so that the later type-check will add them to the environment, and they'll be exported. The function is never called, because the tyepchecker spots the sel_naughty field. Note [GADT record selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For GADTs, we require that all constructors with a common field 'f' have the same result type (modulo alpha conversion). [Checked in TcTyClsDecls.checkValidTyCon] E.g. data T where T1 { f :: Maybe a } :: T [a] T2 { f :: Maybe a, y :: b } :: T [a] T3 :: T Int and now the selector takes that result type as its argument: f :: forall a. T [a] -> Maybe a Details: the "real" types of T1,T2 are: T1 :: forall r a. (r~[a]) => a -> T r T2 :: forall r a b. (r~[a]) => a -> b -> T r So the selector loooks like this: f :: forall a. T [a] -> Maybe a f (a:*) (t:T [a]) = case t of T1 c (g:[a]~[c]) (v:Maybe c) -> v `cast` Maybe (right (sym g)) T2 c d (g:[a]~[c]) (v:Maybe c) (w:d) -> v `cast` Maybe (right (sym g)) T3 -> error "T3 does not have field f" Note the forall'd tyvars of the selector are just the free tyvars of the result type; there may be other tyvars in the constructor's type (e.g. 'b' in T2). Note the need for casts in the result! Note [Selector running example] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's OK to combine GADTs and type families. Here's a running example: data instance T [a] where T1 { fld :: b } :: T [Maybe b] The representation type looks like this data :R7T a where T1 { fld :: b } :: :R7T (Maybe b) and there's coercion from the family type to the representation type :CoR7T a :: T [a] ~ :R7T a The selector we want for fld looks like this: fld :: forall b. T [Maybe b] -> b fld = /\b. \(d::T [Maybe b]). case d `cast` :CoR7T (Maybe b) of T1 (x::b) -> x The scrutinee of the case has type :R7T (Maybe b), which can be gotten by appying the eq_spec to the univ_tvs of the data con. %************************************************************************ %* * Error messages %* * %************************************************************************ \begin{code}
tcAddDefaultAssocDeclCtxt :: Name -> TcM a -> TcM a
tcAddDefaultAssocDeclCtxt name thing_inside
  = addErrCtxt ctxt thing_inside
  where
     ctxt = hsep [ptext (sLit "In the type synonym instance default declaration for"),
                  quotes (ppr name)]

resultTypeMisMatch :: Name -> DataCon -> DataCon -> SDoc
resultTypeMisMatch field_name con1 con2
  = vcat [sep [ptext (sLit "Constructors") <+> ppr con1 <+> ptext (sLit "and") <+> ppr con2, 
		ptext (sLit "have a common field") <+> quotes (ppr field_name) <> comma],
	  nest 2 $ ptext (sLit "but have different result types")]

fieldTypeMisMatch :: Name -> DataCon -> DataCon -> SDoc
fieldTypeMisMatch field_name con1 con2
  = sep [ptext (sLit "Constructors") <+> ppr con1 <+> ptext (sLit "and") <+> ppr con2, 
	 ptext (sLit "give different types for field"), quotes (ppr field_name)]

dataConCtxt :: Outputable a => a -> SDoc
dataConCtxt con = ptext (sLit "In the definition of data constructor") <+> quotes (ppr con)

classOpCtxt :: Var -> Type -> SDoc
classOpCtxt sel_id tau = sep [ptext (sLit "When checking the class method:"),
			      nest 2 (ppr sel_id <+> dcolon <+> ppr tau)]

nullaryClassErr :: Class -> SDoc
nullaryClassErr cls
  = ptext (sLit "No parameters for class")  <+> quotes (ppr cls)

classArityErr :: Class -> SDoc
classArityErr cls
  = vcat [ptext (sLit "Too many parameters for class") <+> quotes (ppr cls),
	  parens (ptext (sLit "Use -XMultiParamTypeClasses to allow multi-parameter classes"))]

classFunDepsErr :: Class -> SDoc
classFunDepsErr cls
  = vcat [ptext (sLit "Fundeps in class") <+> quotes (ppr cls),
	  parens (ptext (sLit "Use -XFunctionalDependencies to allow fundeps"))]

noClassTyVarErr :: Class -> Var -> SDoc
noClassTyVarErr clas op
  = sep [ptext (sLit "The class method") <+> quotes (ppr op),
	 ptext (sLit "mentions none of the type variables of the class") <+> 
		ppr clas <+> hsep (map ppr (classTyVars clas))]

recSynErr :: [LTyClDecl Name] -> TcRn ()
recSynErr syn_decls
  = setSrcSpan (getLoc (head sorted_decls)) $
    addErr (sep [ptext (sLit "Cycle in type synonym declarations:"),
		 nest 2 (vcat (map ppr_decl sorted_decls))])
  where
    sorted_decls = sortLocated syn_decls
    ppr_decl (L loc decl) = ppr loc <> colon <+> ppr decl

recClsErr :: [TyCon] -> TcRn ()
recClsErr cycles
  = addErr (sep [ptext (sLit "Cycle in class declaration (via superclasses):"),
                 nest 2 (hsep (intersperse (text "->") (map ppr cycles)))])

sortLocated :: [Located a] -> [Located a]
sortLocated things = sortLe le things
  where
    le (L l1 _) (L l2 _) = l1 <= l2

badDataConTyCon :: DataCon -> Type -> Type -> SDoc
badDataConTyCon data_con res_ty_tmpl actual_res_ty
  = hang (ptext (sLit "Data constructor") <+> quotes (ppr data_con) <+>
		ptext (sLit "returns type") <+> quotes (ppr actual_res_ty))
       2 (ptext (sLit "instead of an instance of its parent type") <+> quotes (ppr res_ty_tmpl))

badATErr :: Name -> Name -> SDoc
badATErr clas op
  = hsep [ptext (sLit "Class"), quotes (ppr clas), 
          ptext (sLit "does not have an associated type"), quotes (ppr op)]

badGadtDecl :: Name -> SDoc
badGadtDecl tc_name
  = vcat [ ptext (sLit "Illegal generalised algebraic data declaration for") <+> quotes (ppr tc_name)
	 , nest 2 (parens $ ptext (sLit "Use -XGADTs to allow GADTs")) ]

badExistential :: Located Name -> SDoc
badExistential con_name
  = hang (ptext (sLit "Data constructor") <+> quotes (ppr con_name) <+>
		ptext (sLit "has existential type variables, a context, or a specialised result type"))
       2 (parens $ ptext (sLit "Use -XExistentialQuantification or -XGADTs to allow this"))

badStupidTheta :: Name -> SDoc
badStupidTheta tc_name
  = ptext (sLit "A data type declared in GADT style cannot have a context:") <+> quotes (ppr tc_name)

newtypeConError :: Name -> Int -> SDoc
newtypeConError tycon n
  = sep [ptext (sLit "A newtype must have exactly one constructor,"),
	 nest 2 $ ptext (sLit "but") <+> quotes (ppr tycon) <+> ptext (sLit "has") <+> speakN n ]

newtypeExError :: DataCon -> SDoc
newtypeExError con
  = sep [ptext (sLit "A newtype constructor cannot have an existential context,"),
	 nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does")]

newtypeStrictError :: DataCon -> SDoc
newtypeStrictError con
  = sep [ptext (sLit "A newtype constructor cannot have a strictness annotation,"),
	 nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does")]

newtypePredError :: DataCon -> SDoc
newtypePredError con
  = sep [ptext (sLit "A newtype constructor must have a return type of form T a1 ... an"),
	 nest 2 $ ptext (sLit "but") <+> quotes (ppr con) <+> ptext (sLit "does not")]

newtypeFieldErr :: DataCon -> Int -> SDoc
newtypeFieldErr con_name n_flds
  = sep [ptext (sLit "The constructor of a newtype must have exactly one field"), 
	 nest 2 $ ptext (sLit "but") <+> quotes (ppr con_name) <+> ptext (sLit "has") <+> speakN n_flds]

badSigTyDecl :: Name -> SDoc
badSigTyDecl tc_name
  = vcat [ ptext (sLit "Illegal kind signature") <+>
	   quotes (ppr tc_name)
	 , nest 2 (parens $ ptext (sLit "Use -XKindSignatures to allow kind signatures")) ]

emptyConDeclsErr :: Name -> SDoc
emptyConDeclsErr tycon
  = sep [quotes (ppr tycon) <+> ptext (sLit "has no constructors"),
	 nest 2 $ ptext (sLit "(-XEmptyDataDecls permits this)")]

wrongATArgErr :: Type -> Type -> SDoc
wrongATArgErr ty instTy =
  sep [ ptext (sLit "Type indexes must match class instance head")
      , ptext (sLit "Found") <+> quotes (ppr ty)
        <+> ptext (sLit "but expected") <+> quotes (ppr instTy)
      ]
{-
tooManyParmsErr :: Name -> SDoc
tooManyParmsErr tc_name
  = ptext (sLit "Family instance has too many parameters:") <+>
    quotes (ppr tc_name)
-}
wrongNumberOfParmsErr :: Arity -> SDoc
wrongNumberOfParmsErr exp_arity
  = ptext (sLit "Number of parameters must match family declaration; expected")
    <+> ppr exp_arity

wrongKindOfFamily :: TyCon -> SDoc
wrongKindOfFamily family
  = ptext (sLit "Wrong category of family instance; declaration was for a")
    <+> kindOfFamily
  where
    kindOfFamily | isSynTyCon family = ptext (sLit "type synonym")
                 | isAlgTyCon family = ptext (sLit "data type")
                 | otherwise = pprPanic "wrongKindOfFamily" (ppr family)
\end{code}