%
% (c) The University of Glasgow 2006
% (c) The Univserity of Glasgow 1992-2004
%
Data structures which describe closures, and
operations over those data structures
Nothing monadic in here
Much of the rationale for these things is in the ``details'' part of
the STG paper.
\begin{code}
module ClosureInfo (
idRepArity,
ClosureInfo(..), LambdaFormInfo(..),
StandardFormInfo(..),
SMRep,
ArgDescr(..), Liveness,
C_SRT(..), needsSRT,
mkLFThunk, mkLFReEntrant, mkConLFInfo, mkSelectorLFInfo,
mkApLFInfo, mkLFImported, mkLFArgument, mkLFLetNoEscape,
mkClosureInfo, mkConInfo, maybeIsLFCon,
closureSize,
ConTagZ, dataConTagZ,
infoTableLabelFromCI, entryLabelFromCI,
closureLabelFromCI,
isLFThunk, closureUpdReqd,
closureNeedsUpdSpace, closureIsThunk,
closureSingleEntry, closureReEntrant, isConstrClosure_maybe,
closureFunInfo, isKnownFun,
funTag, funTagLFInfo, tagForArity, clHasCafRefs,
enterIdLabel, enterReturnPtLabel,
nodeMustPointToIt,
CallMethod(..), getCallMethod,
blackHoleOnEntry,
staticClosureRequired,
isToplevClosure,
closureValDescr, closureTypeDescr,
isStaticClosure,
cafBlackHoleClosureInfo,
staticClosureNeedsLink,
CgRep(..), nonVoidArg,
argMachRep, primRepToCgRep,
isFollowableArg, isVoidArg,
isFloatingArg, is64BitArg,
separateByPtrFollowness,
cgRepSizeW, cgRepSizeB,
retAddrSizeW,
typeCgRep, idCgRep, tyConCgRep,
) where
#include "../includes/MachDeps.h"
#include "HsVersions.h"
import StgSyn
import SMRep
import CLabel
import Cmm
import Unique
import StaticFlags
import Var
import Id
import IdInfo
import DataCon
import Name
import Type
import TypeRep
import TcType
import TyCon
import BasicTypes
import Outputable
import FastString
import Constants
import DynFlags
import Util
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-datatypes]{Data types for closure information}
%* *
%************************************************************************
Information about a closure, from the code generator's point of view.
A ClosureInfo decribes the info pointer of a closure. It has
enough information
a) to construct the info table itself
b) to allocate a closure containing that info pointer (i.e.
it knows the info table label)
We make a ClosureInfo for
- each let binding (both top level and not)
- each data constructor (for its shared static and
dynamic info tables)
\begin{code}
data ClosureInfo
= ClosureInfo {
closureName :: !Name,
closureLFInfo :: !LambdaFormInfo,
closureSMRep :: !SMRep,
closureSRT :: !C_SRT,
closureType :: !Type,
closureDescr :: !String,
closureInfLcl :: Bool
}
| ConInfo {
closureCon :: !DataCon,
closureSMRep :: !SMRep
}
\end{code}
%************************************************************************
%* *
\subsubsection[LambdaFormInfo-datatype]{@LambdaFormInfo@: source-derivable info}
%* *
%************************************************************************
Information about an identifier, from the code generator's point of
view. Every identifier is bound to a LambdaFormInfo in the
environment, which gives the code generator enough info to be able to
tail call or return that identifier.
Note that a closure is usually bound to an identifier, so a
ClosureInfo contains a LambdaFormInfo.
\begin{code}
data LambdaFormInfo
= LFReEntrant
TopLevelFlag
!RepArity
!Bool
ArgDescr
| LFCon
DataCon
| LFThunk
TopLevelFlag
!Bool
!Bool
StandardFormInfo
!Bool
| LFUnknown
!Bool
| LFLetNoEscape
!RepArity
| LFBlackHole
data StandardFormInfo
= NonStandardThunk
| SelectorThunk
WordOff
| ApThunk
RepArity
\end{code}
%************************************************************************
%* *
CgRep
%* *
%************************************************************************
An CgRep is an abstraction of a Type which tells the code generator
all it needs to know about the calling convention for arguments (and
results) of that type. In particular, the ArgReps of a function's
arguments are used to decide which of the RTS's generic apply
functions to call when applying an unknown function.
It contains more information than the back-end data type MachRep,
so one can easily convert from CgRep -> MachRep. (Except that
there's no MachRep for a VoidRep.)
It distinguishes
pointers from non-pointers (we sort the pointers together
when building closures)
void from other types: a void argument is different from no argument
All 64-bit types map to the same CgRep, because they're passed in the
same register, but a PtrArg is still different from an NonPtrArg
because the function's entry convention has to take into account the
pointer-hood of arguments for the purposes of describing the stack on
entry to the garbage collector.
\begin{code}
data CgRep
= VoidArg
| PtrArg
| NonPtrArg
| LongArg
| FloatArg
| DoubleArg
deriving Eq
instance Outputable CgRep where
ppr VoidArg = ptext (sLit "V_")
ppr PtrArg = ptext (sLit "P_")
ppr NonPtrArg = ptext (sLit "I_")
ppr LongArg = ptext (sLit "L_")
ppr FloatArg = ptext (sLit "F_")
ppr DoubleArg = ptext (sLit "D_")
argMachRep :: CgRep -> CmmType
argMachRep PtrArg = gcWord
argMachRep NonPtrArg = bWord
argMachRep LongArg = b64
argMachRep FloatArg = f32
argMachRep DoubleArg = f64
argMachRep VoidArg = panic "argMachRep:VoidRep"
primRepToCgRep :: PrimRep -> CgRep
primRepToCgRep VoidRep = VoidArg
primRepToCgRep PtrRep = PtrArg
primRepToCgRep IntRep = NonPtrArg
primRepToCgRep WordRep = NonPtrArg
primRepToCgRep Int64Rep = LongArg
primRepToCgRep Word64Rep = LongArg
primRepToCgRep AddrRep = NonPtrArg
primRepToCgRep FloatRep = FloatArg
primRepToCgRep DoubleRep = DoubleArg
idCgRep :: Id -> CgRep
idCgRep x = typeCgRep . idType $ x
tyConCgRep :: TyCon -> CgRep
tyConCgRep = primRepToCgRep . tyConPrimRep
typeCgRep :: UnaryType -> CgRep
typeCgRep = primRepToCgRep . typePrimRep
\end{code}
Whether or not the thing is a pointer that the garbage-collector
should follow. Or, to put it another (less confusing) way, whether
the object in question is a heap object.
Depending on the outcome, this predicate determines what stack
the pointer/object possibly will have to be saved onto, and the
computation of GC liveness info.
\begin{code}
isFollowableArg :: CgRep -> Bool
isFollowableArg PtrArg = True
isFollowableArg _ = False
isVoidArg :: CgRep -> Bool
isVoidArg VoidArg = True
isVoidArg _ = False
nonVoidArg :: CgRep -> Bool
nonVoidArg VoidArg = False
nonVoidArg _ = True
isFloatingArg :: CgRep -> Bool
isFloatingArg DoubleArg = True
isFloatingArg FloatArg = True
isFloatingArg _ = False
is64BitArg :: CgRep -> Bool
is64BitArg LongArg = True
is64BitArg _ = False
\end{code}
\begin{code}
separateByPtrFollowness :: [(CgRep,a)] -> ([(CgRep,a)], [(CgRep,a)])
separateByPtrFollowness things
= sep_things things [] []
where
sep_things [] bs us = (reverse bs, reverse us)
sep_things ((PtrArg,a):ts) bs us = sep_things ts ((PtrArg,a):bs) us
sep_things (t :ts) bs us = sep_things ts bs (t:us)
\end{code}
\begin{code}
cgRepSizeB :: CgRep -> ByteOff
cgRepSizeB DoubleArg = dOUBLE_SIZE
cgRepSizeB LongArg = wORD64_SIZE
cgRepSizeB VoidArg = 0
cgRepSizeB _ = wORD_SIZE
cgRepSizeW :: CgRep -> ByteOff
cgRepSizeW DoubleArg = dOUBLE_SIZE `quot` wORD_SIZE
cgRepSizeW LongArg = wORD64_SIZE `quot` wORD_SIZE
cgRepSizeW VoidArg = 0
cgRepSizeW _ = 1
retAddrSizeW :: WordOff
retAddrSizeW = 1
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-construction]{Functions which build LFInfos}
%* *
%************************************************************************
\begin{code}
mkLFReEntrant :: TopLevelFlag
-> [Id]
-> [Id]
-> ArgDescr
-> LambdaFormInfo
mkLFReEntrant top fvs args arg_descr
= LFReEntrant top (length args) (null fvs) arg_descr
mkLFThunk :: Type -> TopLevelFlag -> [Var] -> UpdateFlag -> LambdaFormInfo
mkLFThunk thunk_ty top fvs upd_flag
= ASSERT2( not (isUpdatable upd_flag) || not (isUnLiftedType thunk_ty), ppr thunk_ty $$ ppr fvs )
LFThunk top (null fvs)
(isUpdatable upd_flag)
NonStandardThunk
(might_be_a_function thunk_ty)
might_be_a_function :: Type -> Bool
might_be_a_function ty
| UnaryRep rep <- repType ty
, Just tc <- tyConAppTyCon_maybe rep
, isDataTyCon tc
= False
| otherwise
= True
\end{code}
@mkConLFInfo@ is similar, for constructors.
\begin{code}
mkConLFInfo :: DataCon -> LambdaFormInfo
mkConLFInfo con = LFCon con
maybeIsLFCon :: LambdaFormInfo -> Maybe DataCon
maybeIsLFCon (LFCon con) = Just con
maybeIsLFCon _ = Nothing
mkSelectorLFInfo :: Id -> WordOff -> Bool -> LambdaFormInfo
mkSelectorLFInfo id offset updatable
= LFThunk NotTopLevel False updatable (SelectorThunk offset)
(might_be_a_function (idType id))
mkApLFInfo :: Id -> UpdateFlag -> RepArity -> LambdaFormInfo
mkApLFInfo id upd_flag arity
= LFThunk NotTopLevel (arity == 0) (isUpdatable upd_flag) (ApThunk arity)
(might_be_a_function (idType id))
\end{code}
Miscellaneous LF-infos.
\begin{code}
mkLFArgument :: Id -> LambdaFormInfo
mkLFArgument id = LFUnknown (might_be_a_function (idType id))
mkLFLetNoEscape :: RepArity -> LambdaFormInfo
mkLFLetNoEscape = LFLetNoEscape
mkLFImported :: Id -> LambdaFormInfo
mkLFImported id
= case idRepArity id of
n | n > 0 -> LFReEntrant TopLevel n True (panic "arg_descr")
_ -> mkLFArgument id
\end{code}
\begin{code}
isLFThunk :: LambdaFormInfo -> Bool
isLFThunk (LFThunk _ _ _ _ _) = True
isLFThunk LFBlackHole = True
isLFThunk _ = False
\end{code}
\begin{code}
type ConTagZ = Int
dataConTagZ :: DataCon -> ConTagZ
dataConTagZ con = dataConTag con fIRST_TAG
\end{code}
%************************************************************************
%* *
Building ClosureInfos
%* *
%************************************************************************
\begin{code}
mkClosureInfo :: Bool
-> Id
-> LambdaFormInfo
-> Int -> Int
-> C_SRT
-> String
-> ClosureInfo
mkClosureInfo is_static id lf_info tot_wds ptr_wds srt_info descr
= ClosureInfo { closureName = name,
closureLFInfo = lf_info,
closureSMRep = sm_rep,
closureSRT = srt_info,
closureType = idType id,
closureDescr = descr,
closureInfLcl = isDataConWorkId id }
where
name = idName id
sm_rep = mkHeapRep is_static ptr_wds nonptr_wds (lfClosureType lf_info)
nonptr_wds = tot_wds ptr_wds
mkConInfo :: Bool
-> DataCon
-> Int -> Int
-> ClosureInfo
mkConInfo is_static data_con tot_wds ptr_wds
= ConInfo { closureSMRep = sm_rep,
closureCon = data_con }
where
sm_rep = mkHeapRep is_static ptr_wds nonptr_wds (lfClosureType lf_info)
lf_info = mkConLFInfo data_con
nonptr_wds = tot_wds ptr_wds
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-sizes]{Functions about closure {\em sizes}}
%* *
%************************************************************************
\begin{code}
closureSize :: ClosureInfo -> WordOff
closureSize cl_info = heapClosureSize (closureSMRep cl_info)
\end{code}
\begin{code}
closureNeedsUpdSpace :: ClosureInfo -> Bool
closureNeedsUpdSpace (ClosureInfo { closureLFInfo =
LFThunk TopLevel _ _ _ _ }) = True
closureNeedsUpdSpace cl_info = closureUpdReqd cl_info
\end{code}
%************************************************************************
%* *
\subsection[SMreps]{Choosing SM reps}
%* *
%************************************************************************
\begin{code}
lfClosureType :: LambdaFormInfo -> ClosureTypeInfo
lfClosureType (LFReEntrant _ arity _ argd) = Fun (fromIntegral arity) argd
lfClosureType (LFCon con) = Constr (fromIntegral (dataConTagZ con))
(dataConIdentity con)
lfClosureType (LFThunk _ _ _ is_sel _) = thunkClosureType is_sel
lfClosureType _ = panic "lfClosureType"
thunkClosureType :: StandardFormInfo -> ClosureTypeInfo
thunkClosureType (SelectorThunk off) = ThunkSelector (fromIntegral off)
thunkClosureType _ = Thunk
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-4-questions]{Four major questions about @ClosureInfo@}
%* *
%************************************************************************
Be sure to see the stg-details notes about these...
\begin{code}
nodeMustPointToIt :: LambdaFormInfo -> Bool
nodeMustPointToIt (LFReEntrant top _ no_fvs _)
= not no_fvs ||
isNotTopLevel top
nodeMustPointToIt (LFCon _) = True
nodeMustPointToIt (LFThunk _ no_fvs updatable NonStandardThunk _)
= updatable || not no_fvs || opt_SccProfilingOn
nodeMustPointToIt (LFThunk _ _ _ _ _)
= True
nodeMustPointToIt (LFUnknown _) = True
nodeMustPointToIt LFBlackHole = True
nodeMustPointToIt (LFLetNoEscape _) = False
\end{code}
The entry conventions depend on the type of closure being entered,
whether or not it has free variables, and whether we're running
sequentially or in parallel.
\begin{tabular}{lllll}
Closure Characteristics & Parallel & Node Req'd & Argument Passing & Enter Via \\
Unknown & no & yes & stack & node \\
Known fun ($\ge$ 1 arg), no fvs & no & no & registers & fast entry (enough args) \\
\ & \ & \ & \ & slow entry (otherwise) \\
Known fun ($\ge$ 1 arg), fvs & no & yes & registers & fast entry (enough args) \\
0 arg, no fvs @\r,\s@ & no & no & n/a & direct entry \\
0 arg, no fvs @\u@ & no & yes & n/a & node \\
0 arg, fvs @\r,\s@ & no & yes & n/a & direct entry \\
0 arg, fvs @\u@ & no & yes & n/a & node \\
Unknown & yes & yes & stack & node \\
Known fun ($\ge$ 1 arg), no fvs & yes & no & registers & fast entry (enough args) \\
\ & \ & \ & \ & slow entry (otherwise) \\
Known fun ($\ge$ 1 arg), fvs & yes & yes & registers & node \\
0 arg, no fvs @\r,\s@ & yes & no & n/a & direct entry \\
0 arg, no fvs @\u@ & yes & yes & n/a & node \\
0 arg, fvs @\r,\s@ & yes & yes & n/a & node \\
0 arg, fvs @\u@ & yes & yes & n/a & node\\
\end{tabular}
When black-holing, single-entry closures could also be entered via node
(rather than directly) to catch double-entry.
\begin{code}
data CallMethod
= EnterIt
| JumpToIt CLabel
| ReturnIt
| ReturnCon DataCon
| SlowCall
| DirectEntry
CLabel
RepArity
getCallMethod :: DynFlags
-> Name
-> CafInfo
-> LambdaFormInfo
-> RepArity
-> CallMethod
getCallMethod dflags _ _ lf_info _
| nodeMustPointToIt lf_info && dopt Opt_Parallel dflags
=
EnterIt
getCallMethod _ name caf (LFReEntrant _ arity _ _) n_args
| n_args == 0 = ASSERT( arity /= 0 )
ReturnIt
| n_args < arity = SlowCall
| otherwise = DirectEntry (enterIdLabel name caf) arity
getCallMethod _ _ _ (LFCon con) n_args
| opt_SccProfilingOn
= EnterIt
| otherwise
= ASSERT( n_args == 0 )
ReturnCon con
getCallMethod _dflags _name _caf (LFThunk _ _ _updatable _std_form_info is_fun) _n_args
| is_fun
= SlowCall
| otherwise
= EnterIt
getCallMethod _ _ _ (LFUnknown True) _
= SlowCall
getCallMethod _ name _ (LFUnknown False) n_args
| n_args > 0
= WARN( True, ppr name <+> ppr n_args )
SlowCall
| otherwise
= EnterIt
getCallMethod _ _ _ LFBlackHole _
= SlowCall
getCallMethod _ name _ (LFLetNoEscape 0) _
= JumpToIt (enterReturnPtLabel (nameUnique name))
getCallMethod _ name _ (LFLetNoEscape arity) n_args
| n_args == arity = DirectEntry (enterReturnPtLabel (nameUnique name)) arity
| otherwise = pprPanic "let-no-escape: " (ppr name <+> ppr arity)
blackHoleOnEntry :: ClosureInfo -> Bool
blackHoleOnEntry ConInfo{} = False
blackHoleOnEntry cl_info
| isStaticRep (closureSMRep cl_info)
= False
| otherwise
= case closureLFInfo cl_info of
LFReEntrant _ _ _ _ -> False
LFLetNoEscape _ -> False
LFThunk _ _no_fvs _updatable _ _ -> True
_other -> panic "blackHoleOnEntry"
isKnownFun :: LambdaFormInfo -> Bool
isKnownFun (LFReEntrant _ _ _ _) = True
isKnownFun (LFLetNoEscape _) = True
isKnownFun _ = False
\end{code}
Note [Unsafe coerce complications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In some (badly-optimised) DPH code we see this
Module X: rr :: Int = error Int "Urk"
Module Y: ...((X.rr |> g) True) ...
where g is an (unsafe) coercion of kind (Int ~ Bool->Bool), say
It's badly optimised, because knowing that 'X.rr' is bottom, we should
have dumped the application to True. But it should still work. These
strange unsafe coercions arise from the case-of-error transformation:
(case (error Int "foo") of { ... }) True
---> (error Int "foo" |> g) True
Anyway, the net effect is that in STG-land, when casts are discarded,
we *can* see a value of type Int applied to an argument. This only happens
if (a) the programmer made a mistake, or (b) the value of type Int is
actually bottom.
So it's wrong to trigger an ASSERT failure in this circumstance. Instead
we now emit a WARN -- mainly to draw attention to a probably-badly-optimised
program fragment -- and do the conservative thing which is SlowCall.
-----------------------------------------------------------------------------
SRT-related stuff
\begin{code}
staticClosureNeedsLink :: ClosureInfo -> Bool
staticClosureNeedsLink (ClosureInfo { closureSRT = srt })
= needsSRT srt
staticClosureNeedsLink (ConInfo { closureSMRep = rep })
= not (isStaticNoCafCon rep)
\end{code}
Note [Entering error thunks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
fail :: Int
fail = error Int "Urk"
foo :: Bool -> Bool
foo True y = (fail `cast` Bool -> Bool) y
foo False y = False
This looks silly, but it can arise from case-of-error. Even if it
does, we'd usually see that 'fail' is a bottoming function and would
discard the extra argument 'y'. But even if that does not occur,
this program is still OK. We will enter 'fail', which never returns.
The WARN is just to alert me to the fact that we aren't spotting that
'fail' is bottoming.
(We are careful never to make a funtion value look like a data type,
because we can't enter a function closure -- but that is not the
problem here.)
Avoiding generating entries and info tables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At present, for every function we generate all of the following,
just in case. But they aren't always all needed, as noted below:
[NB1: all of this applies only to *functions*. Thunks always
have closure, info table, and entry code.]
[NB2: All are needed if the function is *exported*, just to play safe.]
* Fast-entry code ALWAYS NEEDED
* Slow-entry code
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) we're in the parallel world and the function has free vars
[Reason: in parallel world, we always enter functions
with free vars via the closure.]
* The function closure
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) if the function has free vars (ie not top level)
Why case (a) here? Because if the arg-satis check fails,
UpdatePAP stuffs a pointer to the function closure in the PAP.
[Could be changed; UpdatePAP could stuff in a code ptr instead,
but doesn't seem worth it.]
[NB: these conditions imply that we might need the closure
without the slow-entry code. Here's how.
f x y = let g w = ...x..y..w...
in
...(g t)...
Here we need a closure for g which contains x and y,
but since the calls are all saturated we just jump to the
fast entry point for g, with R1 pointing to the closure for g.]
* Standard info table
Needed iff (a) we have any un-saturated calls to the function
OR (b) the function is passed as an arg
OR (c) the function has free vars (ie not top level)
NB. In the sequential world, (c) is only required so that the function closure has
an info table to point to, to keep the storage manager happy.
If (c) alone is true we could fake up an info table by choosing
one of a standard family of info tables, whose entry code just
bombs out.
[NB In the parallel world (c) is needed regardless because
we enter functions with free vars via the closure.]
If (c) is retained, then we'll sometimes generate an info table
(for storage mgr purposes) without slow-entry code. Then we need
to use an error label in the info table to substitute for the absent
slow entry code.
\begin{code}
staticClosureRequired
:: Name
-> StgBinderInfo
-> LambdaFormInfo
-> Bool
staticClosureRequired _ bndr_info
(LFReEntrant top_level _ _ _)
= ASSERT( isTopLevel top_level )
not (satCallsOnly bndr_info)
staticClosureRequired _ _ _ = True
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-misc-funs]{Misc functions about @ClosureInfo@, etc.}
%* *
%************************************************************************
\begin{code}
isStaticClosure :: ClosureInfo -> Bool
isStaticClosure cl_info = isStaticRep (closureSMRep cl_info)
closureUpdReqd :: ClosureInfo -> Bool
closureUpdReqd ClosureInfo{ closureLFInfo = lf_info } = lfUpdatable lf_info
closureUpdReqd ConInfo{} = False
lfUpdatable :: LambdaFormInfo -> Bool
lfUpdatable (LFThunk _ _ upd _ _) = upd
lfUpdatable LFBlackHole = True
lfUpdatable _ = False
closureIsThunk :: ClosureInfo -> Bool
closureIsThunk ClosureInfo{ closureLFInfo = lf_info } = isLFThunk lf_info
closureIsThunk ConInfo{} = False
closureSingleEntry :: ClosureInfo -> Bool
closureSingleEntry (ClosureInfo { closureLFInfo = LFThunk _ _ upd _ _}) = not upd
closureSingleEntry _ = False
closureReEntrant :: ClosureInfo -> Bool
closureReEntrant (ClosureInfo { closureLFInfo = LFReEntrant _ _ _ _ }) = True
closureReEntrant _ = False
isConstrClosure_maybe :: ClosureInfo -> Maybe DataCon
isConstrClosure_maybe (ConInfo { closureCon = data_con }) = Just data_con
isConstrClosure_maybe _ = Nothing
closureFunInfo :: ClosureInfo -> Maybe (RepArity, ArgDescr)
closureFunInfo (ClosureInfo { closureLFInfo = lf_info }) = lfFunInfo lf_info
closureFunInfo _ = Nothing
lfFunInfo :: LambdaFormInfo -> Maybe (RepArity, ArgDescr)
lfFunInfo (LFReEntrant _ arity _ arg_desc) = Just (arity, arg_desc)
lfFunInfo _ = Nothing
funTag :: ClosureInfo -> Int
funTag (ClosureInfo { closureLFInfo = lf_info }) = funTagLFInfo lf_info
funTag _ = 0
funTagLFInfo :: LambdaFormInfo -> Int
funTagLFInfo lf
| Just (arity,_) <- lfFunInfo lf,
Just tag <- tagForArity arity
= tag
| otherwise
= 0
tagForArity :: RepArity -> Maybe Int
tagForArity i | i <= mAX_PTR_TAG = Just i
| otherwise = Nothing
clHasCafRefs :: ClosureInfo -> CafInfo
clHasCafRefs (ClosureInfo {closureSRT = srt}) =
case srt of NoC_SRT -> NoCafRefs
_ -> MayHaveCafRefs
clHasCafRefs (ConInfo {}) = NoCafRefs
\end{code}
\begin{code}
isToplevClosure :: ClosureInfo -> Bool
isToplevClosure (ClosureInfo { closureLFInfo = lf_info })
= case lf_info of
LFReEntrant TopLevel _ _ _ -> True
LFThunk TopLevel _ _ _ _ -> True
_ -> False
isToplevClosure _ = False
\end{code}
Label generation.
\begin{code}
infoTableLabelFromCI :: ClosureInfo -> CLabel
infoTableLabelFromCI = fst . labelsFromCI
entryLabelFromCI :: ClosureInfo -> CLabel
entryLabelFromCI ci
| tablesNextToCode = info_lbl
| otherwise = entry_lbl
where (info_lbl, entry_lbl) = labelsFromCI ci
labelsFromCI :: ClosureInfo -> (CLabel, CLabel)
labelsFromCI cl@(ClosureInfo { closureName = name,
closureLFInfo = lf_info,
closureInfLcl = is_lcl })
= case lf_info of
LFBlackHole -> (mkCAFBlackHoleInfoTableLabel, mkCAFBlackHoleEntryLabel)
LFThunk _ _ upd_flag (SelectorThunk offset) _ ->
bothL (mkSelectorInfoLabel, mkSelectorEntryLabel) upd_flag offset
LFThunk _ _ upd_flag (ApThunk arity) _ ->
bothL (mkApInfoTableLabel, mkApEntryLabel) upd_flag arity
LFThunk{} -> bothL std_mk_lbls name $ clHasCafRefs cl
LFReEntrant _ _ _ _ -> bothL std_mk_lbls name $ clHasCafRefs cl
_ -> panic "labelsFromCI"
where std_mk_lbls = if is_lcl then (mkLocalInfoTableLabel, mkLocalEntryLabel) else (mkInfoTableLabel, mkEntryLabel)
labelsFromCI cl@(ConInfo { closureCon = con,
closureSMRep = rep })
| isStaticRep rep = bothL (mkStaticInfoTableLabel, mkStaticConEntryLabel) name $ clHasCafRefs cl
| otherwise = bothL (mkConInfoTableLabel, mkConEntryLabel) name $ clHasCafRefs cl
where
name = dataConName con
bothL :: (a -> b -> c, a -> b -> c) -> a -> b -> (c, c)
bothL (f, g) x y = (f x y, g x y)
closureLabelFromCI :: ClosureInfo -> CLabel
closureLabelFromCI cl@(ClosureInfo { closureName = nm }) = mkLocalClosureLabel nm $ clHasCafRefs cl
closureLabelFromCI _ = panic "closureLabelFromCI"
enterIdLabel :: Name -> CafInfo -> CLabel
enterIdLabel id
| tablesNextToCode = mkInfoTableLabel id
| otherwise = mkEntryLabel id
enterReturnPtLabel :: Unique -> CLabel
enterReturnPtLabel name
| tablesNextToCode = mkReturnInfoLabel name
| otherwise = mkReturnPtLabel name
\end{code}
We need a black-hole closure info to pass to @allocDynClosure@ when we
want to allocate the black hole on entry to a CAF. These are the only
ways to build an LFBlackHole, maintaining the invariant that it really
is a black hole and not something else.
\begin{code}
cafBlackHoleClosureInfo :: ClosureInfo -> ClosureInfo
cafBlackHoleClosureInfo (ClosureInfo { closureName = nm,
closureType = ty })
= ClosureInfo { closureName = nm,
closureLFInfo = LFBlackHole,
closureSMRep = blackHoleRep,
closureSRT = NoC_SRT,
closureType = ty,
closureDescr = "",
closureInfLcl = False }
cafBlackHoleClosureInfo _ = panic "cafBlackHoleClosureInfo"
\end{code}
%************************************************************************
%* *
\subsection[ClosureInfo-Profiling-funs]{Misc functions about for profiling info.}
%* *
%************************************************************************
Profiling requires two pieces of information to be determined for
each closure's info table --- description and type.
The description is stored directly in the @CClosureInfoTable@ when the
info table is built.
The type is determined from the type information stored with the @Id@
in the closure info using @closureTypeDescr@.
\begin{code}
closureValDescr, closureTypeDescr :: ClosureInfo -> String
closureValDescr (ClosureInfo {closureDescr = descr})
= descr
closureValDescr (ConInfo {closureCon = con})
= occNameString (getOccName con)
closureTypeDescr (ClosureInfo { closureType = ty })
= getTyDescription ty
closureTypeDescr (ConInfo { closureCon = data_con })
= occNameString (getOccName (dataConTyCon data_con))
getTyDescription :: Type -> String
getTyDescription ty
= case (tcSplitSigmaTy ty) of { (_, _, tau_ty) ->
case tau_ty of
TyVarTy _ -> "*"
AppTy fun _ -> getTyDescription fun
FunTy _ res -> '-' : '>' : fun_result res
TyConApp tycon _ -> getOccString tycon
ForAllTy _ ty -> getTyDescription ty
LitTy n -> getTyLitDescription n
}
where
fun_result (FunTy _ res) = '>' : fun_result res
fun_result other = getTyDescription other
getTyLitDescription :: TyLit -> String
getTyLitDescription l =
case l of
NumTyLit n -> show n
StrTyLit n -> show n
\end{code}