%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\begin{code}
module HsExpr where
#include "HsVersions.h"
import HsDecls
import HsPat
import HsLit
import HsTypes
import HsBinds
import TcEvidence
import CoreSyn
import Var
import Name
import BasicTypes
import DataCon
import SrcLoc
import Util
import StaticFlags( opt_PprStyle_Debug )
import Outputable
import FastString
import Data.Data hiding (Fixity)
\end{code}
%************************************************************************
%* *
\subsection{Expressions proper}
%* *
%************************************************************************
\begin{code}
type LHsExpr id = Located (HsExpr id)
type PostTcExpr = HsExpr Id
type PostTcTable = [(Name, PostTcExpr)]
noPostTcExpr :: PostTcExpr
noPostTcExpr = HsLit (HsString (fsLit "noPostTcExpr"))
noPostTcTable :: PostTcTable
noPostTcTable = []
type SyntaxExpr id = HsExpr id
noSyntaxExpr :: SyntaxExpr id
noSyntaxExpr = HsLit (HsString (fsLit "noSyntaxExpr"))
type SyntaxTable id = [(Name, SyntaxExpr id)]
noSyntaxTable :: SyntaxTable id
noSyntaxTable = []
data HsExpr id
= HsVar id
| HsIPVar HsIPName
| HsOverLit (HsOverLit id)
| HsLit HsLit
| HsLam (MatchGroup id)
| HsLamCase PostTcType (MatchGroup id)
| HsApp (LHsExpr id) (LHsExpr id)
| OpApp (LHsExpr id)
(LHsExpr id)
Fixity
(LHsExpr id)
| NegApp (LHsExpr id)
(SyntaxExpr id)
| HsPar (LHsExpr id)
| SectionL (LHsExpr id)
(LHsExpr id)
| SectionR (LHsExpr id)
(LHsExpr id)
| ExplicitTuple
[HsTupArg id]
Boxity
| HsCase (LHsExpr id)
(MatchGroup id)
| HsIf (Maybe (SyntaxExpr id))
(LHsExpr id)
(LHsExpr id)
(LHsExpr id)
| HsMultiIf PostTcType [LGRHS id]
| HsLet (HsLocalBinds id)
(LHsExpr id)
| HsDo (HsStmtContext Name)
[LStmt id]
PostTcType
| ExplicitList
PostTcType
[LHsExpr id]
| ExplicitPArr
PostTcType
[LHsExpr id]
| RecordCon (Located id)
PostTcExpr
(HsRecordBinds id)
| RecordUpd (LHsExpr id)
(HsRecordBinds id)
[DataCon]
[PostTcType]
[PostTcType]
| ExprWithTySig
(LHsExpr id)
(LHsType id)
| ExprWithTySigOut
(LHsExpr id)
(LHsType Name)
| ArithSeq
PostTcExpr
(ArithSeqInfo id)
| PArrSeq
PostTcExpr
(ArithSeqInfo id)
| HsSCC FastString
(LHsExpr id)
| HsCoreAnn FastString
(LHsExpr id)
| HsBracket (HsBracket id)
| HsBracketOut (HsBracket Name)
[PendingSplice]
| HsSpliceE (HsSplice id)
| HsQuasiQuoteE (HsQuasiQuote id)
| HsProc (LPat id)
(LHsCmdTop id)
| HsArrApp
(LHsExpr id)
(LHsExpr id)
PostTcType
HsArrAppType
Bool
| HsArrForm
(LHsExpr id)
(Maybe Fixity)
[LHsCmdTop id]
| HsTick
(Tickish id)
(LHsExpr id)
| HsBinTick
Int
Int
(LHsExpr id)
| HsTickPragma
(FastString,(Int,Int),(Int,Int))
(LHsExpr id)
| EWildPat
| EAsPat (Located id)
(LHsExpr id)
| EViewPat (LHsExpr id)
(LHsExpr id)
| ELazyPat (LHsExpr id)
| HsType (LHsType id)
| HsWrap HsWrapper
(HsExpr id)
deriving (Data, Typeable)
data HsTupArg id
= Present (LHsExpr id)
| Missing PostTcType
deriving (Data, Typeable)
tupArgPresent :: HsTupArg id -> Bool
tupArgPresent (Present {}) = True
tupArgPresent (Missing {}) = False
type PendingSplice = (Name, LHsExpr Id)
\end{code}
Note [Parens in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~
HsPar (and ParPat in patterns, HsParTy in types) is used as follows
* Generally HsPar is optional; the pretty printer adds parens where
necessary. Eg (HsApp f (HsApp g x)) is fine, and prints 'f (g x)'
* HsPars are pretty printed as '( .. )' regardless of whether
or not they are strictly necssary
* HsPars are respected when rearranging operator fixities.
So a * (b + c) means what it says (where the parens are an HsPar)
Note [Sections in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~
Sections should always appear wrapped in an HsPar, thus
HsPar (SectionR ...)
The parser parses sections in a wider variety of situations
(See Note [Parsing sections]), but the renamer checks for those
parens. This invariant makes pretty-printing easier; we don't need
a special case for adding the parens round sections.
Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
(if c then t else e)
as if it was an application (ifThenElse c t e). Why not?
Because we allow an 'if' to return *unboxed* results, thus
if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).
So we use Nothing to mean "use the old built-in typing rule".
\begin{code}
instance OutputableBndr id => Outputable (HsExpr id) where
ppr expr = pprExpr expr
\end{code}
\begin{code}
pprLExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: OutputableBndr id => HsExpr id -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
isQuietHsExpr (HsPar _) = True
isQuietHsExpr (HsApp _ _) = True
isQuietHsExpr (OpApp _ _ _ _) = True
isQuietHsExpr _ = False
pprBinds :: (OutputableBndr idL, OutputableBndr idR)
=> HsLocalBindsLR idL idR -> SDoc
pprBinds b = pprDeeper (ppr b)
ppr_lexpr :: OutputableBndr id => LHsExpr id -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr :: forall id. OutputableBndr id => HsExpr id -> SDoc
ppr_expr (HsVar v) = pprPrefixOcc v
ppr_expr (HsIPVar v) = ppr v
ppr_expr (HsLit lit) = ppr lit
ppr_expr (HsOverLit lit) = ppr lit
ppr_expr (HsPar e) = parens (ppr_lexpr e)
ppr_expr (HsCoreAnn s e)
= vcat [ptext (sLit "HsCoreAnn") <+> ftext s, ppr_lexpr e]
ppr_expr (HsApp e1 e2)
= let (fun, args) = collect_args e1 [e2] in
hang (ppr_lexpr fun) 2 (sep (map pprParendExpr args))
where
collect_args (L _ (HsApp fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_expr (OpApp e1 op _ e2)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_e1 = pprDebugParendExpr e1
pp_e2 = pprDebugParendExpr e2
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly v
= sep [pp_e1, sep [pprInfixOcc v, nest 2 pp_e2]]
ppr_expr (NegApp e _) = char '-' <+> pprDebugParendExpr e
ppr_expr (SectionL expr op)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, ptext (sLit "x_ )")])
pp_infixly v = (sep [pp_expr, pprInfixOcc v])
ppr_expr (SectionR op expr)
= case unLoc op of
HsVar v -> pp_infixly v
_ -> pp_prefixly
where
pp_expr = pprDebugParendExpr expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, ptext (sLit "x_")])
4 ((<>) pp_expr rparen)
pp_infixly v = sep [pprInfixOcc v, pp_expr]
ppr_expr (ExplicitTuple exprs boxity)
= tupleParens (boxityNormalTupleSort boxity) (fcat (ppr_tup_args exprs))
where
ppr_tup_args [] = []
ppr_tup_args (Present e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es
ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es
punc (Present {} : _) = comma <> space
punc (Missing {} : _) = comma
punc [] = empty
ppr_expr (HsLam matches)
= pprMatches (LambdaExpr :: HsMatchContext id) matches
ppr_expr (HsLamCase _ matches)
= sep [ sep [ptext (sLit "\\case {")],
nest 2 (pprMatches (CaseAlt :: HsMatchContext id) matches <+> char '}') ]
ppr_expr (HsCase expr matches)
= sep [ sep [ptext (sLit "case"), nest 4 (ppr expr), ptext (sLit "of {")],
nest 2 (pprMatches (CaseAlt :: HsMatchContext id) matches <+> char '}') ]
ppr_expr (HsIf _ e1 e2 e3)
= sep [hsep [ptext (sLit "if"), nest 2 (ppr e1), ptext (sLit "then")],
nest 4 (ppr e2),
ptext (sLit "else"),
nest 4 (ppr e3)]
ppr_expr (HsMultiIf _ alts)
= sep $ ptext (sLit "if") : map ppr_alt alts
where ppr_alt (L _ (GRHS guards expr)) =
sep [ char '|' <+> interpp'SP guards
, ptext (sLit "->") <+> pprDeeper (ppr expr) ]
ppr_expr (HsLet binds expr@(L _ (HsLet _ _)))
= sep [hang (ptext (sLit "let")) 2 (hsep [pprBinds binds, ptext (sLit "in")]),
ppr_lexpr expr]
ppr_expr (HsLet binds expr)
= sep [hang (ptext (sLit "let")) 2 (pprBinds binds),
hang (ptext (sLit "in")) 2 (ppr expr)]
ppr_expr (HsDo do_or_list_comp stmts _) = pprDo do_or_list_comp stmts
ppr_expr (ExplicitList _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (ExplicitPArr _ exprs)
= paBrackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon con_id _ rbinds)
= hang (ppr con_id) 2 (ppr rbinds)
ppr_expr (RecordUpd aexp rbinds _ _ _)
= hang (pprParendExpr aexp) 2 (ppr rbinds)
ppr_expr (ExprWithTySig expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ExprWithTySigOut expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq _ info) = brackets (ppr info)
ppr_expr (PArrSeq _ info) = paBrackets (ppr info)
ppr_expr EWildPat = char '_'
ppr_expr (ELazyPat e) = char '~' <> pprParendExpr e
ppr_expr (EAsPat v e) = ppr v <> char '@' <> pprParendExpr e
ppr_expr (EViewPat p e) = ppr p <+> ptext (sLit "->") <+> ppr e
ppr_expr (HsSCC lbl expr)
= sep [ ptext (sLit "_scc_") <+> doubleQuotes (ftext lbl),
pprParendExpr expr ]
ppr_expr (HsWrap co_fn e) = pprHsWrapper (pprExpr e) co_fn
ppr_expr (HsType id) = ppr id
ppr_expr (HsSpliceE s) = pprSplice s
ppr_expr (HsBracket b) = pprHsBracket b
ppr_expr (HsBracketOut e []) = ppr e
ppr_expr (HsBracketOut e ps) = ppr e $$ ptext (sLit "pending") <+> ppr ps
ppr_expr (HsQuasiQuoteE qq) = ppr qq
ppr_expr (HsProc pat (L _ (HsCmdTop cmd _ _ _)))
= hsep [ptext (sLit "proc"), ppr pat, ptext (sLit "->"), ppr cmd]
ppr_expr (HsTick tickish exp)
= pprTicks (ppr exp) $
ppr tickish <+> ppr exp
ppr_expr (HsBinTick tickIdTrue tickIdFalse exp)
= pprTicks (ppr exp) $
hcat [ptext (sLit "bintick<"),
ppr tickIdTrue,
ptext (sLit ","),
ppr tickIdFalse,
ptext (sLit ">("),
ppr exp,ptext (sLit ")")]
ppr_expr (HsTickPragma externalSrcLoc exp)
= pprTicks (ppr exp) $
hcat [ptext (sLit "tickpragma<"),
ppr externalSrcLoc,
ptext (sLit ">("),
ppr exp,
ptext (sLit ")")]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, ptext (sLit "-<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp False)
= hsep [ppr_lexpr arg, ptext (sLit ">-"), ppr_lexpr arrow]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, ptext (sLit "-<<"), ppr_lexpr arg]
ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp False)
= hsep [ppr_lexpr arg, ptext (sLit ">>-"), ppr_lexpr arrow]
ppr_expr (HsArrForm (L _ (HsVar v)) (Just _) [arg1, arg2])
= sep [pprCmdArg (unLoc arg1), hsep [pprInfixOcc v, pprCmdArg (unLoc arg2)]]
ppr_expr (HsArrForm op _ args)
= hang (ptext (sLit "(|") <> ppr_lexpr op)
4 (sep (map (pprCmdArg.unLoc) args) <> ptext (sLit "|)"))
pprCmdArg :: OutputableBndr id => HsCmdTop id -> SDoc
pprCmdArg (HsCmdTop cmd@(L _ (HsArrForm _ Nothing [])) _ _ _)
= ppr_lexpr cmd
pprCmdArg (HsCmdTop cmd _ _ _)
= parens (ppr_lexpr cmd)
instance OutputableBndr id => Outputable (HsCmdTop id) where
ppr = pprCmdArg
\end{code}
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendExpr (but don't print double parens of course).
For operator applications we don't add parens, because the oprerator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
\begin{code}
pprDebugParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprDebugParendExpr expr
= getPprStyle (\sty ->
if debugStyle sty then pprParendExpr expr
else pprLExpr expr)
pprParendExpr :: OutputableBndr id => LHsExpr id -> SDoc
pprParendExpr expr
| hsExprNeedsParens (unLoc expr) = parens (pprLExpr expr)
| otherwise = pprLExpr expr
hsExprNeedsParens :: HsExpr id -> Bool
hsExprNeedsParens (ArithSeq {}) = False
hsExprNeedsParens (PArrSeq {}) = False
hsExprNeedsParens (HsLit {}) = False
hsExprNeedsParens (HsOverLit {}) = False
hsExprNeedsParens (HsVar {}) = False
hsExprNeedsParens (HsIPVar {}) = False
hsExprNeedsParens (ExplicitTuple {}) = False
hsExprNeedsParens (ExplicitList {}) = False
hsExprNeedsParens (ExplicitPArr {}) = False
hsExprNeedsParens (HsPar {}) = False
hsExprNeedsParens (HsBracket {}) = False
hsExprNeedsParens (HsBracketOut _ []) = False
hsExprNeedsParens (HsDo sc _ _)
| isListCompExpr sc = False
hsExprNeedsParens _ = True
isAtomicHsExpr :: HsExpr id -> Bool
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsWrap _ e) = isAtomicHsExpr e
isAtomicHsExpr (HsPar e) = isAtomicHsExpr (unLoc e)
isAtomicHsExpr _ = False
\end{code}
%************************************************************************
%* *
\subsection{Commands (in arrow abstractions)}
%* *
%************************************************************************
We re-use HsExpr to represent these.
\begin{code}
type HsCmd id = HsExpr id
type LHsCmd id = LHsExpr id
data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp
deriving (Data, Typeable)
\end{code}
The legal constructors for commands are:
= HsArrApp ... -- as above
| HsArrForm ... -- as above
| HsApp (HsCmd id)
(HsExpr id)
| HsLam (Match id) -- kappa
-- the renamer turns this one into HsArrForm
| OpApp (HsExpr id) -- left operand
(HsCmd id) -- operator
Fixity -- Renamer adds fixity; bottom until then
(HsCmd id) -- right operand
| HsPar (HsCmd id) -- parenthesised command
| HsCase (HsExpr id)
[Match id] -- bodies are HsCmd's
SrcLoc
| HsIf (Maybe (SyntaxExpr id)) -- cond function
(HsExpr id) -- predicate
(HsCmd id) -- then part
(HsCmd id) -- else part
SrcLoc
| HsLet (HsLocalBinds id) -- let(rec)
(HsCmd id)
| HsDo (HsStmtContext Name) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
[Stmt id] -- HsExpr's are really HsCmd's
PostTcType -- Type of the whole expression
SrcLoc
Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
\begin{code}
type LHsCmdTop id = Located (HsCmdTop id)
data HsCmdTop id
= HsCmdTop (LHsCmd id)
[PostTcType]
PostTcType
(SyntaxTable id)
deriving (Data, Typeable)
\end{code}
%************************************************************************
%* *
\subsection{Record binds}
%* *
%************************************************************************
\begin{code}
type HsRecordBinds id = HsRecFields id (LHsExpr id)
\end{code}
%************************************************************************
%* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
%* *
%************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
\begin{code}
data MatchGroup id
= MatchGroup
[LMatch id]
PostTcType
deriving (Data, Typeable)
type LMatch id = Located (Match id)
data Match id
= Match
[LPat id]
(Maybe (LHsType id))
(GRHSs id)
deriving (Data, Typeable)
isEmptyMatchGroup :: MatchGroup id -> Bool
isEmptyMatchGroup (MatchGroup ms _) = null ms
matchGroupArity :: MatchGroup id -> Arity
matchGroupArity (MatchGroup [] _)
= panic "matchGroupArity"
matchGroupArity (MatchGroup (match:matches) _)
= ASSERT( all ((== n_pats) . length . hsLMatchPats) matches )
n_pats
where
n_pats = length (hsLMatchPats match)
hsLMatchPats :: LMatch id -> [LPat id]
hsLMatchPats (L _ (Match pats _ _)) = pats
data GRHSs id
= GRHSs {
grhssGRHSs :: [LGRHS id],
grhssLocalBinds :: (HsLocalBinds id)
} deriving (Data, Typeable)
type LGRHS id = Located (GRHS id)
data GRHS id = GRHS [LStmt id]
(LHsExpr id)
deriving (Data, Typeable)
\end{code}
We know the list must have at least one @Match@ in it.
\begin{code}
pprMatches :: (OutputableBndr idL, OutputableBndr idR) => HsMatchContext idL -> MatchGroup idR -> SDoc
pprMatches ctxt (MatchGroup matches _)
= vcat (map (pprMatch ctxt) (map unLoc matches))
pprFunBind :: (OutputableBndr idL, OutputableBndr idR) => idL -> Bool -> MatchGroup idR -> SDoc
pprFunBind fun inf matches = pprMatches (FunRhs fun inf) matches
pprPatBind :: forall bndr id. (OutputableBndr bndr, OutputableBndr id)
=> LPat bndr -> GRHSs id -> SDoc
pprPatBind pat (grhss)
= sep [ppr pat, nest 2 (pprGRHSs (PatBindRhs :: HsMatchContext id) grhss)]
pprMatch :: (OutputableBndr idL, OutputableBndr idR) => HsMatchContext idL -> Match idR -> SDoc
pprMatch ctxt (Match pats maybe_ty grhss)
= sep [ sep (herald : map (nest 2 . pprParendLPat) other_pats)
, nest 2 ppr_maybe_ty
, nest 2 (pprGRHSs ctxt grhss) ]
where
(herald, other_pats)
= case ctxt of
FunRhs fun is_infix
| not is_infix -> (ppr fun, pats)
| null pats2 -> (pp_infix, [])
| otherwise -> (parens pp_infix, pats2)
where
pp_infix = pprParendLPat pat1 <+> ppr fun <+> pprParendLPat pat2
LambdaExpr -> (char '\\', pats)
_ -> ASSERT( null pats1 )
(ppr pat1, [])
(pat1:pats1) = pats
(pat2:pats2) = pats1
ppr_maybe_ty = case maybe_ty of
Just ty -> dcolon <+> ppr ty
Nothing -> empty
pprGRHSs :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> GRHSs idR -> SDoc
pprGRHSs ctxt (GRHSs grhss binds)
= vcat (map (pprGRHS ctxt . unLoc) grhss)
$$ ppUnless (isEmptyLocalBinds binds)
(text "where" $$ nest 4 (pprBinds binds))
pprGRHS :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> GRHS idR -> SDoc
pprGRHS ctxt (GRHS [] expr)
= pp_rhs ctxt expr
pprGRHS ctxt (GRHS guards expr)
= sep [char '|' <+> interpp'SP guards, pp_rhs ctxt expr]
pp_rhs :: OutputableBndr idR => HsMatchContext idL -> LHsExpr idR -> SDoc
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
\end{code}
%************************************************************************
%* *
\subsection{Do stmts and list comprehensions}
%* *
%************************************************************************
\begin{code}
type LStmt id = Located (StmtLR id id)
type LStmtLR idL idR = Located (StmtLR idL idR)
type Stmt id = StmtLR id id
data StmtLR idL idR
= LastStmt
(LHsExpr idR)
(SyntaxExpr idR)
| BindStmt (LPat idL)
(LHsExpr idR)
(SyntaxExpr idR)
(SyntaxExpr idR)
| ExprStmt (LHsExpr idR)
(SyntaxExpr idR)
(SyntaxExpr idR)
PostTcType
| LetStmt (HsLocalBindsLR idL idR)
| ParStmt [ParStmtBlock idL idR]
(SyntaxExpr idR)
(SyntaxExpr idR)
| TransStmt {
trS_form :: TransForm,
trS_stmts :: [LStmt idL],
trS_bndrs :: [(idR, idR)],
trS_using :: LHsExpr idR,
trS_by :: Maybe (LHsExpr idR),
trS_ret :: SyntaxExpr idR,
trS_bind :: SyntaxExpr idR,
trS_fmap :: SyntaxExpr idR
}
| RecStmt
{ recS_stmts :: [LStmtLR idL idR]
, recS_later_ids :: [idR]
, recS_rec_ids :: [idR]
, recS_bind_fn :: SyntaxExpr idR
, recS_ret_fn :: SyntaxExpr idR
, recS_mfix_fn :: SyntaxExpr idR
, recS_later_rets :: [PostTcExpr]
, recS_rec_rets :: [PostTcExpr]
, recS_ret_ty :: PostTcType
}
deriving (Data, Typeable)
data TransForm
= ThenForm
| GroupForm
deriving (Data, Typeable)
data ParStmtBlock idL idR
= ParStmtBlock
[LStmt idL]
[idR]
(SyntaxExpr idR)
deriving( Data, Typeable )
\end{code}
Note [The type of bind in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Stmts, notably BindStmt, keep the (>>=) bind operator.
We do NOT assume that it has type
(>>=) :: m a -> (a -> m b) -> m b
In some cases (see Trac #303, #1537) it might have a more
exotic type, such as
(>>=) :: m i j a -> (a -> m j k b) -> m i k b
So we must be careful not to make assumptions about the type.
In particular, the monad may not be uniform throughout.
Note [TransStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a TransStmt behaves as follows:
* Before renaming: []
* After renaming:
[ (x27,x27), ..., (z35,z35) ]
These are the variables
bound by the stmts to the left of the 'group'
and used either in the 'by' clause,
or in the stmts following the 'group'
Each item is a pair of identical variables.
* After typechecking:
[ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
Each pair has the same unique, but different *types*.
Note [ExprStmt]
~~~~~~~~~~~~~~~
ExprStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
A monad comprehension of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ExprStmt E Bool: [ .. | .... E ]
E :: Bool
Translation: guard E >> ...
Array comprehensions are handled like list comprehensions.
Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt { recS_rec_ids = [a, c]
, recS_stmts = [ BindStmt b (return (a,c))
, LetStmt a = ...b...
, BindStmt c ec ]
, recS_later_ids = [a, b]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
Why do we need *both* rec_ids and later_ids? For monads they could be
combined into a single set of variables, but not for arrows. That
follows from the types of the respective feedback operators:
mfix :: MonadFix m => (a -> m a) -> m a
loop :: ArrowLoop a => a (b,d) (c,d) -> a b c
* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids
Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written
(v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
do { stmts
; return (v1,..vn, r1, ..., rm) })
where v1..vn are the later_ids
r1..rm are the rec_ids
Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require separate functions like 'return' and
'>>=' for desugaring. These functions are stored in the statements
used in monad comprehensions. For example, the 'return' of the 'LastStmt'
expression is used to lift the body of the monad comprehension:
[ body | stmts ]
=>
stmts >>= \bndrs -> return body
In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:
[ body | stmts, then f, rest ]
=>
f [ env | stmts ] >>= \bndrs -> [ body | rest ]
ExprStmts require the 'Control.Monad.guard' function for boolean
expressions:
[ body | exp, stmts ]
=>
guard exp >> [ body | stmts ]
Parallel statements require the 'Control.Monad.Zip.mzip' function:
[ body | stmts1 | stmts2 | .. ]
=>
mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body
In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.
\begin{code}
instance (OutputableBndr idL, OutputableBndr idR)
=> Outputable (ParStmtBlock idL idR) where
ppr (ParStmtBlock stmts _ _) = interpp'SP stmts
instance (OutputableBndr idL, OutputableBndr idR) => Outputable (StmtLR idL idR) where
ppr stmt = pprStmt stmt
pprStmt :: (OutputableBndr idL, OutputableBndr idR) => (StmtLR idL idR) -> SDoc
pprStmt (LastStmt expr _) = ifPprDebug (ptext (sLit "[last]")) <+> ppr expr
pprStmt (BindStmt pat expr _ _) = hsep [ppr pat, ptext (sLit "<-"), ppr expr]
pprStmt (LetStmt binds) = hsep [ptext (sLit "let"), pprBinds binds]
pprStmt (ExprStmt expr _ _ _) = ppr expr
pprStmt (ParStmt stmtss _ _) = sep (punctuate (ptext (sLit " | ")) (map ppr stmtss))
pprStmt (TransStmt { trS_stmts = stmts, trS_by = by, trS_using = using, trS_form = form })
= sep $ punctuate comma (map ppr stmts ++ [pprTransStmt by using form])
pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids
, recS_later_ids = later_ids })
= ptext (sLit "rec") <+>
vcat [ ppr_do_stmts segment
, ifPprDebug (vcat [ ptext (sLit "rec_ids=") <> ppr rec_ids
, ptext (sLit "later_ids=") <> ppr later_ids])]
pprTransformStmt :: OutputableBndr id => [id] -> LHsExpr id -> Maybe (LHsExpr id) -> SDoc
pprTransformStmt bndrs using by
= sep [ ptext (sLit "then") <+> ifPprDebug (braces (ppr bndrs))
, nest 2 (ppr using)
, nest 2 (pprBy by)]
pprTransStmt :: OutputableBndr id => Maybe (LHsExpr id)
-> LHsExpr id -> TransForm
-> SDoc
pprTransStmt by using ThenForm
= sep [ ptext (sLit "then"), nest 2 (ppr using), nest 2 (pprBy by)]
pprTransStmt by using GroupForm
= sep [ ptext (sLit "then group"), nest 2 (pprBy by), nest 2 (ptext (sLit "using") <+> ppr using)]
pprBy :: OutputableBndr id => Maybe (LHsExpr id) -> SDoc
pprBy Nothing = empty
pprBy (Just e) = ptext (sLit "by") <+> ppr e
pprDo :: OutputableBndr id => HsStmtContext any -> [LStmt id] -> SDoc
pprDo DoExpr stmts = ptext (sLit "do") <+> ppr_do_stmts stmts
pprDo GhciStmt stmts = ptext (sLit "do") <+> ppr_do_stmts stmts
pprDo ArrowExpr stmts = ptext (sLit "do") <+> ppr_do_stmts stmts
pprDo MDoExpr stmts = ptext (sLit "mdo") <+> ppr_do_stmts stmts
pprDo ListComp stmts = brackets $ pprComp stmts
pprDo PArrComp stmts = paBrackets $ pprComp stmts
pprDo MonadComp stmts = brackets $ pprComp stmts
pprDo _ _ = panic "pprDo"
ppr_do_stmts :: (OutputableBndr idL, OutputableBndr idR) => [LStmtLR idL idR] -> SDoc
ppr_do_stmts stmts
= lbrace <+> pprDeeperList vcat (punctuate semi (map ppr stmts))
<+> rbrace
pprComp :: OutputableBndr id => [LStmt id] -> SDoc
pprComp quals
| not (null quals)
, L _ (LastStmt body _) <- last quals
= hang (ppr body <+> char '|') 2 (pprQuals (dropTail 1 quals))
| otherwise
= pprPanic "pprComp" (pprQuals quals)
pprQuals :: OutputableBndr id => [LStmt id] -> SDoc
pprQuals quals = interpp'SP quals
\end{code}
%************************************************************************
%* *
Template Haskell quotation brackets
%* *
%************************************************************************
\begin{code}
data HsSplice id = HsSplice
id
(LHsExpr id)
deriving (Data, Typeable)
instance OutputableBndr id => Outputable (HsSplice id) where
ppr = pprSplice
pprSplice :: OutputableBndr id => HsSplice id -> SDoc
pprSplice (HsSplice n e)
= char '$' <> ifPprDebug (brackets (ppr n)) <> eDoc
where
pp_as_was = pprLExpr e
eDoc = case unLoc e of
HsPar _ -> pp_as_was
HsVar _ -> pp_as_was
_ -> parens pp_as_was
data HsBracket id = ExpBr (LHsExpr id)
| PatBr (LPat id)
| DecBrL [LHsDecl id]
| DecBrG (HsGroup id)
| TypBr (LHsType id)
| VarBr Bool id
deriving (Data, Typeable)
instance OutputableBndr id => Outputable (HsBracket id) where
ppr = pprHsBracket
pprHsBracket :: OutputableBndr id => HsBracket id -> SDoc
pprHsBracket (ExpBr e) = thBrackets empty (ppr e)
pprHsBracket (PatBr p) = thBrackets (char 'p') (ppr p)
pprHsBracket (DecBrG gp) = thBrackets (char 'd') (ppr gp)
pprHsBracket (DecBrL ds) = thBrackets (char 'd') (vcat (map ppr ds))
pprHsBracket (TypBr t) = thBrackets (char 't') (ppr t)
pprHsBracket (VarBr True n) = char '\'' <> ppr n
pprHsBracket (VarBr False n) = ptext (sLit "''") <> ppr n
thBrackets :: SDoc -> SDoc -> SDoc
thBrackets pp_kind pp_body = char '[' <> pp_kind <> char '|' <+>
pp_body <+> ptext (sLit "|]")
\end{code}
%************************************************************************
%* *
\subsection{Enumerations and list comprehensions}
%* *
%************************************************************************
\begin{code}
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
deriving (Data, Typeable)
\end{code}
\begin{code}
instance OutputableBndr id => Outputable (ArithSeqInfo id) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot :: SDoc
pp_dotdot = ptext (sLit " .. ")
\end{code}
%************************************************************************
%* *
\subsection{HsMatchCtxt}
%* *
%************************************************************************
\begin{code}
data HsMatchContext id
= FunRhs id Bool
| LambdaExpr
| CaseAlt
| IfAlt
| ProcExpr
| PatBindRhs
| RecUpd
| StmtCtxt (HsStmtContext id)
| ThPatQuote
deriving (Data, Typeable)
data HsStmtContext id
= ListComp
| MonadComp
| PArrComp
| DoExpr
| MDoExpr
| ArrowExpr
| GhciStmt
| PatGuard (HsMatchContext id)
| ParStmtCtxt (HsStmtContext id)
| TransStmtCtxt (HsStmtContext id)
deriving (Data, Typeable)
\end{code}
\begin{code}
isListCompExpr :: HsStmtContext id -> Bool
isListCompExpr ListComp = True
isListCompExpr PArrComp = True
isListCompExpr MonadComp = True
isListCompExpr (ParStmtCtxt c) = isListCompExpr c
isListCompExpr (TransStmtCtxt c) = isListCompExpr c
isListCompExpr _ = False
isMonadCompExpr :: HsStmtContext id -> Bool
isMonadCompExpr MonadComp = True
isMonadCompExpr (ParStmtCtxt ctxt) = isMonadCompExpr ctxt
isMonadCompExpr (TransStmtCtxt ctxt) = isMonadCompExpr ctxt
isMonadCompExpr _ = False
\end{code}
\begin{code}
matchSeparator :: HsMatchContext id -> SDoc
matchSeparator (FunRhs {}) = ptext (sLit "=")
matchSeparator CaseAlt = ptext (sLit "->")
matchSeparator IfAlt = ptext (sLit "->")
matchSeparator LambdaExpr = ptext (sLit "->")
matchSeparator ProcExpr = ptext (sLit "->")
matchSeparator PatBindRhs = ptext (sLit "=")
matchSeparator (StmtCtxt _) = ptext (sLit "<-")
matchSeparator RecUpd = panic "unused"
matchSeparator ThPatQuote = panic "unused"
\end{code}
\begin{code}
pprMatchContext :: Outputable id => HsMatchContext id -> SDoc
pprMatchContext ctxt
| want_an ctxt = ptext (sLit "an") <+> pprMatchContextNoun ctxt
| otherwise = ptext (sLit "a") <+> pprMatchContextNoun ctxt
where
want_an (FunRhs {}) = True
want_an ProcExpr = True
want_an _ = False
pprMatchContextNoun :: Outputable id => HsMatchContext id -> SDoc
pprMatchContextNoun (FunRhs fun _) = ptext (sLit "equation for")
<+> quotes (ppr fun)
pprMatchContextNoun CaseAlt = ptext (sLit "case alternative")
pprMatchContextNoun IfAlt = ptext (sLit "multi-way if alternative")
pprMatchContextNoun RecUpd = ptext (sLit "record-update construct")
pprMatchContextNoun ThPatQuote = ptext (sLit "Template Haskell pattern quotation")
pprMatchContextNoun PatBindRhs = ptext (sLit "pattern binding")
pprMatchContextNoun LambdaExpr = ptext (sLit "lambda abstraction")
pprMatchContextNoun ProcExpr = ptext (sLit "arrow abstraction")
pprMatchContextNoun (StmtCtxt ctxt) = ptext (sLit "pattern binding in")
$$ pprStmtContext ctxt
pprAStmtContext, pprStmtContext :: Outputable id => HsStmtContext id -> SDoc
pprAStmtContext ctxt = article <+> pprStmtContext ctxt
where
pp_an = ptext (sLit "an")
pp_a = ptext (sLit "a")
article = case ctxt of
MDoExpr -> pp_an
PArrComp -> pp_an
GhciStmt -> pp_an
_ -> pp_a
pprStmtContext GhciStmt = ptext (sLit "interactive GHCi command")
pprStmtContext DoExpr = ptext (sLit "'do' block")
pprStmtContext MDoExpr = ptext (sLit "'mdo' block")
pprStmtContext ArrowExpr = ptext (sLit "'do' block in an arrow command")
pprStmtContext ListComp = ptext (sLit "list comprehension")
pprStmtContext MonadComp = ptext (sLit "monad comprehension")
pprStmtContext PArrComp = ptext (sLit "array comprehension")
pprStmtContext (PatGuard ctxt) = ptext (sLit "pattern guard for") $$ pprMatchContext ctxt
pprStmtContext (ParStmtCtxt c)
| opt_PprStyle_Debug = sep [ptext (sLit "parallel branch of"), pprAStmtContext c]
| otherwise = pprStmtContext c
pprStmtContext (TransStmtCtxt c)
| opt_PprStyle_Debug = sep [ptext (sLit "transformed branch of"), pprAStmtContext c]
| otherwise = pprStmtContext c
matchContextErrString :: Outputable id => HsMatchContext id -> SDoc
matchContextErrString (FunRhs fun _) = ptext (sLit "function") <+> ppr fun
matchContextErrString CaseAlt = ptext (sLit "case")
matchContextErrString IfAlt = ptext (sLit "multi-way if")
matchContextErrString PatBindRhs = ptext (sLit "pattern binding")
matchContextErrString RecUpd = ptext (sLit "record update")
matchContextErrString LambdaExpr = ptext (sLit "lambda")
matchContextErrString ProcExpr = ptext (sLit "proc")
matchContextErrString ThPatQuote = panic "matchContextErrString"
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (TransStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = ptext (sLit "pattern guard")
matchContextErrString (StmtCtxt GhciStmt) = ptext (sLit "interactive GHCi command")
matchContextErrString (StmtCtxt DoExpr) = ptext (sLit "'do' block")
matchContextErrString (StmtCtxt ArrowExpr) = ptext (sLit "'do' block")
matchContextErrString (StmtCtxt MDoExpr) = ptext (sLit "'mdo' block")
matchContextErrString (StmtCtxt ListComp) = ptext (sLit "list comprehension")
matchContextErrString (StmtCtxt MonadComp) = ptext (sLit "monad comprehension")
matchContextErrString (StmtCtxt PArrComp) = ptext (sLit "array comprehension")
\end{code}
\begin{code}
pprMatchInCtxt :: (OutputableBndr idL, OutputableBndr idR)
=> HsMatchContext idL -> Match idR -> SDoc
pprMatchInCtxt ctxt match = hang (ptext (sLit "In") <+> pprMatchContext ctxt <> colon)
4 (pprMatch ctxt match)
pprStmtInCtxt :: (OutputableBndr idL, OutputableBndr idR)
=> HsStmtContext idL -> StmtLR idL idR -> SDoc
pprStmtInCtxt ctxt (LastStmt e _)
| isListCompExpr ctxt
= hang (ptext (sLit "In the expression:")) 2 (ppr e)
pprStmtInCtxt ctxt stmt
= hang (ptext (sLit "In a stmt of") <+> pprAStmtContext ctxt <> colon)
2 (ppr_stmt stmt)
where
ppr_stmt (TransStmt { trS_by = by, trS_using = using
, trS_form = form }) = pprTransStmt by using form
ppr_stmt stmt = pprStmt stmt
\end{code}