-------------------------------------------------------------------------------- -- | The LLVM Type System. -- module Llvm.Types where #include "HsVersions.h" import Data.Char import Data.Int import Data.List (intercalate) import Numeric import Constants import FastString import Unique -- from NCG import PprBase -- ----------------------------------------------------------------------------- -- * LLVM Basic Types and Variables -- -- | A global mutable variable. Maybe defined or external type LMGlobal = (LlvmVar, Maybe LlvmStatic) -- | A String in LLVM type LMString = FastString -- | A type alias type LlvmAlias = (LMString, LlvmType) -- | Llvm Types data LlvmType = LMInt Int -- ^ An integer with a given width in bits. | LMFloat -- ^ 32 bit floating point | LMDouble -- ^ 64 bit floating point | LMFloat80 -- ^ 80 bit (x86 only) floating point | LMFloat128 -- ^ 128 bit floating point | LMPointer LlvmType -- ^ A pointer to a 'LlvmType' | LMArray Int LlvmType -- ^ An array of 'LlvmType' | LMLabel -- ^ A 'LlvmVar' can represent a label (address) | LMVoid -- ^ Void type | LMStruct [LlvmType] -- ^ Structure type | LMAlias LlvmAlias -- ^ A type alias -- | Function type, used to create pointers to functions | LMFunction LlvmFunctionDecl deriving (Eq) instance Show LlvmType where show (LMInt size ) = "i" ++ show size show (LMFloat ) = "float" show (LMDouble ) = "double" show (LMFloat80 ) = "x86_fp80" show (LMFloat128 ) = "fp128" show (LMPointer x ) = show x ++ "*" show (LMArray nr tp ) = "[" ++ show nr ++ " x " ++ show tp ++ "]" show (LMLabel ) = "label" show (LMVoid ) = "void" show (LMStruct tys ) = "<{" ++ (commaCat tys) ++ "}>" show (LMFunction (LlvmFunctionDecl _ _ _ r varg p _)) = let varg' = case varg of VarArgs | null args -> "..." | otherwise -> ", ..." _otherwise -> "" -- by default we don't print param attributes args = intercalate ", " $ map (show . fst) p in show r ++ " (" ++ args ++ varg' ++ ")" show (LMAlias (s,_)) = "%" ++ unpackFS s -- | LLVM metadata values. Used for representing debug and optimization -- information. data LlvmMetaVal -- | Metadata string = MetaStr LMString -- | Metadata node | MetaNode LlvmMetaUnamed -- | Normal value type as metadata | MetaVar LlvmVar deriving (Eq) -- | LLVM metadata nodes. data LlvmMeta -- | Unamed metadata = MetaUnamed LlvmMetaUnamed [LlvmMetaVal] -- | Named metadata | MetaNamed LMString [LlvmMetaUnamed] deriving (Eq) -- | Unamed metadata variable. newtype LlvmMetaUnamed = LMMetaUnamed Int instance Eq LlvmMetaUnamed where (==) (LMMetaUnamed n) (LMMetaUnamed m) = n == m instance Show LlvmMetaVal where show (MetaStr s) = "metadata !\"" ++ unpackFS s ++ "\"" show (MetaNode n) = "metadata " ++ show n show (MetaVar v) = show v instance Show LlvmMetaUnamed where show (LMMetaUnamed u) = "!" ++ show u instance Show LlvmMeta where show (MetaUnamed m _) = show m show (MetaNamed m _) = "!" ++ unpackFS m -- | An LLVM section definition. If Nothing then let LLVM decide the section type LMSection = Maybe LMString type LMAlign = Maybe Int type LMConst = Bool -- ^ is a variable constant or not -- | LLVM Variables data LlvmVar -- | Variables with a global scope. = LMGlobalVar LMString LlvmType LlvmLinkageType LMSection LMAlign LMConst -- | Variables local to a function or parameters. | LMLocalVar Unique LlvmType -- | Named local variables. Sometimes we need to be able to explicitly name -- variables (e.g for function arguments). | LMNLocalVar LMString LlvmType -- | A constant variable | LMLitVar LlvmLit deriving (Eq) instance Show LlvmVar where show (LMLitVar x) = show x show (x ) = show (getVarType x) ++ " " ++ getName x -- | Llvm Literal Data. -- -- These can be used inline in expressions. data LlvmLit -- | Refers to an integer constant (i64 42). = LMIntLit Integer LlvmType -- | Floating point literal | LMFloatLit Double LlvmType -- | Literal NULL, only applicable to pointer types | LMNullLit LlvmType -- | Undefined value, random bit pattern. Useful for optimisations. | LMUndefLit LlvmType deriving (Eq) instance Show LlvmLit where show l = show (getLitType l) ++ " " ++ getLit l -- | Llvm Static Data. -- -- These represent the possible global level variables and constants. data LlvmStatic = LMComment LMString -- ^ A comment in a static section | LMStaticLit LlvmLit -- ^ A static variant of a literal value | LMUninitType LlvmType -- ^ For uninitialised data | LMStaticStr LMString LlvmType -- ^ Defines a static 'LMString' | LMStaticArray [LlvmStatic] LlvmType -- ^ A static array | LMStaticStruc [LlvmStatic] LlvmType -- ^ A static structure type | LMStaticPointer LlvmVar -- ^ A pointer to other data -- static expressions, could split out but leave -- for moment for ease of use. Not many of them. | LMBitc LlvmStatic LlvmType -- ^ Pointer to Pointer conversion | LMPtoI LlvmStatic LlvmType -- ^ Pointer to Integer conversion | LMAdd LlvmStatic LlvmStatic -- ^ Constant addition operation | LMSub LlvmStatic LlvmStatic -- ^ Constant subtraction operation instance Show LlvmStatic where show (LMComment s) = "; " ++ unpackFS s show (LMStaticLit l ) = show l show (LMUninitType t) = show t ++ " undef" show (LMStaticStr s t) = show t ++ " c\"" ++ unpackFS s ++ "\\00\"" show (LMStaticArray d t) = show t ++ " [" ++ commaCat d ++ "]" show (LMStaticStruc d t) = show t ++ "<{" ++ commaCat d ++ "}>" show (LMStaticPointer v) = show v show (LMBitc v t) = show t ++ " bitcast (" ++ show v ++ " to " ++ show t ++ ")" show (LMPtoI v t) = show t ++ " ptrtoint (" ++ show v ++ " to " ++ show t ++ ")" show (LMAdd s1 s2) = let ty1 = getStatType s1 op = if isFloat ty1 then " fadd (" else " add (" in if ty1 == getStatType s2 then show ty1 ++ op ++ show s1 ++ "," ++ show s2 ++ ")" else error $ "LMAdd with different types! s1: " ++ show s1 ++ ", s2: " ++ show s2 show (LMSub s1 s2) = let ty1 = getStatType s1 op = if isFloat ty1 then " fsub (" else " sub (" in if ty1 == getStatType s2 then show ty1 ++ op ++ show s1 ++ "," ++ show s2 ++ ")" else error $ "LMSub with different types! s1: " ++ show s1 ++ ", s2: " ++ show s2 -- | Concatenate an array together, separated by commas commaCat :: Show a => [a] -> String commaCat xs = intercalate ", " $ map show xs -- ----------------------------------------------------------------------------- -- ** Operations on LLVM Basic Types and Variables -- -- | Return the variable name or value of the 'LlvmVar' -- in Llvm IR textual representation (e.g. @\@x@, @%y@ or @42@). getName :: LlvmVar -> String getName v@(LMGlobalVar _ _ _ _ _ _) = "@" ++ getPlainName v getName v@(LMLocalVar _ _ ) = "%" ++ getPlainName v getName v@(LMNLocalVar _ _ ) = "%" ++ getPlainName v getName v@(LMLitVar _ ) = getPlainName v -- | Return the variable name or value of the 'LlvmVar' -- in a plain textual representation (e.g. @x@, @y@ or @42@). getPlainName :: LlvmVar -> String getPlainName (LMGlobalVar x _ _ _ _ _) = unpackFS x getPlainName (LMLocalVar x LMLabel ) = show x getPlainName (LMLocalVar x _ ) = "l" ++ show x getPlainName (LMNLocalVar x _ ) = unpackFS x getPlainName (LMLitVar x ) = getLit x -- | Print a literal value. No type. getLit :: LlvmLit -> String getLit (LMIntLit i (LMInt 32)) = show (fromInteger i :: Int32) getLit (LMIntLit i (LMInt 64)) = show (fromInteger i :: Int64) getLit (LMIntLit i _ ) = show (fromInteger i :: Int) getLit (LMFloatLit r LMFloat ) = fToStr $ realToFrac r getLit (LMFloatLit r LMDouble) = dToStr r getLit f@(LMFloatLit _ _) = error $ "Can't print this float literal!" ++ show f getLit (LMNullLit _ ) = "null" getLit (LMUndefLit _ ) = "undef" -- | Return the 'LlvmType' of the 'LlvmVar' getVarType :: LlvmVar -> LlvmType getVarType (LMGlobalVar _ y _ _ _ _) = y getVarType (LMLocalVar _ y ) = y getVarType (LMNLocalVar _ y ) = y getVarType (LMLitVar l ) = getLitType l -- | Return the 'LlvmType' of a 'LlvmLit' getLitType :: LlvmLit -> LlvmType getLitType (LMIntLit _ t) = t getLitType (LMFloatLit _ t) = t getLitType (LMNullLit t) = t getLitType (LMUndefLit t) = t -- | Return the 'LlvmType' of the 'LlvmStatic' getStatType :: LlvmStatic -> LlvmType getStatType (LMStaticLit l ) = getLitType l getStatType (LMUninitType t) = t getStatType (LMStaticStr _ t) = t getStatType (LMStaticArray _ t) = t getStatType (LMStaticStruc _ t) = t getStatType (LMStaticPointer v) = getVarType v getStatType (LMBitc _ t) = t getStatType (LMPtoI _ t) = t getStatType (LMAdd t _) = getStatType t getStatType (LMSub t _) = getStatType t getStatType (LMComment _) = error "Can't call getStatType on LMComment!" -- | Return the 'LlvmType' of the 'LMGlobal' getGlobalType :: LMGlobal -> LlvmType getGlobalType (v, _) = getVarType v -- | Return the 'LlvmVar' part of a 'LMGlobal' getGlobalVar :: LMGlobal -> LlvmVar getGlobalVar (v, _) = v -- | Return the 'LlvmLinkageType' for a 'LlvmVar' getLink :: LlvmVar -> LlvmLinkageType getLink (LMGlobalVar _ _ l _ _ _) = l getLink _ = Internal -- | Add a pointer indirection to the supplied type. 'LMLabel' and 'LMVoid' -- cannot be lifted. pLift :: LlvmType -> LlvmType pLift (LMLabel) = error "Labels are unliftable" pLift (LMVoid) = error "Voids are unliftable" pLift x = LMPointer x -- | Lower a variable of 'LMPointer' type. pVarLift :: LlvmVar -> LlvmVar pVarLift (LMGlobalVar s t l x a c) = LMGlobalVar s (pLift t) l x a c pVarLift (LMLocalVar s t ) = LMLocalVar s (pLift t) pVarLift (LMNLocalVar s t ) = LMNLocalVar s (pLift t) pVarLift (LMLitVar _ ) = error $ "Can't lower a literal type!" -- | Remove the pointer indirection of the supplied type. Only 'LMPointer' -- constructors can be lowered. pLower :: LlvmType -> LlvmType pLower (LMPointer x) = x pLower x = error $ show x ++ " is a unlowerable type, need a pointer" -- | Lower a variable of 'LMPointer' type. pVarLower :: LlvmVar -> LlvmVar pVarLower (LMGlobalVar s t l x a c) = LMGlobalVar s (pLower t) l x a c pVarLower (LMLocalVar s t ) = LMLocalVar s (pLower t) pVarLower (LMNLocalVar s t ) = LMNLocalVar s (pLower t) pVarLower (LMLitVar _ ) = error $ "Can't lower a literal type!" -- | Test if the given 'LlvmType' is an integer isInt :: LlvmType -> Bool isInt (LMInt _) = True isInt _ = False -- | Test if the given 'LlvmType' is a floating point type isFloat :: LlvmType -> Bool isFloat LMFloat = True isFloat LMDouble = True isFloat LMFloat80 = True isFloat LMFloat128 = True isFloat _ = False -- | Test if the given 'LlvmType' is an 'LMPointer' construct isPointer :: LlvmType -> Bool isPointer (LMPointer _) = True isPointer _ = False -- | Test if a 'LlvmVar' is global. isGlobal :: LlvmVar -> Bool isGlobal (LMGlobalVar _ _ _ _ _ _) = True isGlobal _ = False -- | Width in bits of an 'LlvmType', returns 0 if not applicable llvmWidthInBits :: LlvmType -> Int llvmWidthInBits (LMInt n) = n llvmWidthInBits (LMFloat) = 32 llvmWidthInBits (LMDouble) = 64 llvmWidthInBits (LMFloat80) = 80 llvmWidthInBits (LMFloat128) = 128 -- Could return either a pointer width here or the width of what -- it points to. We will go with the former for now. llvmWidthInBits (LMPointer _) = llvmWidthInBits llvmWord llvmWidthInBits (LMArray _ _) = llvmWidthInBits llvmWord llvmWidthInBits LMLabel = 0 llvmWidthInBits LMVoid = 0 llvmWidthInBits (LMStruct tys) = sum $ map llvmWidthInBits tys llvmWidthInBits (LMFunction _) = 0 llvmWidthInBits (LMAlias (_,t)) = llvmWidthInBits t -- ----------------------------------------------------------------------------- -- ** Shortcut for Common Types -- i128, i64, i32, i16, i8, i1, i8Ptr :: LlvmType i128 = LMInt 128 i64 = LMInt 64 i32 = LMInt 32 i16 = LMInt 16 i8 = LMInt 8 i1 = LMInt 1 i8Ptr = pLift i8 -- | The target architectures word size llvmWord, llvmWordPtr :: LlvmType llvmWord = LMInt (wORD_SIZE * 8) llvmWordPtr = pLift llvmWord -- ----------------------------------------------------------------------------- -- * LLVM Function Types -- -- | An LLVM Function data LlvmFunctionDecl = LlvmFunctionDecl { -- | Unique identifier of the function decName :: LMString, -- | LinkageType of the function funcLinkage :: LlvmLinkageType, -- | The calling convention of the function funcCc :: LlvmCallConvention, -- | Type of the returned value decReturnType :: LlvmType, -- | Indicates if this function uses varargs decVarargs :: LlvmParameterListType, -- | Parameter types and attributes decParams :: [LlvmParameter], -- | Function align value, must be power of 2 funcAlign :: LMAlign } deriving (Eq) instance Show LlvmFunctionDecl where show (LlvmFunctionDecl n l c r varg p a) = let varg' = case varg of VarArgs | null args -> "..." | otherwise -> ", ..." _otherwise -> "" align = case a of Just a' -> " align " ++ show a' Nothing -> "" -- by default we don't print param attributes args = intercalate ", " $ map (show . fst) p in show l ++ " " ++ show c ++ " " ++ show r ++ " @" ++ unpackFS n ++ "(" ++ args ++ varg' ++ ")" ++ align type LlvmFunctionDecls = [LlvmFunctionDecl] type LlvmParameter = (LlvmType, [LlvmParamAttr]) -- | LLVM Parameter Attributes. -- -- Parameter attributes are used to communicate additional information about -- the result or parameters of a function data LlvmParamAttr -- | This indicates to the code generator that the parameter or return value -- should be zero-extended to a 32-bit value by the caller (for a parameter) -- or the callee (for a return value). = ZeroExt -- | This indicates to the code generator that the parameter or return value -- should be sign-extended to a 32-bit value by the caller (for a parameter) -- or the callee (for a return value). | SignExt -- | This indicates that this parameter or return value should be treated in -- a special target-dependent fashion during while emitting code for a -- function call or return (usually, by putting it in a register as opposed -- to memory). | InReg -- | This indicates that the pointer parameter should really be passed by -- value to the function. | ByVal -- | This indicates that the pointer parameter specifies the address of a -- structure that is the return value of the function in the source program. | SRet -- | This indicates that the pointer does not alias any global or any other -- parameter. | NoAlias -- | This indicates that the callee does not make any copies of the pointer -- that outlive the callee itself | NoCapture -- | This indicates that the pointer parameter can be excised using the -- trampoline intrinsics. | Nest deriving (Eq) instance Show LlvmParamAttr where show ZeroExt = "zeroext" show SignExt = "signext" show InReg = "inreg" show ByVal = "byval" show SRet = "sret" show NoAlias = "noalias" show NoCapture = "nocapture" show Nest = "nest" -- | Llvm Function Attributes. -- -- Function attributes are set to communicate additional information about a -- function. Function attributes are considered to be part of the function, -- not of the function type, so functions with different parameter attributes -- can have the same function type. Functions can have multiple attributes. -- -- Descriptions taken from <http://llvm.org/docs/LangRef.html#fnattrs> data LlvmFuncAttr -- | This attribute indicates that the inliner should attempt to inline this -- function into callers whenever possible, ignoring any active inlining -- size threshold for this caller. = AlwaysInline -- | This attribute indicates that the source code contained a hint that -- inlining this function is desirable (such as the \"inline\" keyword in -- C/C++). It is just a hint; it imposes no requirements on the inliner. | InlineHint -- | This attribute indicates that the inliner should never inline this -- function in any situation. This attribute may not be used together -- with the alwaysinline attribute. | NoInline -- | This attribute suggests that optimization passes and code generator -- passes make choices that keep the code size of this function low, and -- otherwise do optimizations specifically to reduce code size. | OptSize -- | This function attribute indicates that the function never returns -- normally. This produces undefined behavior at runtime if the function -- ever does dynamically return. | NoReturn -- | This function attribute indicates that the function never returns with -- an unwind or exceptional control flow. If the function does unwind, its -- runtime behavior is undefined. | NoUnwind -- | This attribute indicates that the function computes its result (or -- decides to unwind an exception) based strictly on its arguments, without -- dereferencing any pointer arguments or otherwise accessing any mutable -- state (e.g. memory, control registers, etc) visible to caller functions. -- It does not write through any pointer arguments (including byval -- arguments) and never changes any state visible to callers. This means -- that it cannot unwind exceptions by calling the C++ exception throwing -- methods, but could use the unwind instruction. | ReadNone -- | This attribute indicates that the function does not write through any -- pointer arguments (including byval arguments) or otherwise modify any -- state (e.g. memory, control registers, etc) visible to caller functions. -- It may dereference pointer arguments and read state that may be set in -- the caller. A readonly function always returns the same value (or unwinds -- an exception identically) when called with the same set of arguments and -- global state. It cannot unwind an exception by calling the C++ exception -- throwing methods, but may use the unwind instruction. | ReadOnly -- | This attribute indicates that the function should emit a stack smashing -- protector. It is in the form of a \"canary\"—a random value placed on the -- stack before the local variables that's checked upon return from the -- function to see if it has been overwritten. A heuristic is used to -- determine if a function needs stack protectors or not. -- -- If a function that has an ssp attribute is inlined into a function that -- doesn't have an ssp attribute, then the resulting function will have an -- ssp attribute. | Ssp -- | This attribute indicates that the function should always emit a stack -- smashing protector. This overrides the ssp function attribute. -- -- If a function that has an sspreq attribute is inlined into a function -- that doesn't have an sspreq attribute or which has an ssp attribute, -- then the resulting function will have an sspreq attribute. | SspReq -- | This attribute indicates that the code generator should not use a red -- zone, even if the target-specific ABI normally permits it. | NoRedZone -- | This attributes disables implicit floating point instructions. | NoImplicitFloat -- | This attribute disables prologue / epilogue emission for the function. -- This can have very system-specific consequences. | Naked deriving (Eq) instance Show LlvmFuncAttr where show AlwaysInline = "alwaysinline" show InlineHint = "inlinehint" show NoInline = "noinline" show OptSize = "optsize" show NoReturn = "noreturn" show NoUnwind = "nounwind" show ReadNone = "readnon" show ReadOnly = "readonly" show Ssp = "ssp" show SspReq = "ssqreq" show NoRedZone = "noredzone" show NoImplicitFloat = "noimplicitfloat" show Naked = "naked" -- | Different types to call a function. data LlvmCallType -- | Normal call, allocate a new stack frame. = StdCall -- | Tail call, perform the call in the current stack frame. | TailCall deriving (Eq,Show) -- | Different calling conventions a function can use. data LlvmCallConvention -- | The C calling convention. -- This calling convention (the default if no other calling convention is -- specified) matches the target C calling conventions. This calling -- convention supports varargs function calls and tolerates some mismatch in -- the declared prototype and implemented declaration of the function (as -- does normal C). = CC_Ccc -- | This calling convention attempts to make calls as fast as possible -- (e.g. by passing things in registers). This calling convention allows -- the target to use whatever tricks it wants to produce fast code for the -- target, without having to conform to an externally specified ABI -- (Application Binary Interface). Implementations of this convention should -- allow arbitrary tail call optimization to be supported. This calling -- convention does not support varargs and requires the prototype of al -- callees to exactly match the prototype of the function definition. | CC_Fastcc -- | This calling convention attempts to make code in the caller as efficient -- as possible under the assumption that the call is not commonly executed. -- As such, these calls often preserve all registers so that the call does -- not break any live ranges in the caller side. This calling convention -- does not support varargs and requires the prototype of all callees to -- exactly match the prototype of the function definition. | CC_Coldcc -- | Any calling convention may be specified by number, allowing -- target-specific calling conventions to be used. Target specific calling -- conventions start at 64. | CC_Ncc Int -- | X86 Specific 'StdCall' convention. LLVM includes a specific alias for it -- rather than just using CC_Ncc. | CC_X86_Stdcc deriving (Eq) instance Show LlvmCallConvention where show CC_Ccc = "ccc" show CC_Fastcc = "fastcc" show CC_Coldcc = "coldcc" show (CC_Ncc i) = "cc " ++ show i show CC_X86_Stdcc = "x86_stdcallcc" -- | Functions can have a fixed amount of parameters, or a variable amount. data LlvmParameterListType -- Fixed amount of arguments. = FixedArgs -- Variable amount of arguments. | VarArgs deriving (Eq,Show) -- | Linkage type of a symbol. -- -- The description of the constructors is copied from the Llvm Assembly Language -- Reference Manual <http://www.llvm.org/docs/LangRef.html#linkage>, because -- they correspond to the Llvm linkage types. data LlvmLinkageType -- | Global values with internal linkage are only directly accessible by -- objects in the current module. In particular, linking code into a module -- with an internal global value may cause the internal to be renamed as -- necessary to avoid collisions. Because the symbol is internal to the -- module, all references can be updated. This corresponds to the notion -- of the @static@ keyword in C. = Internal -- | Globals with @linkonce@ linkage are merged with other globals of the -- same name when linkage occurs. This is typically used to implement -- inline functions, templates, or other code which must be generated -- in each translation unit that uses it. Unreferenced linkonce globals are -- allowed to be discarded. | LinkOnce -- | @weak@ linkage is exactly the same as linkonce linkage, except that -- unreferenced weak globals may not be discarded. This is used for globals -- that may be emitted in multiple translation units, but that are not -- guaranteed to be emitted into every translation unit that uses them. One -- example of this are common globals in C, such as @int X;@ at global -- scope. | Weak -- | @appending@ linkage may only be applied to global variables of pointer -- to array type. When two global variables with appending linkage are -- linked together, the two global arrays are appended together. This is -- the Llvm, typesafe, equivalent of having the system linker append -- together @sections@ with identical names when .o files are linked. | Appending -- | The semantics of this linkage follow the ELF model: the symbol is weak -- until linked, if not linked, the symbol becomes null instead of being an -- undefined reference. | ExternWeak -- | The symbol participates in linkage and can be used to resolve external -- symbol references. | ExternallyVisible -- | Alias for 'ExternallyVisible' but with explicit textual form in LLVM -- assembly. | External deriving (Eq) instance Show LlvmLinkageType where show Internal = "internal" show LinkOnce = "linkonce" show Weak = "weak" show Appending = "appending" show ExternWeak = "extern_weak" -- ExternallyVisible does not have a textual representation, it is -- the linkage type a function resolves to if no other is specified -- in Llvm. show ExternallyVisible = "" show External = "external" -- ----------------------------------------------------------------------------- -- * LLVM Operations -- -- | Llvm binary operators machine operations. data LlvmMachOp = LM_MO_Add -- ^ add two integer, floating point or vector values. | LM_MO_Sub -- ^ subtract two ... | LM_MO_Mul -- ^ multiply .. | LM_MO_UDiv -- ^ unsigned integer or vector division. | LM_MO_SDiv -- ^ signed integer .. | LM_MO_URem -- ^ unsigned integer or vector remainder (mod) | LM_MO_SRem -- ^ signed ... | LM_MO_FAdd -- ^ add two floating point or vector values. | LM_MO_FSub -- ^ subtract two ... | LM_MO_FMul -- ^ multiply ... | LM_MO_FDiv -- ^ divide ... | LM_MO_FRem -- ^ remainder ... -- | Left shift | LM_MO_Shl -- | Logical shift right -- Shift right, filling with zero | LM_MO_LShr -- | Arithmetic shift right -- The most significant bits of the result will be equal to the sign bit of -- the left operand. | LM_MO_AShr | LM_MO_And -- ^ AND bitwise logical operation. | LM_MO_Or -- ^ OR bitwise logical operation. | LM_MO_Xor -- ^ XOR bitwise logical operation. deriving (Eq) instance Show LlvmMachOp where show LM_MO_Add = "add" show LM_MO_Sub = "sub" show LM_MO_Mul = "mul" show LM_MO_UDiv = "udiv" show LM_MO_SDiv = "sdiv" show LM_MO_URem = "urem" show LM_MO_SRem = "srem" show LM_MO_FAdd = "fadd" show LM_MO_FSub = "fsub" show LM_MO_FMul = "fmul" show LM_MO_FDiv = "fdiv" show LM_MO_FRem = "frem" show LM_MO_Shl = "shl" show LM_MO_LShr = "lshr" show LM_MO_AShr = "ashr" show LM_MO_And = "and" show LM_MO_Or = "or" show LM_MO_Xor = "xor" -- | Llvm compare operations. data LlvmCmpOp = LM_CMP_Eq -- ^ Equal (Signed and Unsigned) | LM_CMP_Ne -- ^ Not equal (Signed and Unsigned) | LM_CMP_Ugt -- ^ Unsigned greater than | LM_CMP_Uge -- ^ Unsigned greater than or equal | LM_CMP_Ult -- ^ Unsigned less than | LM_CMP_Ule -- ^ Unsigned less than or equal | LM_CMP_Sgt -- ^ Signed greater than | LM_CMP_Sge -- ^ Signed greater than or equal | LM_CMP_Slt -- ^ Signed less than | LM_CMP_Sle -- ^ Signed less than or equal -- Float comparisons. GHC uses a mix of ordered and unordered float -- comparisons. | LM_CMP_Feq -- ^ Float equal | LM_CMP_Fne -- ^ Float not equal | LM_CMP_Fgt -- ^ Float greater than | LM_CMP_Fge -- ^ Float greater than or equal | LM_CMP_Flt -- ^ Float less than | LM_CMP_Fle -- ^ Float less than or equal deriving (Eq) instance Show LlvmCmpOp where show LM_CMP_Eq = "eq" show LM_CMP_Ne = "ne" show LM_CMP_Ugt = "ugt" show LM_CMP_Uge = "uge" show LM_CMP_Ult = "ult" show LM_CMP_Ule = "ule" show LM_CMP_Sgt = "sgt" show LM_CMP_Sge = "sge" show LM_CMP_Slt = "slt" show LM_CMP_Sle = "sle" show LM_CMP_Feq = "oeq" show LM_CMP_Fne = "une" show LM_CMP_Fgt = "ogt" show LM_CMP_Fge = "oge" show LM_CMP_Flt = "olt" show LM_CMP_Fle = "ole" -- | Llvm cast operations. data LlvmCastOp = LM_Trunc -- ^ Integer truncate | LM_Zext -- ^ Integer extend (zero fill) | LM_Sext -- ^ Integer extend (sign fill) | LM_Fptrunc -- ^ Float truncate | LM_Fpext -- ^ Float extend | LM_Fptoui -- ^ Float to unsigned Integer | LM_Fptosi -- ^ Float to signed Integer | LM_Uitofp -- ^ Unsigned Integer to Float | LM_Sitofp -- ^ Signed Int to Float | LM_Ptrtoint -- ^ Pointer to Integer | LM_Inttoptr -- ^ Integer to Pointer | LM_Bitcast -- ^ Cast between types where no bit manipulation is needed deriving (Eq) instance Show LlvmCastOp where show LM_Trunc = "trunc" show LM_Zext = "zext" show LM_Sext = "sext" show LM_Fptrunc = "fptrunc" show LM_Fpext = "fpext" show LM_Fptoui = "fptoui" show LM_Fptosi = "fptosi" show LM_Uitofp = "uitofp" show LM_Sitofp = "sitofp" show LM_Ptrtoint = "ptrtoint" show LM_Inttoptr = "inttoptr" show LM_Bitcast = "bitcast" -- ----------------------------------------------------------------------------- -- * Floating point conversion -- -- | Convert a Haskell Double to an LLVM hex encoded floating point form. In -- Llvm float literals can be printed in a big-endian hexadecimal format, -- regardless of underlying architecture. dToStr :: Double -> String dToStr d = let bs = doubleToBytes d hex d' = case showHex d' "" of [] -> error "dToStr: too few hex digits for float" [x] -> ['0',x] [x,y] -> [x,y] _ -> error "dToStr: too many hex digits for float" str = map toUpper $ concat . fixEndian . (map hex) $ bs in "0x" ++ str -- | Convert a Haskell Float to an LLVM hex encoded floating point form. -- LLVM uses the same encoding for both floats and doubles (16 digit hex -- string) but floats must have the last half all zeroes so it can fit into -- a float size type. {-# NOINLINE fToStr #-} fToStr :: Float -> String fToStr = (dToStr . realToFrac) -- | Reverse or leave byte data alone to fix endianness on this target. fixEndian :: [a] -> [a] #ifdef WORDS_BIGENDIAN fixEndian = id #else fixEndian = reverse #endif