----------------------------------------------------------------------------- -- -- Stg to C-- code generation: expressions -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module StgCmmExpr ( cgExpr ) where #define FAST_STRING_NOT_NEEDED #include "HsVersions.h" import {-# SOURCE #-} StgCmmBind ( cgBind ) import StgCmmMonad import StgCmmHeap import StgCmmEnv import StgCmmCon import StgCmmProf import StgCmmLayout import StgCmmPrim import StgCmmHpc import StgCmmTicky import StgCmmUtils import StgCmmClosure import StgSyn import MkGraph import BlockId import Cmm import CoreSyn import DataCon import ForeignCall import Id import PrimOp import TyCon import Type import CostCentre ( CostCentreStack, currentCCS ) import Control.Monad (when) import Maybes import Util import FastString import Outputable import UniqSupply ------------------------------------------------------------------------ -- cgExpr: the main function ------------------------------------------------------------------------ cgExpr :: StgExpr -> FCode () cgExpr (StgApp fun args) = cgIdApp fun args {- seq# a s ==> a -} cgExpr (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _res_ty) = cgIdApp a [] cgExpr (StgOpApp op args ty) = cgOpApp op args ty cgExpr (StgConApp con args) = cgConApp con args cgExpr (StgSCC cc tick push expr) = do { emitSetCCC cc tick push; cgExpr expr } cgExpr (StgTick m n expr) = do { emit (mkTickBox m n); cgExpr expr } cgExpr (StgLit lit) = do cmm_lit <- cgLit lit emitReturn [CmmLit cmm_lit] cgExpr (StgLet binds expr) = do { cgBind binds; cgExpr expr } cgExpr (StgLetNoEscape _ _ binds expr) = do { us <- newUniqSupply ; let join_id = mkBlockId (uniqFromSupply us) ; cgLneBinds join_id binds ; cgExpr expr ; emitLabel join_id} cgExpr (StgCase expr _live_vars _save_vars bndr _srt alt_type alts) = cgCase expr bndr alt_type alts cgExpr (StgLam {}) = panic "cgExpr: StgLam" ------------------------------------------------------------------------ -- Let no escape ------------------------------------------------------------------------ {- Generating code for a let-no-escape binding, aka join point is very very similar to what we do for a case expression. The duality is between let-no-escape x = b in e and case e of ... -> b That is, the RHS of 'x' (ie 'b') will execute *later*, just like the alternative of the case; it needs to be compiled in an environment in which all volatile bindings are forgotten, and the free vars are bound only to stable things like stack locations.. The 'e' part will execute *next*, just like the scrutinee of a case. -} ------------------------- cgLneBinds :: BlockId -> StgBinding -> FCode () cgLneBinds join_id (StgNonRec bndr rhs) = do { local_cc <- saveCurrentCostCentre -- See Note [Saving the current cost centre] ; info <- cgLetNoEscapeRhs join_id local_cc bndr rhs ; addBindC (cg_id info) info } cgLneBinds join_id (StgRec pairs) = do { local_cc <- saveCurrentCostCentre ; new_bindings <- fixC (\ new_bindings -> do { addBindsC new_bindings ; listFCs [ cgLetNoEscapeRhs join_id local_cc b e | (b,e) <- pairs ] }) ; addBindsC new_bindings } ------------------------- cgLetNoEscapeRhs :: BlockId -- join point for successor of let-no-escape -> Maybe LocalReg -- Saved cost centre -> Id -> StgRhs -> FCode CgIdInfo cgLetNoEscapeRhs join_id local_cc bndr rhs = do { (info, rhs_body) <- getCodeR $ cgLetNoEscapeRhsBody local_cc bndr rhs ; let (bid, _) = expectJust "cgLetNoEscapeRhs" $ maybeLetNoEscape info ; emitOutOfLine bid $ rhs_body <*> mkBranch join_id ; return info } cgLetNoEscapeRhsBody :: Maybe LocalReg -- Saved cost centre -> Id -> StgRhs -> FCode CgIdInfo cgLetNoEscapeRhsBody local_cc bndr (StgRhsClosure cc _bi _ _upd _ args body) = cgLetNoEscapeClosure bndr local_cc cc (nonVoidIds args) body cgLetNoEscapeRhsBody local_cc bndr (StgRhsCon cc con args) = cgLetNoEscapeClosure bndr local_cc cc [] (StgConApp con args) -- For a constructor RHS we want to generate a single chunk of -- code which can be jumped to from many places, which will -- return the constructor. It's easy; just behave as if it -- was an StgRhsClosure with a ConApp inside! ------------------------- cgLetNoEscapeClosure :: Id -- binder -> Maybe LocalReg -- Slot for saved current cost centre -> CostCentreStack -- XXX: *** NOT USED *** why not? -> [NonVoid Id] -- Args (as in \ args -> body) -> StgExpr -- Body (as in above) -> FCode CgIdInfo cgLetNoEscapeClosure bndr cc_slot _unused_cc args body = do { arg_regs <- forkProc $ do { restoreCurrentCostCentre cc_slot ; arg_regs <- bindArgsToRegs args ; altHeapCheck arg_regs (cgExpr body) -- Using altHeapCheck just reduces -- instructions to save on stack ; return arg_regs } ; return $ lneIdInfo bndr arg_regs} ------------------------------------------------------------------------ -- Case expressions ------------------------------------------------------------------------ {- Note [Compiling case expressions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is quite interesting to decide whether to put a heap-check at the start of each alternative. Of course we certainly have to do so if the case forces an evaluation, or if there is a primitive op which can trigger GC. A more interesting situation is this (a Plan-B situation) !P!; ...P... case x# of 0# -> !Q!; ...Q... default -> !R!; ...R... where !x! indicates a possible heap-check point. The heap checks in the alternatives *can* be omitted, in which case the topmost heapcheck will take their worst case into account. In favour of omitting !Q!, !R!: - *May* save a heap overflow test, if ...P... allocates anything. - We can use relative addressing from a single Hp to get at all the closures so allocated. - No need to save volatile vars etc across heap checks in !Q!, !R! Against omitting !Q!, !R! - May put a heap-check into the inner loop. Suppose the main loop is P -> R -> P -> R... Q is the loop exit, and only it does allocation. This only hurts us if P does no allocation. If P allocates, then there is a heap check in the inner loop anyway. - May do more allocation than reqd. This sometimes bites us badly. For example, nfib (ha!) allocates about 30\% more space if the worst-casing is done, because many many calls to nfib are leaf calls which don't need to allocate anything. We can un-allocate, but that costs an instruction Neither problem hurts us if there is only one alternative. Suppose the inner loop is P->R->P->R etc. Then here is how many heap checks we get in the *inner loop* under various conditions Alooc Heap check in branches (!Q!, !R!)? P Q R yes no (absorb to !P!) -------------------------------------- n n n 0 0 n y n 0 1 n . y 1 1 y . y 2 1 y . n 1 1 Best choices: absorb heap checks from Q and R into !P! iff a) P itself does some allocation or b) P does allocation, or there is exactly one alternative We adopt (b) because that is more likely to put the heap check at the entry to a function, when not many things are live. After a bunch of single-branch cases, we may have lots of things live Hence: two basic plans for case e of r { alts } ------ Plan A: the general case --------- ...save current cost centre... ...code for e, with sequel (SetLocals r) ...restore current cost centre... ...code for alts... ...alts do their own heap checks ------ Plan B: special case when --------- (i) e does not allocate or call GC (ii) either upstream code performs allocation or there is just one alternative Then heap allocation in the (single) case branch is absorbed by the upstream check. Very common example: primops on unboxed values ...code for e, with sequel (SetLocals r)... ...code for alts... ...no heap check... -} ------------------------------------- data GcPlan = GcInAlts -- Put a GC check at the start the case alternatives, [LocalReg] -- which binds these registers | NoGcInAlts -- The scrutinee is a primitive value, or a call to a -- primitive op which does no GC. Absorb the allocation -- of the case alternative(s) into the upstream check ------------------------------------- cgCase :: StgExpr -> Id -> AltType -> [StgAlt] -> FCode () cgCase (StgOpApp (StgPrimOp op) args _) bndr (AlgAlt tycon) alts | isEnumerationTyCon tycon -- Note [case on bool] = do { tag_expr <- do_enum_primop op args -- If the binder is not dead, convert the tag to a constructor -- and assign it. ; when (not (isDeadBinder bndr)) $ do { tmp_reg <- bindArgToReg (NonVoid bndr) ; emitAssign (CmmLocal tmp_reg) (tagToClosure tycon tag_expr) } ; (mb_deflt, branches) <- cgAlgAltRhss NoGcInAlts Nothing (NonVoid bndr) alts ; emitSwitch tag_expr branches mb_deflt 0 (tyConFamilySize tycon - 1) } where do_enum_primop :: PrimOp -> [StgArg] -> FCode CmmExpr do_enum_primop TagToEnumOp [arg] -- No code! = getArgAmode (NonVoid arg) do_enum_primop primop args = do tmp <- newTemp bWord cgPrimOp [tmp] primop args return (CmmReg (CmmLocal tmp)) {- Note [case on bool] This special case handles code like case a <# b of True -> False -> If we let the ordinary case code handle it, we'll get something like tmp1 = a < b tmp2 = Bool_closure_tbl[tmp1] if (tmp2 & 7 != 0) then ... // normal tagged case but this junk won't optimise away. What we really want is just an inline comparison: if (a < b) then ... So we add a special case to generate tmp1 = a < b if (tmp1 == 0) then ... and later optimisations will further improve this. We should really change all these primops to return Int# instead, that would make this special case go away. -} -- Note [ticket #3132]: we might be looking at a case of a lifted Id -- that was cast to an unlifted type. The Id will always be bottom, -- but we don't want the code generator to fall over here. If we -- just emit an assignment here, the assignment will be -- type-incorrect Cmm. Hence, we emit the usual enter/return code, -- (and because bottom must be untagged, it will be entered and the -- program will crash). -- The Sequel is a type-correct assignment, albeit bogus. -- The (dead) continuation loops; it would be better to invoke some kind -- of panic function here. -- -- However, we also want to allow an assignment to be generated -- in the case when the types are compatible, because this allows -- some slightly-dodgy but occasionally-useful casts to be used, -- such as in RtClosureInspect where we cast an HValue to a MutVar# -- so we can print out the contents of the MutVar#. If we generate -- code that enters the HValue, then we'll get a runtime panic, because -- the HValue really is a MutVar#. The types are compatible though, -- so we can just generate an assignment. cgCase (StgApp v []) bndr alt_type@(PrimAlt _) alts | isUnLiftedType (idType v) || reps_compatible = -- assignment suffices for unlifted types do { when (not reps_compatible) $ panic "cgCase: reps do not match, perhaps a dodgy unsafeCoerce?" ; v_info <- getCgIdInfo v ; emitAssign (CmmLocal (idToReg (NonVoid bndr))) (idInfoToAmode v_info) ; _ <- bindArgsToRegs [NonVoid bndr] ; cgAlts NoGcInAlts (NonVoid bndr) alt_type alts } where reps_compatible = idPrimRep v == idPrimRep bndr cgCase scrut@(StgApp v []) _ (PrimAlt _) _ = -- fail at run-time, not compile-time do { mb_cc <- maybeSaveCostCentre True ; withSequel (AssignTo [idToReg (NonVoid v)] False) (cgExpr scrut) ; restoreCurrentCostCentre mb_cc ; emitComment $ mkFastString "should be unreachable code" ; l <- newLabelC ; emitLabel l ; emit (mkBranch l) } {- case seq# a s of v (# s', a' #) -> e ==> case a of v (# s', a' #) -> e (taking advantage of the fact that the return convention for (# State#, a #) is the same as the return convention for just 'a') -} cgCase (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _) bndr alt_type alts = -- handle seq#, same return convention as vanilla 'a'. cgCase (StgApp a []) bndr alt_type alts cgCase scrut bndr alt_type alts = -- the general case do { up_hp_usg <- getVirtHp -- Upstream heap usage ; let ret_bndrs = chooseReturnBndrs bndr alt_type alts alt_regs = map idToReg ret_bndrs simple_scrut = isSimpleScrut scrut alt_type gcInAlts | not simple_scrut = True | isSingleton alts = False | up_hp_usg > 0 = False | otherwise = True gc_plan = if gcInAlts then GcInAlts alt_regs else NoGcInAlts ; mb_cc <- maybeSaveCostCentre simple_scrut ; withSequel (AssignTo alt_regs gcInAlts) (cgExpr scrut) ; restoreCurrentCostCentre mb_cc -- JD: We need Note: [Better Alt Heap Checks] ; _ <- bindArgsToRegs ret_bndrs ; cgAlts gc_plan (NonVoid bndr) alt_type alts } ----------------- maybeSaveCostCentre :: Bool -> FCode (Maybe LocalReg) maybeSaveCostCentre simple_scrut | simple_scrut = saveCurrentCostCentre | otherwise = return Nothing ----------------- isSimpleScrut :: StgExpr -> AltType -> Bool -- Simple scrutinee, does not block or allocate; hence safe to amalgamate -- heap usage from alternatives into the stuff before the case -- NB: if you get this wrong, and claim that the expression doesn't allocate -- when it does, you'll deeply mess up allocation isSimpleScrut (StgOpApp op _ _) _ = isSimpleOp op isSimpleScrut (StgLit _) _ = True -- case 1# of { 0# -> ..; ... } isSimpleScrut (StgApp _ []) (PrimAlt _) = True -- case x# of { 0# -> ..; ... } isSimpleScrut _ _ = False isSimpleOp :: StgOp -> Bool -- True iff the op cannot block or allocate isSimpleOp (StgFCallOp (CCall (CCallSpec _ _ safe)) _) = not (playSafe safe) isSimpleOp (StgPrimOp op) = not (primOpOutOfLine op) isSimpleOp (StgPrimCallOp _) = False ----------------- chooseReturnBndrs :: Id -> AltType -> [StgAlt] -> [NonVoid Id] -- These are the binders of a case that are assigned -- by the evaluation of the scrutinee -- Only non-void ones come back chooseReturnBndrs bndr (PrimAlt _) _alts = nonVoidIds [bndr] chooseReturnBndrs _bndr (UbxTupAlt _) [(_, ids, _, _)] = nonVoidIds ids -- 'bndr' is not assigned! chooseReturnBndrs bndr (AlgAlt _) _alts = nonVoidIds [bndr] -- Only 'bndr' is assigned chooseReturnBndrs bndr PolyAlt _alts = nonVoidIds [bndr] -- Only 'bndr' is assigned chooseReturnBndrs _ _ _ = panic "chooseReturnBndrs" -- UbxTupALt has only one alternative ------------------------------------- cgAlts :: GcPlan -> NonVoid Id -> AltType -> [StgAlt] -> FCode () -- At this point the result of the case are in the binders cgAlts gc_plan _bndr PolyAlt [(_, _, _, rhs)] = maybeAltHeapCheck gc_plan Nothing (cgExpr rhs) cgAlts gc_plan _bndr (UbxTupAlt _) [(_, _, _, rhs)] = maybeAltHeapCheck gc_plan Nothing (cgExpr rhs) -- Here bndrs are *already* in scope, so don't rebind them cgAlts gc_plan bndr (PrimAlt _) alts = do { tagged_cmms <- cgAltRhss gc_plan Nothing bndr alts ; let bndr_reg = CmmLocal (idToReg bndr) (DEFAULT,deflt) = head tagged_cmms -- PrimAlts always have a DEFAULT case -- and it always comes first tagged_cmms' = [(lit,code) | (LitAlt lit, code) <- tagged_cmms] ; emitCmmLitSwitch (CmmReg bndr_reg) tagged_cmms' deflt } cgAlts gc_plan bndr (AlgAlt tycon) alts = do { retry_lbl <- newLabelC ; emitLabel retry_lbl -- Note [alg-alt heap checks] ; (mb_deflt, branches) <- cgAlgAltRhss gc_plan (Just retry_lbl) bndr alts ; let fam_sz = tyConFamilySize tycon bndr_reg = CmmLocal (idToReg bndr) -- Is the constructor tag in the node reg? ; if isSmallFamily fam_sz then let -- Yes, bndr_reg has constr. tag in ls bits tag_expr = cmmConstrTag1 (CmmReg bndr_reg) branches' = [(tag+1,branch) | (tag,branch) <- branches] in emitSwitch tag_expr branches' mb_deflt 1 fam_sz else -- No, get tag from info table let -- Note that ptr _always_ has tag 1 -- when the family size is big enough untagged_ptr = cmmRegOffB bndr_reg (-1) tag_expr = getConstrTag (untagged_ptr) in emitSwitch tag_expr branches mb_deflt 0 (fam_sz - 1) } cgAlts _ _ _ _ = panic "cgAlts" -- UbxTupAlt and PolyAlt have only one alternative -- Note [alg-alt heap check] -- -- In an algebraic case with more than one alternative, we will have -- code like -- -- L0: -- x = R1 -- goto L1 -- L1: -- if (x & 7 >= 2) then goto L2 else goto L3 -- L2: -- Hp = Hp + 16 -- if (Hp > HpLim) then goto L4 -- ... -- L4: -- call gc() returns to L5 -- L5: -- x = R1 -- goto L1 ------------------- cgAlgAltRhss :: GcPlan -> Maybe BlockId -> NonVoid Id -> [StgAlt] -> FCode ( Maybe CmmAGraph , [(ConTagZ, CmmAGraph)] ) cgAlgAltRhss gc_plan retry_lbl bndr alts = do { tagged_cmms <- cgAltRhss gc_plan retry_lbl bndr alts ; let { mb_deflt = case tagged_cmms of ((DEFAULT,rhs) : _) -> Just rhs _other -> Nothing -- DEFAULT is always first, if present ; branches = [ (dataConTagZ con, cmm) | (DataAlt con, cmm) <- tagged_cmms ] } ; return (mb_deflt, branches) } ------------------- cgAltRhss :: GcPlan -> Maybe BlockId -> NonVoid Id -> [StgAlt] -> FCode [(AltCon, CmmAGraph)] cgAltRhss gc_plan retry_lbl bndr alts = forkAlts (map cg_alt alts) where base_reg = idToReg bndr cg_alt :: StgAlt -> FCode (AltCon, CmmAGraph) cg_alt (con, bndrs, _uses, rhs) = getCodeR $ maybeAltHeapCheck gc_plan retry_lbl $ do { _ <- bindConArgs con base_reg bndrs ; cgExpr rhs ; return con } maybeAltHeapCheck :: GcPlan -> Maybe BlockId -> FCode a -> FCode a maybeAltHeapCheck NoGcInAlts _ code = code maybeAltHeapCheck (GcInAlts regs) mlbl code = case mlbl of Nothing -> altHeapCheck regs code Just retry_lbl -> altHeapCheckReturnsTo regs retry_lbl code ----------------------------------------------------------------------------- -- Tail calls ----------------------------------------------------------------------------- cgConApp :: DataCon -> [StgArg] -> FCode () cgConApp con stg_args | isUnboxedTupleCon con -- Unboxed tuple: assign and return = do { arg_exprs <- getNonVoidArgAmodes stg_args ; tickyUnboxedTupleReturn (length arg_exprs) ; emitReturn arg_exprs } | otherwise -- Boxed constructors; allocate and return = ASSERT( stg_args `lengthIs` dataConRepRepArity con ) do { (idinfo, init) <- buildDynCon (dataConWorkId con) currentCCS con stg_args -- The first "con" says that the name bound to this closure is -- is "con", which is a bit of a fudge, but it only affects profiling ; emit init ; emitReturn [idInfoToAmode idinfo] } cgIdApp :: Id -> [StgArg] -> FCode () cgIdApp fun_id [] | isVoidId fun_id = emitReturn [] cgIdApp fun_id args = do { fun_info <- getCgIdInfo fun_id ; case maybeLetNoEscape fun_info of Just (blk_id, lne_regs) -> cgLneJump blk_id lne_regs args Nothing -> cgTailCall fun_id fun_info args } cgLneJump :: BlockId -> [LocalReg] -> [StgArg] -> FCode () cgLneJump blk_id lne_regs args -- Join point; discard sequel = do { adjustHpBackwards -- always do this before a tail-call ; cmm_args <- getNonVoidArgAmodes args ; emitMultiAssign lne_regs cmm_args ; emit (mkBranch blk_id) } cgTailCall :: Id -> CgIdInfo -> [StgArg] -> FCode () cgTailCall fun_id fun_info args = do dflags <- getDynFlags case (getCallMethod dflags fun_name (idCafInfo fun_id) lf_info (length args)) of -- A value in WHNF, so we can just return it. ReturnIt -> emitReturn [fun] -- ToDo: does ReturnIt guarantee tagged? EnterIt -> ASSERT( null args ) -- Discarding arguments emitEnter fun SlowCall -> do -- A slow function call via the RTS apply routines { tickySlowCall lf_info args ; emitComment $ mkFastString "slowCall" ; slowCall fun args } -- A direct function call (possibly with some left-over arguments) DirectEntry lbl arity -> do { tickyDirectCall arity args ; if node_points then directCall NativeNodeCall lbl arity (fun_arg:args) else directCall NativeDirectCall lbl arity args } JumpToIt {} -> panic "cgTailCall" -- ??? where fun_arg = StgVarArg fun_id fun_name = idName fun_id fun = idInfoToAmode fun_info lf_info = cgIdInfoLF fun_info node_points = nodeMustPointToIt lf_info emitEnter :: CmmExpr -> FCode () emitEnter fun = do { adjustHpBackwards ; sequel <- getSequel ; updfr_off <- getUpdFrameOff ; case sequel of -- For a return, we have the option of generating a tag-test or -- not. If the value is tagged, we can return directly, which -- is quicker than entering the value. This is a code -- size/speed trade-off: when optimising for speed rather than -- size we could generate the tag test. -- -- Right now, we do what the old codegen did, and omit the tag -- test, just generating an enter. Return _ -> do { let entry = entryCode $ closureInfoPtr $ CmmReg nodeReg ; emit $ mkForeignJump NativeNodeCall entry [cmmUntag fun] updfr_off } -- The result will be scrutinised in the sequel. This is where -- we generate a tag-test to avoid entering the closure if -- possible. -- -- The generated code will be something like this: -- -- R1 = fun -- copyout -- if (fun & 7 != 0) goto Lcall else goto Lret -- Lcall: -- call [fun] returns to Lret -- Lret: -- fun' = R1 -- copyin -- ... -- -- Note in particular that the label Lret is used as a -- destination by both the tag-test and the call. This is -- becase Lret will necessarily be a proc-point, and we want to -- ensure that we generate only one proc-point for this -- sequence. -- AssignTo res_regs _ -> do { lret <- newLabelC ; lcall <- newLabelC ; let area = Young lret ; let (off, copyin) = copyInOflow NativeReturn area res_regs (outArgs, regs, copyout) = copyOutOflow NativeNodeCall Call area [fun] updfr_off (0,[]) -- refer to fun via nodeReg after the copyout, to avoid having -- both live simultaneously; this sometimes enables fun to be -- inlined in the RHS of the R1 assignment. ; let entry = entryCode (closureInfoPtr (CmmReg nodeReg)) the_call = toCall entry (Just lret) updfr_off off outArgs regs ; emit $ copyout <*> mkCbranch (cmmIsTagged (CmmReg nodeReg)) lret lcall <*> outOfLine lcall the_call <*> mkLabel lret <*> copyin } } {- Note [Better Alt Heap Checks] If two function calls can share a return point, then they will also get the same info table. Therefore, it's worth our effort to make those opportunities appear as frequently as possible. Here are a few examples of how it should work: STG: case f x of True -> <True code -- including allocation> False -> <False code> Cmm: r = call f(x) returns to L; L: if r & 7 >= 2 goto L1 else goto L2; L1: if Hp > HpLim then r = gc(r); goto L; <True code -- including allocation> L2: <False code> Note that the code following both the call to f(x) and the code to gc(r) should be the same, which will allow the common blockifier to discover that they are the same. Therefore, both function calls will return to the same block, and they will use the same info table. Here's an example of the Cmm code we want from a primOp. The primOp doesn't produce an info table for us to reuse, but that's okay: we should still generate the same code: STG: case f x of 0 -> <0-case code -- including allocation> _ -> <default-case code> Cmm: r = a +# b; L: if r == 0 then goto L1 else goto L2; L1: if Hp > HpLim then r = gc(r); goto L; <0-case code -- including allocation> L2: <default-case code> -}