module StgCmmUtils (
cgLit, mkSimpleLit,
emitDataLits, mkDataLits,
emitRODataLits, mkRODataLits,
emitRtsCall, emitRtsCallWithVols, emitRtsCallWithResult, emitRtsCallGen,
assignTemp, newTemp,
newUnboxedTupleRegs,
emitMultiAssign, emitCmmLitSwitch, emitSwitch,
tagToClosure, mkTaggedObjectLoad,
callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr,
cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
cmmUGtWord, cmmSubWord, cmmMulWord, cmmAddWord, cmmUShrWord,
cmmOffsetExprW, cmmOffsetExprB,
cmmRegOffW, cmmRegOffB,
cmmLabelOffW, cmmLabelOffB,
cmmOffsetW, cmmOffsetB,
cmmOffsetLitW, cmmOffsetLitB,
cmmLoadIndexW,
cmmConstrTag, cmmConstrTag1,
cmmUntag, cmmIsTagged, cmmGetTag,
addToMem, addToMemE, addToMemLbl,
mkWordCLit,
newStringCLit, newByteStringCLit,
packHalfWordsCLit,
blankWord,
srt_escape
) where
#include "HsVersions.h"
#include "../includes/stg/MachRegs.h"
import StgCmmMonad
import StgCmmClosure
import Cmm
import BlockId
import MkGraph
import CLabel
import CmmUtils
import ForeignCall
import IdInfo
import Type
import TyCon
import Constants
import SMRep
import Module
import Literal
import Digraph
import ListSetOps
import Util
import Unique
import DynFlags
import FastString
import Outputable
import Data.Char
import Data.List
import Data.Ord
import Data.Word
import Data.Maybe
cgLit :: Literal -> FCode CmmLit
cgLit (MachStr s) = newByteStringCLit (bytesFS s)
cgLit other_lit = return (mkSimpleLit other_lit)
mkLtOp :: Literal -> MachOp
mkLtOp (MachInt _) = MO_S_Lt wordWidth
mkLtOp (MachFloat _) = MO_F_Lt W32
mkLtOp (MachDouble _) = MO_F_Lt W64
mkLtOp lit = MO_U_Lt (typeWidth (cmmLitType (mkSimpleLit lit)))
mkSimpleLit :: Literal -> CmmLit
mkSimpleLit (MachChar c) = CmmInt (fromIntegral (ord c)) wordWidth
mkSimpleLit MachNullAddr = zeroCLit
mkSimpleLit (MachInt i) = CmmInt i wordWidth
mkSimpleLit (MachInt64 i) = CmmInt i W64
mkSimpleLit (MachWord i) = CmmInt i wordWidth
mkSimpleLit (MachWord64 i) = CmmInt i W64
mkSimpleLit (MachFloat r) = CmmFloat r W32
mkSimpleLit (MachDouble r) = CmmFloat r W64
mkSimpleLit (MachLabel fs ms fod)
= CmmLabel (mkForeignLabel fs ms labelSrc fod)
where
labelSrc = ForeignLabelInThisPackage
mkSimpleLit other = pprPanic "mkSimpleLit" (ppr other)
addToMemLbl :: CmmType -> CLabel -> Int -> CmmAGraph
addToMemLbl rep lbl n = addToMem rep (CmmLit (CmmLabel lbl)) n
addToMem :: CmmType
-> CmmExpr
-> Int
-> CmmAGraph
addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) (typeWidth rep)))
addToMemE :: CmmType
-> CmmExpr
-> CmmExpr
-> CmmAGraph
addToMemE rep ptr n
= mkStore ptr (CmmMachOp (MO_Add (typeWidth rep)) [CmmLoad ptr rep, n])
mkTaggedObjectLoad :: LocalReg -> LocalReg -> WordOff -> DynTag -> CmmAGraph
mkTaggedObjectLoad reg base offset tag
= mkAssign (CmmLocal reg)
(CmmLoad (cmmOffsetB (CmmReg (CmmLocal base))
(wORD_SIZE*offset tag))
(localRegType reg))
tagToClosure :: TyCon -> CmmExpr -> CmmExpr
tagToClosure tycon tag
= CmmLoad (cmmOffsetExprW closure_tbl tag) bWord
where closure_tbl = CmmLit (CmmLabel lbl)
lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs
emitRtsCall :: PackageId -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCall pkg fun args safe = emitRtsCallGen [] pkg fun args Nothing safe
emitRtsCallWithVols :: PackageId -> FastString -> [(CmmExpr,ForeignHint)] -> [GlobalReg] -> Bool -> FCode ()
emitRtsCallWithVols pkg fun args vols safe
= emitRtsCallGen [] pkg fun args (Just vols) safe
emitRtsCallWithResult :: LocalReg -> ForeignHint -> PackageId -> FastString
-> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCallWithResult res hint pkg fun args safe
= emitRtsCallGen [(res,hint)] pkg fun args Nothing safe
emitRtsCallGen
:: [(LocalReg,ForeignHint)]
-> PackageId
-> FastString
-> [(CmmExpr,ForeignHint)]
-> Maybe [GlobalReg]
-> Bool
-> FCode ()
emitRtsCallGen res pkg fun args _vols safe
= do { updfr_off <- getUpdFrameOff
; emit caller_save
; call updfr_off
; emit caller_load }
where
call updfr_off =
if safe then
emit =<< mkCmmCall fun_expr res' args' updfr_off
else
emit $ mkUnsafeCall (ForeignTarget fun_expr
(ForeignConvention CCallConv arg_hints res_hints)) res' args'
(args', arg_hints) = unzip args
(res', res_hints) = unzip res
(caller_save, caller_load) = callerSaveVolatileRegs
fun_expr = mkLblExpr (mkCmmCodeLabel pkg fun)
callerSaveVolatileRegs :: (CmmAGraph, CmmAGraph)
callerSaveVolatileRegs = (caller_save, caller_load)
where
caller_save = catAGraphs (map callerSaveGlobalReg regs_to_save)
caller_load = catAGraphs (map callerRestoreGlobalReg regs_to_save)
system_regs = [ Sp,SpLim,Hp,HpLim,CCCS,CurrentTSO,CurrentNursery
, BaseReg ]
regs_to_save = filter callerSaves system_regs
callerSaveGlobalReg reg
= mkStore (get_GlobalReg_addr reg) (CmmReg (CmmGlobal reg))
callerRestoreGlobalReg reg
= mkAssign (CmmGlobal reg)
(CmmLoad (get_GlobalReg_addr reg) (globalRegType reg))
get_GlobalReg_addr :: GlobalReg -> CmmExpr
get_GlobalReg_addr BaseReg = regTableOffset 0
get_GlobalReg_addr mid = get_Regtable_addr_from_offset
(globalRegType mid) (baseRegOffset mid)
regTableOffset :: Int -> CmmExpr
regTableOffset n =
CmmLit (CmmLabelOff mkMainCapabilityLabel (oFFSET_Capability_r + n))
get_Regtable_addr_from_offset :: CmmType -> Int -> CmmExpr
get_Regtable_addr_from_offset _rep offset =
#ifdef REG_Base
CmmRegOff (CmmGlobal BaseReg) offset
#else
regTableOffset offset
#endif
callerSaves :: GlobalReg -> Bool
#ifdef CALLER_SAVES_Base
callerSaves BaseReg = True
#endif
#ifdef CALLER_SAVES_R1
callerSaves (VanillaReg 1 _) = True
#endif
#ifdef CALLER_SAVES_R2
callerSaves (VanillaReg 2 _) = True
#endif
#ifdef CALLER_SAVES_R3
callerSaves (VanillaReg 3 _) = True
#endif
#ifdef CALLER_SAVES_R4
callerSaves (VanillaReg 4 _) = True
#endif
#ifdef CALLER_SAVES_R5
callerSaves (VanillaReg 5 _) = True
#endif
#ifdef CALLER_SAVES_R6
callerSaves (VanillaReg 6 _) = True
#endif
#ifdef CALLER_SAVES_R7
callerSaves (VanillaReg 7 _) = True
#endif
#ifdef CALLER_SAVES_R8
callerSaves (VanillaReg 8 _) = True
#endif
#ifdef CALLER_SAVES_R9
callerSaves (VanillaReg 9 _) = True
#endif
#ifdef CALLER_SAVES_R10
callerSaves (VanillaReg 10 _) = True
#endif
#ifdef CALLER_SAVES_F1
callerSaves (FloatReg 1) = True
#endif
#ifdef CALLER_SAVES_F2
callerSaves (FloatReg 2) = True
#endif
#ifdef CALLER_SAVES_F3
callerSaves (FloatReg 3) = True
#endif
#ifdef CALLER_SAVES_F4
callerSaves (FloatReg 4) = True
#endif
#ifdef CALLER_SAVES_D1
callerSaves (DoubleReg 1) = True
#endif
#ifdef CALLER_SAVES_D2
callerSaves (DoubleReg 2) = True
#endif
#ifdef CALLER_SAVES_L1
callerSaves (LongReg 1) = True
#endif
#ifdef CALLER_SAVES_Sp
callerSaves Sp = True
#endif
#ifdef CALLER_SAVES_SpLim
callerSaves SpLim = True
#endif
#ifdef CALLER_SAVES_Hp
callerSaves Hp = True
#endif
#ifdef CALLER_SAVES_HpLim
callerSaves HpLim = True
#endif
#ifdef CALLER_SAVES_CCCS
callerSaves CCCS = True
#endif
#ifdef CALLER_SAVES_CurrentTSO
callerSaves CurrentTSO = True
#endif
#ifdef CALLER_SAVES_CurrentNursery
callerSaves CurrentNursery = True
#endif
callerSaves _ = False
baseRegOffset :: GlobalReg -> Int
baseRegOffset Sp = oFFSET_StgRegTable_rSp
baseRegOffset SpLim = oFFSET_StgRegTable_rSpLim
baseRegOffset (LongReg 1) = oFFSET_StgRegTable_rL1
baseRegOffset Hp = oFFSET_StgRegTable_rHp
baseRegOffset HpLim = oFFSET_StgRegTable_rHpLim
baseRegOffset CCCS = oFFSET_StgRegTable_rCCCS
baseRegOffset CurrentTSO = oFFSET_StgRegTable_rCurrentTSO
baseRegOffset CurrentNursery = oFFSET_StgRegTable_rCurrentNursery
baseRegOffset HpAlloc = oFFSET_StgRegTable_rHpAlloc
baseRegOffset GCEnter1 = oFFSET_stgGCEnter1
baseRegOffset GCFun = oFFSET_stgGCFun
baseRegOffset reg = pprPanic "baseRegOffset:" (ppr reg)
emitDataLits :: CLabel -> [CmmLit] -> FCode ()
emitDataLits lbl lits = emitDecl (mkDataLits Data lbl lits)
emitRODataLits :: CLabel -> [CmmLit] -> FCode ()
emitRODataLits lbl lits = emitDecl (mkRODataLits lbl lits)
newStringCLit :: String -> FCode CmmLit
newStringCLit str = newByteStringCLit (map (fromIntegral . ord) str)
newByteStringCLit :: [Word8] -> FCode CmmLit
newByteStringCLit bytes
= do { uniq <- newUnique
; let (lit, decl) = mkByteStringCLit uniq bytes
; emitDecl decl
; return lit }
assignTemp :: CmmExpr -> FCode LocalReg
assignTemp (CmmReg (CmmLocal reg)) = return reg
assignTemp e = do { uniq <- newUnique
; let reg = LocalReg uniq (cmmExprType e)
; emitAssign (CmmLocal reg) e
; return reg }
newTemp :: CmmType -> FCode LocalReg
newTemp rep = do { uniq <- newUnique
; return (LocalReg uniq rep) }
newUnboxedTupleRegs :: Type -> FCode ([LocalReg], [ForeignHint])
newUnboxedTupleRegs res_ty
= ASSERT( isUnboxedTupleType res_ty )
do { sequel <- getSequel
; regs <- choose_regs sequel
; ASSERT( regs `equalLength` reps )
return (regs, map primRepForeignHint reps) }
where
UbxTupleRep ty_args = repType res_ty
reps = [ rep
| ty <- ty_args
, let rep = typePrimRep ty
, not (isVoidRep rep) ]
choose_regs (AssignTo regs _) = return regs
choose_regs _other = mapM (newTemp . primRepCmmType) reps
emitMultiAssign :: [LocalReg] -> [CmmExpr] -> FCode ()
type Key = Int
type Vrtx = (Key, Stmt)
type Stmt = (LocalReg, CmmExpr)
emitMultiAssign [] [] = return ()
emitMultiAssign [reg] [rhs] = emitAssign (CmmLocal reg) rhs
emitMultiAssign regs rhss = ASSERT( equalLength regs rhss )
unscramble ([1..] `zip` (regs `zip` rhss))
unscramble :: [Vrtx] -> FCode ()
unscramble vertices = mapM_ do_component components
where
edges :: [ (Vrtx, Key, [Key]) ]
edges = [ (vertex, key1, edges_from stmt1)
| vertex@(key1, stmt1) <- vertices ]
edges_from :: Stmt -> [Key]
edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices,
stmt1 `mustFollow` stmt2 ]
components :: [SCC Vrtx]
components = stronglyConnCompFromEdgedVertices edges
do_component :: SCC Vrtx -> FCode ()
do_component (AcyclicSCC (_,stmt)) = mk_graph stmt
do_component (CyclicSCC []) = panic "do_component"
do_component (CyclicSCC [(_,stmt)]) = mk_graph stmt
do_component (CyclicSCC ((_,first_stmt) : rest)) = do
u <- newUnique
let (to_tmp, from_tmp) = split u first_stmt
mk_graph to_tmp
unscramble rest
mk_graph from_tmp
split :: Unique -> Stmt -> (Stmt, Stmt)
split uniq (reg, rhs)
= ((tmp, rhs), (reg, CmmReg (CmmLocal tmp)))
where
rep = cmmExprType rhs
tmp = LocalReg uniq rep
mk_graph :: Stmt -> FCode ()
mk_graph (reg, rhs) = emitAssign (CmmLocal reg) rhs
mustFollow :: Stmt -> Stmt -> Bool
(reg, _) `mustFollow` (_, rhs) = CmmLocal reg `regUsedIn` rhs
emitSwitch :: CmmExpr
-> [(ConTagZ, CmmAGraph)]
-> Maybe CmmAGraph
-> ConTagZ -> ConTagZ
-> FCode ()
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag
= do { dflags <- getDynFlags
; mkCmmSwitch (via_C dflags) tag_expr branches mb_deflt lo_tag hi_tag }
where
via_C dflags | HscC <- hscTarget dflags = True
| otherwise = False
mkCmmSwitch :: Bool
-> CmmExpr
-> [(ConTagZ, CmmAGraph)]
-> Maybe CmmAGraph
-> ConTagZ -> ConTagZ
-> FCode ()
mkCmmSwitch _ _ [] (Just code) _ _ = emit code
mkCmmSwitch _ _ [(_,code)] Nothing _ _ = emit code
mkCmmSwitch via_C tag_expr branches mb_deflt lo_tag hi_tag = do
join_lbl <- newLabelC
mb_deflt_lbl <- label_default join_lbl mb_deflt
branches_lbls <- label_branches join_lbl branches
tag_expr' <- assignTemp' tag_expr
emit =<< mk_switch tag_expr' (sortBy (comparing fst) branches_lbls)
mb_deflt_lbl lo_tag hi_tag via_C
emitLabel join_lbl
mk_switch :: CmmExpr -> [(ConTagZ, BlockId)]
-> Maybe BlockId
-> ConTagZ -> ConTagZ -> Bool
-> FCode CmmAGraph
mk_switch _tag_expr [(tag, lbl)] _ lo_tag hi_tag _via_C
| lo_tag == hi_tag
= ASSERT( tag == lo_tag )
return (mkBranch lbl)
mk_switch _tag_expr [(_tag,lbl)] Nothing _ _ _
= return (mkBranch lbl)
mk_switch tag_expr [(tag,lbl)] (Just deflt) _ _ _
= return (mkCbranch cond deflt lbl)
where
cond = cmmNeWord tag_expr (CmmLit (mkIntCLit tag))
mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C
| use_switch
= let
find_branch :: ConTagZ -> Maybe BlockId
find_branch i = case (assocMaybe branches i) of
Just lbl -> Just lbl
Nothing -> mb_deflt
arms :: [Maybe BlockId]
arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]]
in
return (mkSwitch (cmmOffset tag_expr ( real_lo_tag)) arms)
| Just deflt <- mb_deflt, (lowest_branch lo_tag) >= n_branches
= do stmts <- mk_switch tag_expr branches mb_deflt
lowest_branch hi_tag via_C
mkCmmIfThenElse
(cmmULtWord tag_expr (CmmLit (mkIntCLit lowest_branch)))
(mkBranch deflt)
stmts
| Just deflt <- mb_deflt, (hi_tag highest_branch) >= n_branches
= do stmts <- mk_switch tag_expr branches mb_deflt
lo_tag highest_branch via_C
mkCmmIfThenElse
(cmmUGtWord tag_expr (CmmLit (mkIntCLit highest_branch)))
(mkBranch deflt)
stmts
| otherwise
= do lo_stmts <- mk_switch tag_expr lo_branches mb_deflt
lo_tag (mid_tag1) via_C
hi_stmts <- mk_switch tag_expr hi_branches mb_deflt
mid_tag hi_tag via_C
mkCmmIfThenElse
(cmmUGeWord tag_expr (CmmLit (mkIntCLit mid_tag)))
hi_stmts
lo_stmts
where
use_switch =
ASSERT( n_branches > 1 && n_tags > 1 )
n_tags > 2 && (via_C || (dense && big_enough))
big_enough = n_branches > 4
dense = n_branches > (n_tags `div` 2)
n_branches = length branches
lowest_branch = fst (head branches)
highest_branch = fst (last branches)
real_lo_tag
| isNothing mb_deflt = lowest_branch
| otherwise = lo_tag
real_hi_tag
| isNothing mb_deflt = highest_branch
| otherwise = hi_tag
n_tags = real_hi_tag real_lo_tag + 1
(mid_tag,_) = branches !! (n_branches `div` 2)
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_tag
emitCmmLitSwitch :: CmmExpr
-> [(Literal, CmmAGraph)]
-> CmmAGraph
-> FCode ()
emitCmmLitSwitch _scrut [] deflt = emit deflt
emitCmmLitSwitch scrut branches deflt = do
scrut' <- assignTemp' scrut
join_lbl <- newLabelC
deflt_lbl <- label_code join_lbl deflt
branches_lbls <- label_branches join_lbl branches
emit =<< mk_lit_switch scrut' deflt_lbl
(sortBy (comparing fst) branches_lbls)
emitLabel join_lbl
mk_lit_switch :: CmmExpr -> BlockId
-> [(Literal,BlockId)]
-> FCode CmmAGraph
mk_lit_switch scrut deflt [(lit,blk)]
= return (mkCbranch (CmmMachOp ne [scrut, CmmLit cmm_lit]) deflt blk)
where
cmm_lit = mkSimpleLit lit
cmm_ty = cmmLitType cmm_lit
rep = typeWidth cmm_ty
ne = if isFloatType cmm_ty then MO_F_Ne rep else MO_Ne rep
mk_lit_switch scrut deflt_blk_id branches
= do lo_blk <- mk_lit_switch scrut deflt_blk_id lo_branches
hi_blk <- mk_lit_switch scrut deflt_blk_id hi_branches
mkCmmIfThenElse cond lo_blk hi_blk
where
n_branches = length branches
(mid_lit,_) = branches !! (n_branches `div` 2)
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid_lit
cond = CmmMachOp (mkLtOp mid_lit)
[scrut, CmmLit (mkSimpleLit mid_lit)]
label_default :: BlockId -> Maybe CmmAGraph -> FCode (Maybe BlockId)
label_default _ Nothing
= return Nothing
label_default join_lbl (Just code)
= do lbl <- label_code join_lbl code
return (Just lbl)
label_branches :: BlockId -> [(a,CmmAGraph)] -> FCode [(a,BlockId)]
label_branches _join_lbl []
= return []
label_branches join_lbl ((tag,code):branches)
= do lbl <- label_code join_lbl code
branches' <- label_branches join_lbl branches
return ((tag,lbl):branches')
label_code :: BlockId -> CmmAGraph -> FCode BlockId
label_code join_lbl code = do
lbl <- newLabelC
emitOutOfLine lbl (code <*> mkBranch join_lbl)
return lbl
assignTemp' :: CmmExpr -> FCode CmmExpr
assignTemp' e
| isTrivialCmmExpr e = return e
| otherwise = do
lreg <- newTemp (cmmExprType e)
let reg = CmmLocal lreg
emitAssign reg e
return (CmmReg reg)
srt_escape :: StgHalfWord
srt_escape = 1