%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Monadic type operations
This module contains monadic operations over types that contain
mutable type variables
\begin{code}
module TcMType (
TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,
newFlexiTyVar,
newFlexiTyVarTy,
newFlexiTyVarTys,
newMetaKindVar, newMetaKindVars, mkKindSigVar,
mkTcTyVarName,
newMetaTyVar, readMetaTyVar, writeMetaTyVar, writeMetaTyVarRef,
isFilledMetaTyVar, isFlexiMetaTyVar,
newEvVar, newEvVars,
newEq, newDict,
newWantedEvVar, newWantedEvVars,
newTcEvBinds, addTcEvBind,
tcInstTyVars, tcInstSigTyVars, newSigTyVar,
tcInstType,
tcInstSkolTyVars, tcInstSuperSkolTyVars,
tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX,
tcInstSkolTyVar, tcInstSkolType,
tcSkolDFunType, tcSuperSkolTyVars,
Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType,
expectedKindInCtxt,
checkValidTheta,
checkValidInstHead, checkValidInstance, validDerivPred,
checkInstTermination, checkValidFamInst, checkTyFamFreeness,
arityErr,
growThetaTyVars, quantifyPred,
zonkTcPredType,
skolemiseSigTv, skolemiseUnboundMetaTyVar,
zonkTcTyVar, zonkTcTyVars, zonkTyVarsAndFV,
zonkQuantifiedTyVar, zonkQuantifiedTyVars,
zonkTcType, zonkTcTypes, zonkTcThetaType,
zonkTcKind, defaultKindVarToStar, zonkCt, zonkCts,
zonkImplication, zonkEvVar, zonkWC, zonkId,
tcGetGlobalTyVars,
) where
#include "HsVersions.h"
import TypeRep
import TcType
import Type
import Kind
import Class
import TyCon
import Var
import HsSyn
import TcRnMonad
import Id
import FunDeps
import Name
import VarSet
import ErrUtils
import PrelNames
import DynFlags
import Util
import Maybes
import ListSetOps
import SrcLoc
import Outputable
import FastString
import Bag
import Control.Monad
import Data.List ( (\\), partition, mapAccumL )
\end{code}
%************************************************************************
%* *
Kind variables
%* *
%************************************************************************
\begin{code}
newMetaKindVar :: TcM TcKind
newMetaKindVar = do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; return (mkTyVarTy (mkMetaKindVar uniq ref)) }
newMetaKindVars :: Int -> TcM [TcKind]
newMetaKindVars n = mapM (\ _ -> newMetaKindVar) (nOfThem n ())
mkKindSigVar :: Name -> KindVar
mkKindSigVar n = mkTcTyVar n superKind (SkolemTv False)
\end{code}
%************************************************************************
%* *
Evidence variables; range over constraints we can abstract over
%* *
%************************************************************************
\begin{code}
newEvVars :: TcThetaType -> TcM [EvVar]
newEvVars theta = mapM newEvVar theta
newWantedEvVar :: TcPredType -> TcM EvVar
newWantedEvVar = newEvVar
newWantedEvVars :: TcThetaType -> TcM [EvVar]
newWantedEvVars theta = mapM newWantedEvVar theta
newEvVar :: TcPredType -> TcM EvVar
newEvVar ty = do { name <- newName (predTypeOccName ty)
; return (mkLocalId name ty) }
newEq :: TcType -> TcType -> TcM EvVar
newEq ty1 ty2
= do { name <- newName (mkVarOccFS (fsLit "cobox"))
; return (mkLocalId name (mkTcEqPred ty1 ty2)) }
newDict :: Class -> [TcType] -> TcM DictId
newDict cls tys
= do { name <- newName (mkDictOcc (getOccName cls))
; return (mkLocalId name (mkClassPred cls tys)) }
predTypeOccName :: PredType -> OccName
predTypeOccName ty = case classifyPredType ty of
ClassPred cls _ -> mkDictOcc (getOccName cls)
EqPred _ _ -> mkVarOccFS (fsLit "cobox")
TuplePred _ -> mkVarOccFS (fsLit "tup")
IrredPred _ -> mkVarOccFS (fsLit "irred")
\end{code}
%************************************************************************
%* *
SkolemTvs (immutable)
%* *
%************************************************************************
\begin{code}
tcInstType :: ([TyVar] -> TcM (TvSubst, [TcTyVar]))
-> TcType
-> TcM ([TcTyVar], TcThetaType, TcType)
tcInstType inst_tyvars ty
= case tcSplitForAllTys ty of
([], rho) -> let
(theta, tau) = tcSplitPhiTy rho
in
return ([], theta, tau)
(tyvars, rho) -> do { (subst, tyvars') <- inst_tyvars tyvars
; let (theta, tau) = tcSplitPhiTy (substTy subst rho)
; return (tyvars', theta, tau) }
tcSkolDFunType :: Type -> TcM ([TcTyVar], TcThetaType, TcType)
tcSkolDFunType ty = tcInstType (\tvs -> return (tcSuperSkolTyVars tvs)) ty
tcSuperSkolTyVars :: [TyVar] -> (TvSubst, [TcTyVar])
tcSuperSkolTyVars = mapAccumL tcSuperSkolTyVar (mkTopTvSubst [])
tcSuperSkolTyVar :: TvSubst -> TyVar -> (TvSubst, TcTyVar)
tcSuperSkolTyVar subst tv
= (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv)
where
kind = substTy subst (tyVarKind tv)
new_tv = mkTcTyVar (tyVarName tv) kind superSkolemTv
tcInstSkolTyVar :: Bool -> TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstSkolTyVar overlappable subst tyvar
= do { uniq <- newUnique
; loc <- getSrcSpanM
; let new_name = mkInternalName uniq occ loc
new_tv = mkTcTyVar new_name kind (SkolemTv overlappable)
; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
where
old_name = tyVarName tyvar
occ = nameOccName old_name
kind = substTy subst (tyVarKind tyvar)
tcInstSkolTyVars :: [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVars = tcInstSkolTyVarsX (mkTopTvSubst [])
tcInstSuperSkolTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSuperSkolTyVars = fmap snd . tcInstSkolTyVars' True (mkTopTvSubst [])
tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX
:: TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVarsX subst = tcInstSkolTyVars' False subst
tcInstSuperSkolTyVarsX subst = tcInstSkolTyVars' True subst
tcInstSkolTyVars' :: Bool -> TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVars' isSuperSkol = mapAccumLM (tcInstSkolTyVar isSuperSkol)
tcInstSkolType :: TcType -> TcM ([TcTyVar], TcThetaType, TcType)
tcInstSkolType ty = tcInstType tcInstSkolTyVars ty
tcInstSigTyVars :: [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSigTyVars = mapAccumLM tcInstSigTyVar (mkTopTvSubst [])
tcInstSigTyVar :: TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstSigTyVar subst tv
= do { new_tv <- newSigTyVar (tyVarName tv) (substTy subst (tyVarKind tv))
; return (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv) }
newSigTyVar :: Name -> Kind -> TcM TcTyVar
newSigTyVar name kind
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name' = setNameUnique name uniq
; return (mkTcTyVar name' kind (MetaTv SigTv ref)) }
\end{code}
Note [Kind substitution when instantiating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we instantiate a bunch of kind and type variables, first we
expect them to be sorted (kind variables first, then type variables).
Then we have to instantiate the kind variables, build a substitution
from old variables to the new variables, then instantiate the type
variables substituting the original kind.
Exemple: If we want to instantiate
[(k1 :: BOX), (k2 :: BOX), (a :: k1 -> k2), (b :: k1)]
we want
[(?k1 :: BOX), (?k2 :: BOX), (?a :: ?k1 -> ?k2), (?b :: ?k1)]
instead of the buggous
[(?k1 :: BOX), (?k2 :: BOX), (?a :: k1 -> k2), (?b :: k1)]
%************************************************************************
%* *
MetaTvs (meta type variables; mutable)
%* *
%************************************************************************
\begin{code}
newMetaTyVar :: MetaInfo -> Kind -> TcM TcTyVar
newMetaTyVar meta_info kind
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name = mkTcTyVarName uniq s
s = case meta_info of
TauTv -> fsLit "t"
TcsTv -> fsLit "u"
SigTv -> fsLit "a"
; return (mkTcTyVar name kind (MetaTv meta_info ref)) }
mkTcTyVarName :: Unique -> FastString -> Name
mkTcTyVarName uniq str = mkSysTvName uniq str
readMetaTyVar :: TyVar -> TcM MetaDetails
readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
readMutVar (metaTvRef tyvar)
isFilledMetaTyVar :: TyVar -> TcM Bool
isFilledMetaTyVar tv
| not (isTcTyVar tv) = return False
| MetaTv _ ref <- tcTyVarDetails tv
= do { details <- readMutVar ref
; return (isIndirect details) }
| otherwise = return False
isFlexiMetaTyVar :: TyVar -> TcM Bool
isFlexiMetaTyVar tv
| not (isTcTyVar tv) = return False
| MetaTv _ ref <- tcTyVarDetails tv
= do { details <- readMutVar ref
; return (isFlexi details) }
| otherwise = return False
writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
writeMetaTyVar tyvar ty
| not debugIsOn
= writeMetaTyVarRef tyvar (metaTvRef tyvar) ty
| not (isTcTyVar tyvar)
= WARN( True, text "Writing to non-tc tyvar" <+> ppr tyvar )
return ()
| MetaTv _ ref <- tcTyVarDetails tyvar
= writeMetaTyVarRef tyvar ref ty
| otherwise
= WARN( True, text "Writing to non-meta tyvar" <+> ppr tyvar )
return ()
writeMetaTyVarRef :: TcTyVar -> TcRef MetaDetails -> TcType -> TcM ()
writeMetaTyVarRef tyvar ref ty
| not debugIsOn
= do { traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
; writeMutVar ref (Indirect ty) }
| otherwise
= do { meta_details <- readMutVar ref;
; zonked_tv_kind <- zonkTcKind tv_kind
; zonked_ty_kind <- zonkTcKind ty_kind
; ASSERT2( isFlexi meta_details,
hang (text "Double update of meta tyvar")
2 (ppr tyvar $$ ppr meta_details) )
traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
; writeMutVar ref (Indirect ty)
; when ( not (isPredTy tv_kind)
&& not (zonked_ty_kind `tcIsSubKind` zonked_tv_kind))
$ WARN( True, hang (text "Ill-kinded update to meta tyvar")
2 ( ppr tyvar <+> text "::" <+> ppr tv_kind
<+> text ":="
<+> ppr ty <+> text "::" <+> ppr ty_kind) )
(return ()) }
where
tv_kind = tyVarKind tyvar
ty_kind = typeKind ty
\end{code}
%************************************************************************
%* *
MetaTvs: TauTvs
%* *
%************************************************************************
\begin{code}
newFlexiTyVar :: Kind -> TcM TcTyVar
newFlexiTyVar kind = newMetaTyVar TauTv kind
newFlexiTyVarTy :: Kind -> TcM TcType
newFlexiTyVarTy kind = do
tc_tyvar <- newFlexiTyVar kind
return (TyVarTy tc_tyvar)
newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
newFlexiTyVarTys n kind = mapM newFlexiTyVarTy (nOfThem n kind)
tcInstTyVars :: [TKVar] -> TcM ([TcTyVar], [TcType], TvSubst)
tcInstTyVars tyvars = tcInstTyVarsX emptyTvSubst tyvars
tcInstTyVarsX :: TvSubst -> [TKVar] -> TcM ([TcTyVar], [TcType], TvSubst)
tcInstTyVarsX subst tyvars =
do { (subst', tyvars') <- mapAccumLM tcInstTyVarX subst tyvars
; return (tyvars', mkTyVarTys tyvars', subst') }
tcInstTyVarX :: TvSubst -> TKVar -> TcM (TvSubst, TcTyVar)
tcInstTyVarX subst tyvar
= do { uniq <- newMetaUnique
; ref <- newMutVar Flexi
; let name = mkSystemName uniq (getOccName tyvar)
kind = substTy subst (tyVarKind tyvar)
new_tv = mkTcTyVar name kind (MetaTv TauTv ref)
; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
\end{code}
%************************************************************************
%* *
\subsection{Zonking -- the exernal interfaces}
%* *
%************************************************************************
@tcGetGlobalTyVars@ returns a fully-zonked set of tyvars free in the environment.
To improve subsequent calls to the same function it writes the zonked set back into
the environment.
\begin{code}
tcGetGlobalTyVars :: TcM TcTyVarSet
tcGetGlobalTyVars
= do { (TcLclEnv {tcl_tyvars = gtv_var}) <- getLclEnv
; gbl_tvs <- readMutVar gtv_var
; gbl_tvs' <- zonkTyVarsAndFV gbl_tvs
; writeMutVar gtv_var gbl_tvs'
; return gbl_tvs' }
where
\end{code}
----------------- Type variables
\begin{code}
zonkTyVar :: TyVar -> TcM TcType
zonkTyVar tv | isTcTyVar tv = zonkTcTyVar tv
| otherwise = return (mkTyVarTy tv)
zonkTyVarsAndFV :: TyVarSet -> TcM TyVarSet
zonkTyVarsAndFV tyvars = tyVarsOfTypes <$> mapM zonkTyVar (varSetElems tyvars)
zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
zonkTcTyVars tyvars = mapM zonkTcTyVar tyvars
zonkTyVarKind :: TyVar -> TcM TyVar
zonkTyVarKind tv = do { kind' <- zonkTcKind (tyVarKind tv)
; return (setTyVarKind tv kind') }
zonkTcTypes :: [TcType] -> TcM [TcType]
zonkTcTypes tys = mapM zonkTcType tys
zonkTcThetaType :: TcThetaType -> TcM TcThetaType
zonkTcThetaType theta = mapM zonkTcPredType theta
zonkTcPredType :: TcPredType -> TcM TcPredType
zonkTcPredType = zonkTcType
\end{code}
------------------- These ...ToType, ...ToKind versions
are used at the end of type checking
\begin{code}
defaultKindVarToStar :: TcTyVar -> TcM Kind
defaultKindVarToStar kv
= do { ASSERT ( isKindVar kv && isMetaTyVar kv )
writeMetaTyVar kv liftedTypeKind
; return liftedTypeKind }
zonkQuantifiedTyVars :: [TcTyVar] -> TcM [TcTyVar]
zonkQuantifiedTyVars tyvars
= do { let (kvs, tvs) = partition isKindVar tyvars
; poly_kinds <- xoptM Opt_PolyKinds
; if poly_kinds then
mapM zonkQuantifiedTyVar (kvs ++ tvs)
else
do { let (meta_kvs, skolem_kvs) = partition isMetaTyVar kvs
; WARN ( not (null skolem_kvs), ppr skolem_kvs )
mapM_ defaultKindVarToStar meta_kvs
; mapM zonkQuantifiedTyVar (skolem_kvs ++ tvs) } }
zonkQuantifiedTyVar :: TcTyVar -> TcM TcTyVar
zonkQuantifiedTyVar tv
= ASSERT2( isTcTyVar tv, ppr tv )
case tcTyVarDetails tv of
SkolemTv {} -> do { kind <- zonkTcKind (tyVarKind tv)
; return $ setTyVarKind tv kind }
MetaTv _ ref ->
do when debugIsOn $ do
cts <- readMutVar ref
case cts of
Flexi -> return ()
Indirect ty -> WARN( True, ppr tv $$ ppr ty )
return ()
skolemiseUnboundMetaTyVar tv vanillaSkolemTv
_other -> pprPanic "zonkQuantifiedTyVar" (ppr tv)
skolemiseUnboundMetaTyVar :: TcTyVar -> TcTyVarDetails -> TcM TyVar
skolemiseUnboundMetaTyVar tv details
= ASSERT2( isMetaTyVar tv, ppr tv )
do { span <- getSrcSpanM
; uniq <- newUnique
; kind <- zonkTcKind (tyVarKind tv)
; let final_kind = defaultKind kind
final_name = mkInternalName uniq (getOccName tv) span
final_tv = mkTcTyVar final_name final_kind details
; writeMetaTyVar tv (mkTyVarTy final_tv)
; return final_tv }
skolemiseSigTv :: TcTyVar -> TcM TcTyVar
skolemiseSigTv tv
= ASSERT2( isSigTyVar tv, ppr tv )
do { writeMetaTyVarRef tv (metaTvRef tv) (mkTyVarTy skol_tv)
; return skol_tv }
where
skol_tv = setTcTyVarDetails tv (SkolemTv False)
\end{code}
\begin{code}
zonkImplication :: Implication -> TcM Implication
zonkImplication implic@(Implic { ic_given = given
, ic_wanted = wanted
, ic_loc = loc })
= do {
; given' <- mapM zonkEvVar given
; loc' <- zonkGivenLoc loc
; wanted' <- zonkWC wanted
; return (implic { ic_given = given'
, ic_wanted = wanted'
, ic_loc = loc' }) }
zonkEvVar :: EvVar -> TcM EvVar
zonkEvVar var = do { ty' <- zonkTcType (varType var)
; return (setVarType var ty') }
zonkWC :: WantedConstraints -> TcM WantedConstraints
zonkWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
= do { flat' <- mapBagM zonkCt flat
; implic' <- mapBagM zonkImplication implic
; insol' <- mapBagM zonkCt insol
; return (WC { wc_flat = flat', wc_impl = implic', wc_insol = insol' }) }
zonkCt :: Ct -> TcM Ct
zonkCt ct
= do { fl' <- zonkCtEvidence (cc_ev ct)
; return $
CNonCanonical { cc_ev = fl'
, cc_depth = cc_depth ct } }
zonkCts :: Cts -> TcM Cts
zonkCts = mapBagM zonkCt
zonkCtEvidence :: CtEvidence -> TcM CtEvidence
zonkCtEvidence ctev@(Given { ctev_gloc = loc, ctev_pred = pred })
= do { loc' <- zonkGivenLoc loc
; pred' <- zonkTcType pred
; return (ctev { ctev_gloc = loc', ctev_pred = pred'}) }
zonkCtEvidence ctev@(Wanted { ctev_pred = pred })
= do { pred' <- zonkTcType pred
; return (ctev { ctev_pred = pred' }) }
zonkCtEvidence ctev@(Derived { ctev_pred = pred })
= do { pred' <- zonkTcType pred
; return (ctev { ctev_pred = pred' }) }
zonkGivenLoc :: GivenLoc -> TcM GivenLoc
zonkGivenLoc (CtLoc skol_info span ctxt)
= do { skol_info' <- zonkSkolemInfo skol_info
; return (CtLoc skol_info' span ctxt) }
zonkSkolemInfo :: SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo (SigSkol cx ty) = do { ty' <- zonkTcType ty
; return (SigSkol cx ty') }
zonkSkolemInfo (InferSkol ntys) = do { ntys' <- mapM do_one ntys
; return (InferSkol ntys') }
where
do_one (n, ty) = do { ty' <- zonkTcType ty; return (n, ty') }
zonkSkolemInfo skol_info = return skol_info
\end{code}
Note [Silly Type Synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
type C u a = u -- Note 'a' unused
foo :: (forall a. C u a -> C u a) -> u
foo x = ...
bar :: Num u => u
bar = foo (\t -> t + t)
* From the (\t -> t+t) we get type {Num d} => d -> d
where d is fresh.
* Now unify with type of foo's arg, and we get:
{Num (C d a)} => C d a -> C d a
where a is fresh.
* Now abstract over the 'a', but float out the Num (C d a) constraint
because it does not 'really' mention a. (see exactTyVarsOfType)
The arg to foo becomes
\/\a -> \t -> t+t
* So we get a dict binding for Num (C d a), which is zonked to give
a = ()
[Note Sept 04: now that we are zonking quantified type variables
on construction, the 'a' will be frozen as a regular tyvar on
quantification, so the floated dict will still have type (C d a).
Which renders this whole note moot; happily!]
* Then the \/\a abstraction has a zonked 'a' in it.
All very silly. I think its harmless to ignore the problem. We'll end up with
a \/\a in the final result but all the occurrences of a will be zonked to ()
Note [Zonking to Skolem]
~~~~~~~~~~~~~~~~~~~~~~~~
We used to zonk quantified type variables to regular TyVars. However, this
leads to problems. Consider this program from the regression test suite:
eval :: Int -> String -> String -> String
eval 0 root actual = evalRHS 0 root actual
evalRHS :: Int -> a
evalRHS 0 root actual = eval 0 root actual
It leads to the deferral of an equality (wrapped in an implication constraint)
forall a. () => ((String -> String -> String) ~ a)
which is propagated up to the toplevel (see TcSimplify.tcSimplifyInferCheck).
In the meantime `a' is zonked and quantified to form `evalRHS's signature.
This has the *side effect* of also zonking the `a' in the deferred equality
(which at this point is being handed around wrapped in an implication
constraint).
Finally, the equality (with the zonked `a') will be handed back to the
simplifier by TcRnDriver.tcRnSrcDecls calling TcSimplify.tcSimplifyTop.
If we zonk `a' with a regular type variable, we will have this regular type
variable now floating around in the simplifier, which in many places assumes to
only see proper TcTyVars.
We can avoid this problem by zonking with a skolem. The skolem is rigid
(which we require for a quantified variable), but is still a TcTyVar that the
simplifier knows how to deal with.
%************************************************************************
%* *
\subsection{Zonking -- the main work-horses: zonkTcType, zonkTcTyVar}
%* *
%* For internal use only! *
%* *
%************************************************************************
\begin{code}
zonkId :: TcId -> TcM TcId
zonkId id
= do { ty' <- zonkTcType (idType id)
; return (Id.setIdType id ty') }
zonkTcType :: TcType -> TcM TcType
zonkTcType ty
= go ty
where
go (TyConApp tc tys) = do tys' <- mapM go tys
return (TyConApp tc tys')
go (LitTy n) = return (LitTy n)
go (FunTy arg res) = do arg' <- go arg
res' <- go res
return (FunTy arg' res')
go (AppTy fun arg) = do fun' <- go fun
arg' <- go arg
return (mkAppTy fun' arg')
go (TyVarTy tyvar) | isTcTyVar tyvar = zonkTcTyVar tyvar
| otherwise = TyVarTy <$> updateTyVarKindM go tyvar
go (ForAllTy tyvar ty) = ASSERT2( isImmutableTyVar tyvar, ppr tyvar ) do
ty' <- go ty
tyvar' <- updateTyVarKindM go tyvar
return (ForAllTy tyvar' ty')
zonkTcTyVar :: TcTyVar -> TcM TcType
zonkTcTyVar tv
= ASSERT2( isTcTyVar tv, ppr tv ) do
case tcTyVarDetails tv of
SkolemTv {} -> zonk_kind_and_return
RuntimeUnk {} -> zonk_kind_and_return
FlatSkol ty -> zonkTcType ty
MetaTv _ ref -> do { cts <- readMutVar ref
; case cts of
Flexi -> zonk_kind_and_return
Indirect ty -> zonkTcType ty }
where
zonk_kind_and_return = do { z_tv <- zonkTyVarKind tv
; return (TyVarTy z_tv) }
\end{code}
%************************************************************************
%* *
Zonking kinds
%* *
%************************************************************************
\begin{code}
zonkTcKind :: TcKind -> TcM TcKind
zonkTcKind k = zonkTcType k
\end{code}
%************************************************************************
%* *
\subsection{Checking a user type}
%* *
%************************************************************************
When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should
be true about it. We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet. Also, the checks are are rather
diverse, and used to really mess up the other code.
One thing we check for is 'rank'.
Rank 0: monotypes (no foralls)
Rank 1: foralls at the front only, Rank 0 inside
Rank 2: foralls at the front, Rank 1 on left of fn arrow,
basic ::= tyvar | T basic ... basic
r2 ::= forall tvs. cxt => r2a
r2a ::= r1 -> r2a | basic
r1 ::= forall tvs. cxt => r0
r0 ::= r0 -> r0 | basic
Another thing is to check that type synonyms are saturated.
This might not necessarily show up in kind checking.
type A i = i
data T k = MkT (k Int)
f :: T A -- BAD!
\begin{code}
check_kind :: UserTypeCtxt -> TcType -> TcM ()
check_kind ctxt ty
| TySynCtxt {} <- ctxt
= do { ck <- xoptM Opt_ConstraintKinds
; unless ck $
checkTc (not (returnsConstraintKind actual_kind))
(constraintSynErr actual_kind) }
| Just k <- expectedKindInCtxt ctxt
= checkTc (tcIsSubKind actual_kind k) (kindErr actual_kind)
| otherwise
= return ()
where
actual_kind = typeKind ty
expectedKindInCtxt :: UserTypeCtxt -> Maybe Kind
expectedKindInCtxt (TySynCtxt _) = Nothing
expectedKindInCtxt ThBrackCtxt = Nothing
expectedKindInCtxt GhciCtxt = Nothing
expectedKindInCtxt (ForSigCtxt _) = Just liftedTypeKind
expectedKindInCtxt InstDeclCtxt = Just constraintKind
expectedKindInCtxt SpecInstCtxt = Just constraintKind
expectedKindInCtxt _ = Just openTypeKind
checkValidType :: UserTypeCtxt -> Type -> TcM ()
checkValidType ctxt ty
= do { traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (typeKind ty))
; rank2_flag <- xoptM Opt_Rank2Types
; rankn_flag <- xoptM Opt_RankNTypes
; polycomp <- xoptM Opt_PolymorphicComponents
; let gen_rank :: Rank -> Rank
gen_rank r | rankn_flag = ArbitraryRank
| rank2_flag = r2
| otherwise = r
rank2 = gen_rank r2
rank1 = gen_rank r1
rank0 = gen_rank r0
r0 = rankZeroMonoType
r1 = LimitedRank True r0
r2 = LimitedRank True r1
rank
= case ctxt of
DefaultDeclCtxt-> MustBeMonoType
ResSigCtxt -> MustBeMonoType
LamPatSigCtxt -> rank0
BindPatSigCtxt -> rank0
RuleSigCtxt _ -> rank1
TySynCtxt _ -> rank0
ExprSigCtxt -> rank1
FunSigCtxt _ -> rank1
InfSigCtxt _ -> ArbitraryRank
ConArgCtxt _ | polycomp -> rank2
| otherwise -> rank1
ForSigCtxt _ -> rank1
SpecInstCtxt -> rank1
ThBrackCtxt -> rank1
GhciCtxt -> ArbitraryRank
_ -> panic "checkValidType"
; check_type rank ty
; check_kind ctxt ty }
checkValidMonoType :: Type -> TcM ()
checkValidMonoType ty = check_mono_type MustBeMonoType ty
\end{code}
Note [Higher rank types]
~~~~~~~~~~~~~~~~~~~~~~~~
Technically
Int -> forall a. a->a
is still a rank-1 type, but it's not Haskell 98 (Trac #5957). So the
validity checker allow a forall after an arrow only if we allow it
before -- that is, with Rank2Types or RankNTypes
\begin{code}
data Rank = ArbitraryRank
| LimitedRank
Bool
Rank
| MonoType SDoc
| MustBeMonoType
rankZeroMonoType, tyConArgMonoType, synArgMonoType :: Rank
rankZeroMonoType = MonoType (ptext (sLit "Perhaps you intended to use -XRankNTypes or -XRank2Types"))
tyConArgMonoType = MonoType (ptext (sLit "Perhaps you intended to use -XImpredicativeTypes"))
synArgMonoType = MonoType (ptext (sLit "Perhaps you intended to use -XLiberalTypeSynonyms"))
funArgResRank :: Rank -> (Rank, Rank)
funArgResRank (LimitedRank _ arg_rank) = (arg_rank, LimitedRank (forAllAllowed arg_rank) arg_rank)
funArgResRank other_rank = (other_rank, other_rank)
forAllAllowed :: Rank -> Bool
forAllAllowed ArbitraryRank = True
forAllAllowed (LimitedRank forall_ok _) = forall_ok
forAllAllowed _ = False
check_mono_type :: Rank -> KindOrType -> TcM ()
check_mono_type rank ty
| isKind ty = return ()
| otherwise
= do { check_type rank ty
; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
check_type :: Rank -> Type -> TcM ()
check_type rank ty
| not (null tvs && null theta)
= do { checkTc (forAllAllowed rank) (forAllTyErr rank ty)
; check_valid_theta SigmaCtxt theta
; check_type rank tau
; checkAmbiguity tvs theta (tyVarsOfType tau) }
where
(tvs, theta, tau) = tcSplitSigmaTy ty
check_type _ (TyVarTy _) = return ()
check_type rank (FunTy arg_ty res_ty)
= do { check_type arg_rank arg_ty
; check_type res_rank res_ty }
where
(arg_rank, res_rank) = funArgResRank rank
check_type rank (AppTy ty1 ty2)
= do { check_arg_type rank ty1
; check_arg_type rank ty2 }
check_type rank ty@(TyConApp tc tys)
| isSynTyCon tc
= do {
checkTc (tyConArity tc <= length tys) arity_msg
; liberal <- xoptM Opt_LiberalTypeSynonyms
; if not liberal || isSynFamilyTyCon tc then
mapM_ (check_mono_type synArgMonoType) tys
else
case tcView ty of
Just ty' -> check_type rank ty'
Nothing -> pprPanic "check_tau_type" (ppr ty)
}
| isUnboxedTupleTyCon tc
= do { ub_tuples_allowed <- xoptM Opt_UnboxedTuples
; checkTc ub_tuples_allowed ubx_tup_msg
; impred <- xoptM Opt_ImpredicativeTypes
; let rank' = if impred then ArbitraryRank else tyConArgMonoType
; mapM_ (check_type rank') tys }
| otherwise
= mapM_ (check_arg_type rank) tys
where
n_args = length tys
tc_arity = tyConArity tc
arity_msg = arityErr "Type synonym" (tyConName tc) tc_arity n_args
ubx_tup_msg = ubxArgTyErr ty
check_type _ (LitTy {}) = return ()
check_type _ ty = pprPanic "check_type" (ppr ty)
check_arg_type :: Rank -> KindOrType -> TcM ()
check_arg_type rank ty
| isKind ty = return ()
| otherwise
= do { impred <- xoptM Opt_ImpredicativeTypes
; let rank' = case rank of
MustBeMonoType -> MustBeMonoType
_other | impred -> ArbitraryRank
| otherwise -> tyConArgMonoType
; check_type rank' ty
; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
forAllTyErr :: Rank -> Type -> SDoc
forAllTyErr rank ty
= vcat [ hang (ptext (sLit "Illegal polymorphic or qualified type:")) 2 (ppr ty)
, suggestion ]
where
suggestion = case rank of
LimitedRank {} -> ptext (sLit "Perhaps you intended to use -XRankNTypes or -XRank2Types")
MonoType d -> d
_ -> empty
unliftedArgErr, ubxArgTyErr :: Type -> SDoc
unliftedArgErr ty = sep [ptext (sLit "Illegal unlifted type:"), ppr ty]
ubxArgTyErr ty = sep [ptext (sLit "Illegal unboxed tuple type as function argument:"), ppr ty]
kindErr :: Kind -> SDoc
kindErr kind = sep [ptext (sLit "Expecting an ordinary type, but found a type of kind"), ppr kind]
\end{code}
Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking. This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
e.g. type T a b = a
type S m = m ()
f :: S (T Int)
Here, T is partially applied, so it's illegal in H98. But if you
expand S first, then T we get just
f :: Int
which is fine.
IMPORTANT: suppose T is a type synonym. Then we must do validity
checking on an appliation (T ty1 ty2)
*either* before expansion (i.e. check ty1, ty2)
*or* after expansion (i.e. expand T ty1 ty2, and then check)
BUT NOT BOTH
If we do both, we get exponential behaviour!!
data TIACons1 i r c = c i ::: r c
type TIACons2 t x = TIACons1 t (TIACons1 t x)
type TIACons3 t x = TIACons2 t (TIACons1 t x)
type TIACons4 t x = TIACons2 t (TIACons2 t x)
type TIACons7 t x = TIACons4 t (TIACons3 t x)
%************************************************************************
%* *
\subsection{Checking a theta or source type}
%* *
%************************************************************************
\begin{code}
checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM ()
checkValidTheta ctxt theta
= addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)
check_valid_theta :: UserTypeCtxt -> [PredType] -> TcM ()
check_valid_theta _ []
= return ()
check_valid_theta ctxt theta = do
dflags <- getDynFlags
warnTc (notNull dups) (dupPredWarn dups)
mapM_ (check_pred_ty dflags ctxt) theta
where
(_,dups) = removeDups cmpPred theta
check_pred_ty :: DynFlags -> UserTypeCtxt -> PredType -> TcM ()
check_pred_ty dflags ctxt pred
| Just (tc,tys) <- tcSplitTyConApp_maybe pred
= case () of
_ | Just cls <- tyConClass_maybe tc
-> check_class_pred dflags ctxt cls tys
| tc `hasKey` eqTyConKey
, let [_, ty1, ty2] = tys
-> check_eq_pred dflags ctxt ty1 ty2
| isTupleTyCon tc
-> check_tuple_pred dflags ctxt pred tys
| otherwise
-> check_irred_pred dflags ctxt pred tys
| (TyVarTy _, arg_tys) <- tcSplitAppTys pred
= check_irred_pred dflags ctxt pred arg_tys
| otherwise
= badPred pred
badPred :: PredType -> TcM ()
badPred pred = failWithTc (ptext (sLit "Malformed predicate") <+> quotes (ppr pred))
check_class_pred :: DynFlags -> UserTypeCtxt -> Class -> [TcType] -> TcM ()
check_class_pred dflags ctxt cls tys
= do {
; checkTc (arity == n_tys) arity_err
; mapM_ checkValidMonoType tys
; checkTc (check_class_pred_tys dflags ctxt tys)
(predTyVarErr (mkClassPred cls tys) $$ how_to_allow)
}
where
class_name = className cls
arity = classArity cls
n_tys = length tys
arity_err = arityErr "Class" class_name arity n_tys
how_to_allow = parens (ptext (sLit "Use -XFlexibleContexts to permit this"))
check_eq_pred :: DynFlags -> UserTypeCtxt -> TcType -> TcType -> TcM ()
check_eq_pred dflags _ctxt ty1 ty2
= do {
; checkTc (xopt Opt_TypeFamilies dflags || xopt Opt_GADTs dflags)
(eqPredTyErr (mkEqPred ty1 ty2))
; checkValidMonoType ty1
; checkValidMonoType ty2
}
check_tuple_pred :: DynFlags -> UserTypeCtxt -> PredType -> [PredType] -> TcM ()
check_tuple_pred dflags ctxt pred ts
= do { checkTc (xopt Opt_ConstraintKinds dflags)
(predTupleErr pred)
; mapM_ (check_pred_ty dflags ctxt) ts }
check_irred_pred :: DynFlags -> UserTypeCtxt -> PredType -> [TcType] -> TcM ()
check_irred_pred dflags ctxt pred arg_tys
= do { checkTc (xopt Opt_ConstraintKinds dflags)
(predIrredErr pred)
; mapM_ checkValidMonoType arg_tys
; unless (xopt Opt_UndecidableInstances dflags) $
checkTc (case ctxt of ClassSCCtxt _ -> False; InstDeclCtxt -> False; _ -> True)
(predIrredBadCtxtErr pred) }
check_class_pred_tys :: DynFlags -> UserTypeCtxt -> [KindOrType] -> Bool
check_class_pred_tys dflags ctxt kts
= case ctxt of
SpecInstCtxt -> True
InstDeclCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys
_ -> flexible_contexts || all tyvar_head tys
where
(_, tys) = span isKind kts
flexible_contexts = xopt Opt_FlexibleContexts dflags
undecidable_ok = xopt Opt_UndecidableInstances dflags
tyvar_head :: Type -> Bool
tyvar_head ty
| tcIsTyVarTy ty = True
| otherwise
= case tcSplitAppTy_maybe ty of
Just (ty, _) -> tyvar_head ty
Nothing -> False
\end{code}
Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiParam check:
class C f where... -- C :: forall k. k -> Constraint
instance C Maybe where...
The dictionary gets type [C * Maybe] even if it's not a MultiParam
type class.
Flexibility check:
class C f where... -- C :: forall k. k -> Constraint
data D a = D a
instance C D where
The dictionary gets type [C * (D *)]. IA0_TODO it should be
generalized actually.
Note [The ambiguity check for type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
checkAmbiguity is a check on user-supplied type signatures. It is
*purely* there to report functions that cannot possibly be called. So for
example we want to reject:
f :: C a => Int
The idea is there can be no legal calls to 'f' because every call will
give rise to an ambiguous constraint. We could soundly omit the
ambiguity check on type signatures entirely, at the expense of
delaying ambiguity errors to call sites.
What about this, though?
g :: C [a] => Int
Is every call to 'g' ambiguous? After all, we might have
intance C [a] where ...
at the call site. So maybe that type is ok! Indeed even f's
quintessentially ambiguous type might, just possibly be callable:
with -XFlexibleInstances we could have
instance C a where ...
and now a call could be legal after all! (But only with -XFlexibleInstances!)
What about things like this:
class D a b | a -> b where ..
h :: D Int b => Int
The Int may well fix 'b' at the call site, so that signature should
not be rejected. Moreover, using *visible* fundeps is too
conservative. Consider
class X a b where ...
class D a b | a -> b where ...
instance D a b => X [a] b where...
h :: X a b => a -> a
Here h's type looks ambiguous in 'b', but here's a legal call:
...(h [True])...
That gives rise to a (X [Bool] beta) constraint, and using the
instance means we need (D Bool beta) and that fixes 'beta' via D's
fundep!
So I think the only types we can reject as *definitely* ambiguous are ones like this
f :: (Cambig, Cnonambig) => tau
where
* 'Cambig', 'Cnonambig' are each a set of constraints.
* fv(Cambig) does not intersect fv( Cnonambig => tau )
* The constraints in 'Cambig' are all of form (C a b c)
where a,b,c are type variables
* 'Cambig' is non-empty
* '-XFlexibleInstances' is not on.
And that is what checkAmbiguity does. See Trac #6134.
Side note: the ambiguity check is only used for *user* types, not for
types coming from inteface files. The latter can legitimately have
ambiguous types. Example
class S a where s :: a -> (Int,Int)
instance S Char where s _ = (1,1)
f:: S a => [a] -> Int -> (Int,Int)
f (_::[a]) x = (a*x,b)
where (a,b) = s (undefined::a)
Here the worker for f gets the type
fw :: forall a. S a => Int -> (# Int, Int #)
Note [Implicit parameters and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot. For example:
foo :: (?x :: [a]) => Int
foo = length ?x
is fine. The call site will suppply a particular 'x'
Furthermore, the type variables fixed by an implicit parameter
propagate to the others. E.g.
foo :: (Show a, ?x::[a]) => Int
foo = show (?x++?x)
The type of foo looks ambiguous. But it isn't, because at a call site
we might have
let ?x = 5::Int in foo
and all is well. In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff. This is done in the function 'FunDeps.grow'.
\begin{code}
checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
checkAmbiguity forall_tyvars theta tau_tyvars
= do { flexible_instances <- xoptM Opt_FlexibleInstances
; unless flexible_instances $
mapM_ ambigErr (filter is_ambig candidates) }
where
is_candidate pred
| Just (_, tys) <- getClassPredTys_maybe pred
, all isTyVarTy tys = True
| otherwise = False
forall_tv_set = mkVarSet forall_tyvars
(candidates, others) = partition is_candidate theta
unambig_vars = growThetaTyVars theta (tau_tyvars `unionVarSet` tyVarsOfTypes others)
is_ambig pred = (tyVarsOfType pred `minusVarSet` unambig_vars)
`intersectsVarSet` forall_tv_set
ambigErr :: PredType -> TcM ()
ambigErr pred
= addErrTc $
sep [ptext (sLit "Ambiguous constraint") <+> quotes (pprType pred),
nest 2 (ptext (sLit "At least one of the forall'd type variables mentioned by the constraint") $$
ptext (sLit "must be reachable from the type after the '=>'"))]
\end{code}
Note [Growing the tau-tvs using constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(growInstsTyVars insts tvs) is the result of extending the set
of tyvars tvs using all conceivable links from pred
E.g. tvs = {a}, preds = {H [a] b, K (b,Int) c, Eq e}
Then grow precs tvs = {a,b,c}
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
f x = (x::Int) + ?y
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
f :: Int -> Int
(so we get ?y from the context of f's definition), or
f :: (?y::Int) => Int -> Int
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site. But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.
BOTTOM LINE: when *inferring types* you *must* quantify
over implicit parameters. See the predicate isFreeWhenInferring.
\begin{code}
quantifyPred :: TyVarSet
-> PredType -> Bool
quantifyPred qtvs pred
| isIPPred pred = True
| otherwise = tyVarsOfType pred `intersectsVarSet` qtvs
growThetaTyVars :: TcThetaType -> TyVarSet -> TyVarSet
growThetaTyVars theta tvs
| null theta = tvs
| otherwise = fixVarSet mk_next tvs
where
mk_next tvs = foldr grow_one tvs theta
grow_one pred tvs = growPredTyVars pred tvs `unionVarSet` tvs
growPredTyVars :: TcPredType
-> TyVarSet
-> TyVarSet
growPredTyVars pred tvs
| isIPPred pred = pred_tvs
| pred_tvs `intersectsVarSet` tvs = pred_tvs
| otherwise = emptyVarSet
where
pred_tvs = tyVarsOfType pred
\end{code}
\begin{code}
checkThetaCtxt :: UserTypeCtxt -> ThetaType -> SDoc
checkThetaCtxt ctxt theta
= vcat [ptext (sLit "In the context:") <+> pprTheta theta,
ptext (sLit "While checking") <+> pprUserTypeCtxt ctxt ]
eqPredTyErr, predTyVarErr, predTupleErr, predIrredErr, predIrredBadCtxtErr :: PredType -> SDoc
eqPredTyErr pred = ptext (sLit "Illegal equational constraint") <+> pprType pred
$$
parens (ptext (sLit "Use -XGADTs or -XTypeFamilies to permit this"))
predTyVarErr pred = hang (ptext (sLit "Non type-variable argument"))
2 (ptext (sLit "in the constraint:") <+> pprType pred)
predTupleErr pred = hang (ptext (sLit "Illegal tuple constraint:") <+> pprType pred)
2 (parens (ptext (sLit "Use -XConstraintKinds to permit this")))
predIrredErr pred = hang (ptext (sLit "Illegal constraint:") <+> pprType pred)
2 (parens (ptext (sLit "Use -XConstraintKinds to permit this")))
predIrredBadCtxtErr pred = hang (ptext (sLit "Illegal constraint") <+> quotes (pprType pred)
<+> ptext (sLit "in a superclass/instance context"))
2 (parens (ptext (sLit "Use -XUndecidableInstances to permit this")))
constraintSynErr :: Type -> SDoc
constraintSynErr kind = hang (ptext (sLit "Illegal constraint synonym of kind:") <+> quotes (ppr kind))
2 (parens (ptext (sLit "Use -XConstraintKinds to permit this")))
dupPredWarn :: [[PredType]] -> SDoc
dupPredWarn dups = ptext (sLit "Duplicate constraint(s):") <+> pprWithCommas pprType (map head dups)
arityErr :: Outputable a => String -> a -> Int -> Int -> SDoc
arityErr kind name n m
= hsep [ text kind, quotes (ppr name), ptext (sLit "should have"),
n_arguments <> comma, text "but has been given",
if m==0 then text "none" else int m]
where
n_arguments | n == 0 = ptext (sLit "no arguments")
| n == 1 = ptext (sLit "1 argument")
| True = hsep [int n, ptext (sLit "arguments")]
\end{code}
%************************************************************************
%* *
\subsection{Checking for a decent instance head type}
%* *
%************************************************************************
@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@
The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.
We can also have instances for functions: @instance Foo (a -> b) ...@.
\begin{code}
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead ctxt clas cls_args
= do { dflags <- getDynFlags
; let ty_args = dropWhile isKind cls_args
; unless spec_inst_prag $
do { checkTc (xopt Opt_TypeSynonymInstances dflags ||
all tcInstHeadTyNotSynonym ty_args)
(instTypeErr clas cls_args head_type_synonym_msg)
; checkTc (xopt Opt_FlexibleInstances dflags ||
all tcInstHeadTyAppAllTyVars ty_args)
(instTypeErr clas cls_args head_type_args_tyvars_msg)
; checkTc (xopt Opt_MultiParamTypeClasses dflags ||
isSingleton ty_args)
(instTypeErr clas cls_args head_one_type_msg) }
; mapM_ checkTyFamFreeness ty_args
; mapM_ checkValidMonoType ty_args
}
where
spec_inst_prag = case ctxt of { SpecInstCtxt -> True; _ -> False }
head_type_synonym_msg = parens (
text "All instance types must be of the form (T t1 ... tn)" $$
text "where T is not a synonym." $$
text "Use -XTypeSynonymInstances if you want to disable this.")
head_type_args_tyvars_msg = parens (vcat [
text "All instance types must be of the form (T a1 ... an)",
text "where a1 ... an are *distinct type variables*,",
text "and each type variable appears at most once in the instance head.",
text "Use -XFlexibleInstances if you want to disable this."])
head_one_type_msg = parens (
text "Only one type can be given in an instance head." $$
text "Use -XMultiParamTypeClasses if you want to allow more.")
instTypeErr :: Class -> [Type] -> SDoc -> SDoc
instTypeErr cls tys msg
= hang (ptext (sLit "Illegal instance declaration for")
<+> quotes (pprClassPred cls tys))
2 msg
\end{code}
validDeivPred checks for OK 'deriving' context. See Note [Exotic
derived instance contexts] in TcSimplify. However the predicate is
here because it uses sizeTypes, fvTypes.
Also check for a bizarre corner case, when the derived instance decl
would look like
instance C a b => D (T a) where ...
Note that 'b' isn't a parameter of T. This gives rise to all sorts of
problems; in particular, it's hard to compare solutions for equality
when finding the fixpoint, and that means the inferContext loop does
not converge. See Trac #5287.
\begin{code}
validDerivPred :: TyVarSet -> PredType -> Bool
validDerivPred tv_set pred
= case classifyPredType pred of
ClassPred _ tys -> hasNoDups fvs
&& sizeTypes tys == length fvs
&& all (`elemVarSet` tv_set) fvs
TuplePred ps -> all (validDerivPred tv_set) ps
_ -> True
where
fvs = fvType pred
\end{code}
%************************************************************************
%* *
\subsection{Checking instance for termination}
%* *
%************************************************************************
\begin{code}
checkValidInstance :: UserTypeCtxt -> LHsType Name -> Type
-> TcM ([TyVar], ThetaType, Class, [Type])
checkValidInstance ctxt hs_type ty
= do { let (tvs, theta, tau) = tcSplitSigmaTy ty
; case getClassPredTys_maybe tau of {
Nothing -> failWithTc (ptext (sLit "Malformed instance type")) ;
Just (clas,inst_tys) ->
do { setSrcSpan head_loc (checkValidInstHead ctxt clas inst_tys)
; checkValidTheta ctxt theta
; undecidable_ok <- xoptM Opt_UndecidableInstances
; unless undecidable_ok $
do { checkInstTermination inst_tys theta
; checkTc (checkInstCoverage clas inst_tys)
(instTypeErr clas inst_tys msg) }
; return (tvs, theta, clas, inst_tys) } } }
where
msg = parens (vcat [ptext (sLit "the Coverage Condition fails for one of the functional dependencies;"),
undecidableMsg])
head_loc = case hs_type of
L _ (HsForAllTy _ _ _ (L loc _)) -> loc
L loc _ -> loc
\end{code}
Note [Paterson conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functionsl dependencies via Constraint Handling Rules,
JFP Jan 2007).
We check that each assertion in the context satisfies:
(1) no variable has more occurrences in the assertion than in the head, and
(2) the assertion has fewer constructors and variables (taken together
and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination.
The underlying idea is that
for any ground substitution, each assertion in the
context has fewer type constructors than the head.
\begin{code}
checkInstTermination :: [TcType] -> ThetaType -> TcM ()
checkInstTermination tys theta
= mapM_ check theta
where
fvs = fvTypes tys
size = sizeTypes tys
check pred
| not (null bad_tvs)
= addErrTc (predUndecErr pred (nomoreMsg bad_tvs) $$ parens undecidableMsg)
| sizePred pred >= size
= addErrTc (predUndecErr pred smallerMsg $$ parens undecidableMsg)
| otherwise
= return ()
where
bad_tvs = filterOut isKindVar (fvType pred \\ fvs)
predUndecErr :: PredType -> SDoc -> SDoc
predUndecErr pred msg = sep [msg,
nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)]
nomoreMsg :: [TcTyVar] -> SDoc
nomoreMsg tvs
= sep [ ptext (sLit "Variable") <+> plural tvs <+> quotes (pprWithCommas ppr tvs)
, (if isSingleton tvs then ptext (sLit "occurs")
else ptext (sLit "occur"))
<+> ptext (sLit "more often than in the instance head") ]
smallerMsg, undecidableMsg :: SDoc
smallerMsg = ptext (sLit "Constraint is no smaller than the instance head")
undecidableMsg = ptext (sLit "Use -XUndecidableInstances to permit this")
\end{code}
%************************************************************************
%* *
Checking type instance well-formedness and termination
%* *
%************************************************************************
\begin{code}
checkValidFamInst :: [Type] -> Type -> TcM ()
checkValidFamInst typats rhs
= do {
; mapM_ checkTyFamFreeness typats
; checkValidMonoType rhs
; undecidable_ok <- xoptM Opt_UndecidableInstances
; unless undecidable_ok $
mapM_ addErrTc (checkFamInstRhs typats (tcTyFamInsts rhs))
}
checkFamInstRhs :: [Type]
-> [(TyCon, [Type])]
-> [MsgDoc]
checkFamInstRhs lhsTys famInsts
= mapCatMaybes check famInsts
where
size = sizeTypes lhsTys
fvs = fvTypes lhsTys
check (tc, tys)
| not (all isTyFamFree tys)
= Just (famInstUndecErr famInst nestedMsg $$ parens undecidableMsg)
| not (null bad_tvs)
= Just (famInstUndecErr famInst (nomoreMsg bad_tvs) $$ parens undecidableMsg)
| size <= sizeTypes tys
= Just (famInstUndecErr famInst smallerAppMsg $$ parens undecidableMsg)
| otherwise
= Nothing
where
famInst = TyConApp tc tys
bad_tvs = filterOut isKindVar (fvTypes tys \\ fvs)
checkTyFamFreeness :: Type -> TcM ()
checkTyFamFreeness ty
= checkTc (isTyFamFree ty) $
tyFamInstIllegalErr ty
isTyFamFree :: Type -> Bool
isTyFamFree = null . tcTyFamInsts
tyFamInstIllegalErr :: Type -> SDoc
tyFamInstIllegalErr ty
= hang (ptext (sLit "Illegal type synonym family application in instance") <>
colon) 2 $
ppr ty
famInstUndecErr :: Type -> SDoc -> SDoc
famInstUndecErr ty msg
= sep [msg,
nest 2 (ptext (sLit "in the type family application:") <+>
pprType ty)]
nestedMsg, smallerAppMsg :: SDoc
nestedMsg = ptext (sLit "Nested type family application")
smallerAppMsg = ptext (sLit "Application is no smaller than the instance head")
\end{code}
%************************************************************************
%* *
\subsection{Auxiliary functions}
%* *
%************************************************************************
\begin{code}
fvType :: Type -> [TyVar]
fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
fvType (TyVarTy tv) = [tv]
fvType (TyConApp _ tys) = fvTypes tys
fvType (LitTy {}) = []
fvType (FunTy arg res) = fvType arg ++ fvType res
fvType (AppTy fun arg) = fvType fun ++ fvType arg
fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)
fvTypes :: [Type] -> [TyVar]
fvTypes tys = concat (map fvType tys)
sizeType :: Type -> Int
sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
sizeType (TyVarTy {}) = 1
sizeType (TyConApp _ tys) = sizeTypes tys + 1
sizeType (LitTy {}) = 1
sizeType (FunTy arg res) = sizeType arg + sizeType res + 1
sizeType (AppTy fun arg) = sizeType fun + sizeType arg
sizeType (ForAllTy _ ty) = sizeType ty
sizeTypes :: [Type] -> Int
sizeTypes xs = sum (map sizeType tys)
where tys = filter (not . isKind) xs
sizePred :: PredType -> Int
sizePred ty = goClass ty
where
goClass p | isIPPred p = 0
| otherwise = go (classifyPredType p)
go (ClassPred _ tys') = sizeTypes tys'
go (EqPred {}) = 0
go (TuplePred ts) = sum (map goClass ts)
go (IrredPred ty) = sizeType ty
\end{code}
Note [Paterson conditions on PredTypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are considering whether *class* constraints terminate
(see Note [Paterson conditions]). Precisely, the Paterson conditions
would have us check that "the constraint has fewer constructors and variables
(taken together and counting repetitions) than the head.".
However, we can be a bit more refined by looking at which kind of constraint
this actually is. There are two main tricks:
1. It seems like it should be OK not to count the tuple type constructor
for a PredType like (Show a, Eq a) :: Constraint, since we don't
count the "implicit" tuple in the ThetaType itself.
In fact, the Paterson test just checks *each component* of the top level
ThetaType against the size bound, one at a time. By analogy, it should be
OK to return the size of the *largest* tuple component as the size of the
whole tuple.
2. Once we get into an implicit parameter or equality we
can't get back to a class constraint, so it's safe
to say "size 0". See Trac #4200.
NB: we don't want to detect PredTypes in sizeType (and then call
sizePred on them), or we might get an infinite loop if that PredType
is irreducible. See Trac #5581.