| %
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%
\section[TypeRep]{Type - friends' interface}
Note [The Type-related module hierarchy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Class
TyCon imports Class
TypeRep
TysPrim imports TypeRep ( including mkTyConTy )
Kind imports TysPrim ( mainly for primitive kinds )
Type imports Kind
Coercion imports Type
\begin{code}
module TypeRep (
TyThing(..),
Type(..),
TyLit(..),
KindOrType, Kind, SuperKind,
PredType, ThetaType,
mkNakedTyConApp, mkTyConTy, mkTyVarTy, mkTyVarTys,
isLiftedTypeKind, isSuperKind, isTypeVar, isKindVar,
pprType, pprParendType, pprTypeApp, pprTvBndr, pprTvBndrs,
pprTyThing, pprTyThingCategory, pprSigmaType,
pprEqPred, pprTheta, pprForAll, pprThetaArrowTy, pprClassPred,
pprKind, pprParendKind, pprTyLit,
Prec(..), maybeParen, pprTcApp, pprTypeNameApp,
pprPrefixApp, pprArrowChain, ppr_type,
tyVarsOfType, tyVarsOfTypes,
TvSubst(..), TvSubstEnv
) where
#include "HsVersions.h"
import DataCon( DataCon, dataConName )
import Type( noParenPred, isPredTy )
import Var
import VarEnv
import VarSet
import Name
import BasicTypes
import TyCon
import Class
import PrelNames
import Outputable
import FastString
import Pair
import StaticFlags( opt_PprStyle_Debug )
import Util
import qualified Data.Data as Data hiding ( TyCon )
\end{code}
%************************************************************************
%* *
\subsection{The data type}
%* *
%************************************************************************
\begin{code}
data Type
= TyVarTy Var
| AppTy
Type
Type
| TyConApp
TyCon
[KindOrType]
| FunTy
Type
Type
| ForAllTy
Var
Type
| LitTy TyLit
deriving (Data.Data, Data.Typeable)
data TyLit
= NumTyLit Integer
| StrTyLit FastString
deriving (Eq, Ord, Data.Data, Data.Typeable)
type KindOrType = Type
type Kind = Type
type SuperKind = Type
\end{code}
Note [The kind invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~
The kinds
# UnliftedTypeKind
OpenKind super-kind of *, #
can never appear under an arrow or type constructor in a kind; they
can only be at the top level of a kind. It follows that primitive TyCons,
which have a naughty pseudo-kind
State# :: * -> #
must always be saturated, so that we can never get a type whose kind
has a UnliftedTypeKind or ArgTypeKind underneath an arrow.
Nor can we abstract over a type variable with any of these kinds.
k :: = kk | # | ArgKind | (#) | OpenKind
kk :: = * | kk -> kk | T kk1 ... kkn
So a type variable can only be abstracted kk.
Note [Arguments to type constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because of kind polymorphism, in addition to type application we now
have kind instantiation. We reuse the same notations to do so.
For example:
Just (* -> *) Maybe
Right * Nat Zero
are represented by:
TyConApp (PromotedDataCon Just) [* -> *, Maybe]
TyConApp (PromotedDataCon Right) [*, Nat, (PromotedDataCon Zero)]
Important note: Nat is used as a *kind* and not as a type. This can be
confusing, since type-level Nat and kind-level Nat are identical. We
use the kind of (PromotedDataCon Right) to know if its arguments are
kinds or types.
This kind instantiation only happens in TyConApp currently.
Note [Equality-constrained types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type forall ab. (a ~ [b]) => blah
is encoded like this:
ForAllTy (a:*) $ ForAllTy (b:*) $
FunTy (TyConApp (~) [a, [b]]) $
blah
-------------------------------------
Note [PredTy]
\begin{code}
type PredType = Type
type ThetaType = [PredType]
\end{code}
(We don't support TREX records yet, but the setup is designed
to expand to allow them.)
A Haskell qualified type, such as that for f,g,h above, is
represented using
* a FunTy for the double arrow
* with a type of kind Constraint as the function argument
The predicate really does turn into a real extra argument to the
function. If the argument has type (p :: Constraint) then the predicate p is
represented by evidence of type p.
%************************************************************************
%* *
Simple constructors
%* *
%************************************************************************
These functions are here so that they can be used by TysPrim,
which in turn is imported by Type
\begin{code}
mkTyVarTy :: TyVar -> Type
mkTyVarTy = TyVarTy
mkTyVarTys :: [TyVar] -> [Type]
mkTyVarTys = map mkTyVarTy
mkNakedTyConApp :: TyCon -> [Type] -> Type
mkNakedTyConApp tc tys
= TyConApp (ASSERT( not (isFunTyCon tc && length tys == 2) ) tc) tys
mkTyConTy :: TyCon -> Type
mkTyConTy tycon = TyConApp tycon []
\end{code}
Some basic functions, put here to break loops eg with the pretty printer
\begin{code}
isLiftedTypeKind :: Kind -> Bool
isLiftedTypeKind (TyConApp tc []) = tc `hasKey` liftedTypeKindTyConKey
isLiftedTypeKind _ = False
isSuperKind :: Type -> Bool
isSuperKind (TyConApp skc []) = skc `hasKey` superKindTyConKey
isSuperKind _ = False
isTypeVar :: Var -> Bool
isTypeVar v = isTKVar v && not (isSuperKind (varType v))
isKindVar :: Var -> Bool
isKindVar v = isTKVar v && isSuperKind (varType v)
\end{code}
%************************************************************************
%* *
Free variables of types and coercions
%* *
%************************************************************************
\begin{code}
tyVarsOfType :: Type -> VarSet
tyVarsOfType (TyVarTy v) = unitVarSet v
tyVarsOfType (TyConApp _ tys) = tyVarsOfTypes tys
tyVarsOfType (LitTy {}) = emptyVarSet
tyVarsOfType (FunTy arg res) = tyVarsOfType arg `unionVarSet` tyVarsOfType res
tyVarsOfType (AppTy fun arg) = tyVarsOfType fun `unionVarSet` tyVarsOfType arg
tyVarsOfType (ForAllTy tyvar ty) = delVarSet (tyVarsOfType ty) tyvar
`unionVarSet` tyVarsOfType (tyVarKind tyvar)
tyVarsOfTypes :: [Type] -> TyVarSet
tyVarsOfTypes tys = foldr (unionVarSet . tyVarsOfType) emptyVarSet tys
\end{code}
%************************************************************************
%* *
TyThing
%* *
%************************************************************************
Despite the fact that DataCon has to be imported via a hi-boot route,
this module seems the right place for TyThing, because it's needed for
funTyCon and all the types in TysPrim.
Note [ATyCon for classes]
~~~~~~~~~~~~~~~~~~~~~~~~~
Both classes and type constructors are represented in the type environment
as ATyCon. You can tell the difference, and get to the class, with
isClassTyCon :: TyCon -> Bool
tyConClass_maybe :: TyCon -> Maybe Class
The Class and its associated TyCon have the same Name.
\begin{code}
data TyThing
= AnId Id
| ADataCon DataCon
| ATyCon TyCon
| ACoAxiom CoAxiom
deriving (Eq, Ord)
instance Outputable TyThing where
ppr = pprTyThing
pprTyThing :: TyThing -> SDoc
pprTyThing thing = pprTyThingCategory thing <+> quotes (ppr (getName thing))
pprTyThingCategory :: TyThing -> SDoc
pprTyThingCategory (ATyCon tc)
| isClassTyCon tc = ptext (sLit "Class")
| otherwise = ptext (sLit "Type constructor")
pprTyThingCategory (ACoAxiom _) = ptext (sLit "Coercion axiom")
pprTyThingCategory (AnId _) = ptext (sLit "Identifier")
pprTyThingCategory (ADataCon _) = ptext (sLit "Data constructor")
instance NamedThing TyThing where
getName (AnId id) = getName id
getName (ATyCon tc) = getName tc
getName (ACoAxiom cc) = getName cc
getName (ADataCon dc) = dataConName dc
\end{code}
%************************************************************************
%* *
Substitutions
Data type defined here to avoid unnecessary mutual recursion
%* *
%************************************************************************
\begin{code}
data TvSubst
= TvSubst InScopeSet
TvSubstEnv
type TvSubstEnv = TyVarEnv Type
\end{code}
Note [Apply Once]
~~~~~~~~~~~~~~~~~
We use TvSubsts to instantiate things, and we might instantiate
forall a b. ty
\with the types
[a, b], or [b, a].
So the substition might go [a->b, b->a]. A similar situation arises in Core
when we find a beta redex like
(/\ a /\ b -> e) b a
Then we also end up with a substition that permutes type variables. Other
variations happen to; for example [a -> (a, b)].
***************************************************
*** So a TvSubst must be applied precisely once ***
***************************************************
A TvSubst is not idempotent, but, unlike the non-idempotent substitution
we use during unifications, it must not be repeatedly applied.
Note [Extending the TvSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #tvsubst_invariant# for the invariants that must hold.
This invariant allows a short-cut when the TvSubstEnv is empty:
if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds ---
then (substTy subst ty) does nothing.
For example, consider:
(/\a. /\b:(a~Int). ...b..) Int
We substitute Int for 'a'. The Unique of 'b' does not change, but
nevertheless we add 'b' to the TvSubstEnv, because b's kind does change
This invariant has several crucial consequences:
* In substTyVarBndr, we need extend the TvSubstEnv
- if the unique has changed
- or if the kind has changed
* In substTyVar, we do not need to consult the in-scope set;
the TvSubstEnv is enough
* In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty
\end{code}
%************************************************************************
%* *
Pretty-printing types
Defined very early because of debug printing in assertions
%* *
%************************************************************************
@pprType@ is the standard @Type@ printer; the overloaded @ppr@ function is
defined to use this. @pprParendType@ is the same, except it puts
parens around the type, except for the atomic cases. @pprParendType@
works just by setting the initial context precedence very high.
\begin{code}
data Prec = TopPrec
| FunPrec
| TyConPrec
deriving( Eq, Ord )
maybeParen :: Prec -> Prec -> SDoc -> SDoc
maybeParen ctxt_prec inner_prec pretty
| ctxt_prec < inner_prec = pretty
| otherwise = parens pretty
pprType, pprParendType :: Type -> SDoc
pprType ty = ppr_type TopPrec ty
pprParendType ty = ppr_type TyConPrec ty
pprTyLit :: TyLit -> SDoc
pprTyLit = ppr_tylit TopPrec
pprKind, pprParendKind :: Kind -> SDoc
pprKind = pprType
pprParendKind = pprParendType
pprEqPred :: Pair Type -> SDoc
pprEqPred (Pair ty1 ty2)
= sep [ ppr_type FunPrec ty1
, nest 2 (ptext (sLit "~#"))
, ppr_type FunPrec ty2]
pprClassPred :: Class -> [Type] -> SDoc
pprClassPred = ppr_class_pred ppr_type
ppr_class_pred :: (Prec -> a -> SDoc) -> Class -> [a] -> SDoc
ppr_class_pred pp clas tys = pprTypeNameApp TopPrec pp (getName clas) tys
pprTheta :: ThetaType -> SDoc
pprTheta theta = parens (sep (punctuate comma (map (ppr_type TopPrec) theta)))
pprThetaArrowTy :: ThetaType -> SDoc
pprThetaArrowTy [] = empty
pprThetaArrowTy [pred]
| noParenPred pred = ppr_type TopPrec pred <+> darrow
pprThetaArrowTy preds = parens (fsep (punctuate comma (map (ppr_type TopPrec) preds)))
<+> darrow
instance Outputable Type where
ppr ty = pprType ty
instance Outputable TyLit where
ppr = pprTyLit
ppr_type :: Prec -> Type -> SDoc
ppr_type _ (TyVarTy tv) = ppr_tvar tv
ppr_type _ (TyConApp tc [LitTy (StrTyLit n),ty])
| tc `hasKey` ipClassNameKey
= char '?' <> ftext n <> ptext (sLit "::") <> ppr_type TopPrec ty
ppr_type p (TyConApp tc tys) = pprTcApp p ppr_type tc tys
ppr_type p (LitTy l) = ppr_tylit p l
ppr_type p ty@(ForAllTy {}) = ppr_forall_type p ty
ppr_type p (AppTy t1 t2) = maybeParen p TyConPrec $
pprType t1 <+> ppr_type TyConPrec t2
ppr_type p fun_ty@(FunTy ty1 ty2)
| isPredTy ty1
= ppr_forall_type p fun_ty
| otherwise
= pprArrowChain p (ppr_type FunPrec ty1 : ppr_fun_tail ty2)
where
ppr_fun_tail (FunTy ty1 ty2)
| not (isPredTy ty1) = ppr_type FunPrec ty1 : ppr_fun_tail ty2
ppr_fun_tail other_ty = [ppr_type TopPrec other_ty]
ppr_forall_type :: Prec -> Type -> SDoc
ppr_forall_type p ty
= maybeParen p FunPrec $ (ppr_sigma_type True ty)
ppr_tvar :: TyVar -> SDoc
ppr_tvar tv
= parenSymOcc (getOccName tv) (ppr tv)
ppr_tylit :: Prec -> TyLit -> SDoc
ppr_tylit _ tl =
case tl of
NumTyLit n -> integer n
StrTyLit s -> text (show s)
ppr_sigma_type :: Bool -> Type -> SDoc
ppr_sigma_type show_foralls ty
= sep [ if show_foralls then pprForAll tvs else empty
, pprThetaArrowTy ctxt
, pprType tau ]
where
(tvs, rho) = split1 [] ty
(ctxt, tau) = split2 [] rho
split1 tvs (ForAllTy tv ty) = split1 (tv:tvs) ty
split1 tvs ty = (reverse tvs, ty)
split2 ps (ty1 `FunTy` ty2) | isPredTy ty1 = split2 (ty1:ps) ty2
split2 ps ty = (reverse ps, ty)
pprSigmaType :: Type -> SDoc
pprSigmaType ty = ppr_sigma_type opt_PprStyle_Debug ty
pprForAll :: [TyVar] -> SDoc
pprForAll [] = empty
pprForAll tvs = ptext (sLit "forall") <+> pprTvBndrs tvs <> dot
pprTvBndrs :: [TyVar] -> SDoc
pprTvBndrs tvs = sep (map pprTvBndr tvs)
pprTvBndr :: TyVar -> SDoc
pprTvBndr tv
| isLiftedTypeKind kind = ppr_tvar tv
| otherwise = parens (ppr_tvar tv <+> dcolon <+> pprKind kind)
where
kind = tyVarKind tv
\end{code}
Note [Infix type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
With TypeOperators you can say
f :: (a ~> b) -> b
and the (~>) is considered a type variable. However, the type
pretty-printer in this module will just see (a ~> b) as
App (App (TyVarTy "~>") (TyVarTy "a")) (TyVarTy "b")
So it'll print the type in prefix form. To avoid confusion we must
remember to parenthesise the operator, thus
(~>) a b -> b
See Trac #2766.
\begin{code}
pprTcApp :: Prec -> (Prec -> a -> SDoc) -> TyCon -> [a] -> SDoc
pprTcApp _ _ tc []
= pp_nt_debug <> ppr tc
where
pp_nt_debug | isNewTyCon tc = ifPprDebug (if isRecursiveTyCon tc
then ptext (sLit "<recnt>")
else ptext (sLit "<nt>"))
| otherwise = empty
pprTcApp _ pp tc [ty]
| tc `hasKey` listTyConKey = pprPromotionQuote tc <> brackets (pp TopPrec ty)
| tc `hasKey` parrTyConKey = pprPromotionQuote tc <> paBrackets (pp TopPrec ty)
pprTcApp p pp tc tys
| isTupleTyCon tc && tyConArity tc == length tys
= pprPromotionQuote tc <>
tupleParens (tupleTyConSort tc) (sep (punctuate comma (map (pp TopPrec) tys)))
| not opt_PprStyle_Debug
, tc `hasKey` eqTyConKey
, [_, ty1,ty2] <- tys
= pprInfixApp p pp (ppr tc) ty1 ty2
| otherwise
= ppr_type_name_app p pp (ppr tc) (isSymOcc (getOccName tc)) tys
pprTypeApp :: NamedThing a => a -> [Type] -> SDoc
pprTypeApp tc tys
= pprTypeNameApp TopPrec ppr_type (getName tc) tys
pprTypeNameApp :: Prec -> (Prec -> a -> SDoc) -> Name -> [a] -> SDoc
pprTypeNameApp p pp name tys
= ppr_type_name_app p pp (ppr name) (isSymOcc (getOccName name)) tys
ppr_type_name_app :: Prec -> (Prec -> a -> SDoc) -> SDoc -> Bool -> [a] -> SDoc
ppr_type_name_app p pp pp_tc is_sym_occ tys
| is_sym_occ
, [ty1,ty2] <- tys
= pprInfixApp p pp pp_tc ty1 ty2
| otherwise
= pprPrefixApp p (pprPrefixVar is_sym_occ pp_tc) (map (pp TyConPrec) tys)
pprInfixApp :: Prec -> (Prec -> a -> SDoc) -> SDoc -> a -> a -> SDoc
pprInfixApp p pp pp_tc ty1 ty2
= maybeParen p FunPrec $
sep [pp FunPrec ty1, pprInfixVar True pp_tc <+> pp FunPrec ty2]
pprPrefixApp :: Prec -> SDoc -> [SDoc] -> SDoc
pprPrefixApp p pp_fun pp_tys = maybeParen p TyConPrec $
hang pp_fun 2 (sep pp_tys)
pprArrowChain :: Prec -> [SDoc] -> SDoc
pprArrowChain _ [] = empty
pprArrowChain p (arg:args) = maybeParen p FunPrec $
sep [arg, sep (map (arrow <+>) args)]
\end{code}