% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1997-1998 % \section[BasicTypes]{Miscellanous types} This module defines a miscellaneously collection of very simple types that \begin{itemize} \item have no other obvious home \item don't depend on any other complicated types \item are used in more than one "part" of the compiler \end{itemize} \begin{code}
{-# LANGUAGE DeriveDataTypeable #-}

{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module BasicTypes(
	Version, bumpVersion, initialVersion,

	Arity, RepArity,
	
	Alignment,

        FunctionOrData(..),
	
	WarningTxt(..),

	Fixity(..), FixityDirection(..),
	defaultFixity, maxPrecedence, 
	negateFixity, funTyFixity,
	compareFixity,

	RecFlag(..), isRec, isNonRec, boolToRecFlag,

	RuleName,

	TopLevelFlag(..), isTopLevel, isNotTopLevel,

	OverlapFlag(..), 

	Boxity(..), isBoxed, 

        TupleSort(..), tupleSortBoxity, boxityNormalTupleSort,
        tupleParens,

	OccInfo(..), seqOccInfo, zapFragileOcc, isOneOcc, 
	isDeadOcc, isStrongLoopBreaker, isWeakLoopBreaker, isNoOcc,
        strongLoopBreaker, weakLoopBreaker, 

	InsideLam, insideLam, notInsideLam,
	OneBranch, oneBranch, notOneBranch,
	InterestingCxt,

        EP(..),

	HsBang(..), isBanged, isMarkedUnboxed, 
        StrictnessMark(..), isMarkedStrict,

	DefMethSpec(..),

        CompilerPhase(..), PhaseNum,
        Activation(..), isActive, isActiveIn,
        isNeverActive, isAlwaysActive, isEarlyActive,
        RuleMatchInfo(..), isConLike, isFunLike, 
        InlineSpec(..), isEmptyInlineSpec,
        InlinePragma(..), defaultInlinePragma, alwaysInlinePragma, 
        neverInlinePragma, dfunInlinePragma, 
	isDefaultInlinePragma, 
        isInlinePragma, isInlinablePragma, isAnyInlinePragma,
        inlinePragmaSpec, inlinePragmaSat,
        inlinePragmaActivation, inlinePragmaRuleMatchInfo,
        setInlinePragmaActivation, setInlinePragmaRuleMatchInfo,

	SuccessFlag(..), succeeded, failed, successIf,
	
	FractionalLit(..), negateFractionalLit, integralFractionalLit
   ) where

import FastString
import Outputable

import Data.Data hiding (Fixity)
import Data.Function (on)
\end{code} %************************************************************************ %* * \subsection[Arity]{Arity} %* * %************************************************************************ \begin{code}
-- | The number of value arguments that can be applied to a value before it does
-- "real work". So:
--  fib 100     has arity 0
--  \x -> fib x has arity 1
type Arity = Int

-- | The number of represented arguments that can be applied to a value before it does
-- "real work". So:
--  fib 100                    has representation arity 0
--  \x -> fib x                has representation arity 1
--  \(# x, y #) -> fib (x + y) has representation arity 2
type RepArity = Int
\end{code} %************************************************************************ %* * \subsection[Alignment]{Alignment} %* * %************************************************************************ \begin{code}
type Alignment = Int -- align to next N-byte boundary (N must be a power of 2).
\end{code} %************************************************************************ %* * \subsection[FunctionOrData]{FunctionOrData} %* * %************************************************************************ \begin{code}
data FunctionOrData = IsFunction | IsData
    deriving (Eq, Ord, Data, Typeable)

instance Outputable FunctionOrData where
    ppr IsFunction = text "(function)"
    ppr IsData     = text "(data)"
\end{code} %************************************************************************ %* * \subsection[Version]{Module and identifier version numbers} %* * %************************************************************************ \begin{code}
type Version = Int

bumpVersion :: Version -> Version 
bumpVersion v = v+1

initialVersion :: Version
initialVersion = 1
\end{code} %************************************************************************ %* * Deprecations %* * %************************************************************************ \begin{code}
-- reason/explanation from a WARNING or DEPRECATED pragma
data WarningTxt = WarningTxt [FastString]
                | DeprecatedTxt [FastString]
    deriving (Eq, Data, Typeable)

instance Outputable WarningTxt where
    ppr (WarningTxt    ws) = doubleQuotes (vcat (map ftext ws))
    ppr (DeprecatedTxt ds) = text "Deprecated:" <+>
                             doubleQuotes (vcat (map ftext ds))
\end{code} %************************************************************************ %* * Rules %* * %************************************************************************ \begin{code}
type RuleName = FastString
\end{code} %************************************************************************ %* * \subsection[Fixity]{Fixity info} %* * %************************************************************************ \begin{code}
------------------------
data Fixity = Fixity Int FixityDirection
  deriving (Data, Typeable)

instance Outputable Fixity where
    ppr (Fixity prec dir) = hcat [ppr dir, space, int prec]

instance Eq Fixity where		-- Used to determine if two fixities conflict
  (Fixity p1 dir1) == (Fixity p2 dir2) = p1==p2 && dir1 == dir2

------------------------
data FixityDirection = InfixL | InfixR | InfixN 
		     deriving (Eq, Data, Typeable)

instance Outputable FixityDirection where
    ppr InfixL = ptext (sLit "infixl")
    ppr InfixR = ptext (sLit "infixr")
    ppr InfixN = ptext (sLit "infix")

------------------------
maxPrecedence :: Int
maxPrecedence = 9
defaultFixity :: Fixity
defaultFixity = Fixity maxPrecedence InfixL

negateFixity, funTyFixity :: Fixity
-- Wired-in fixities
negateFixity = Fixity 6 InfixL 	-- Fixity of unary negate
funTyFixity  = Fixity 0	InfixR	-- Fixity of '->'
\end{code} Consider \begin{verbatim} a `op1` b `op2` c \end{verbatim} @(compareFixity op1 op2)@ tells which way to arrange appication, or whether there's an error. \begin{code}
compareFixity :: Fixity -> Fixity
	      -> (Bool,		-- Error please
		  Bool)		-- Associate to the right: a op1 (b op2 c)
compareFixity (Fixity prec1 dir1) (Fixity prec2 dir2)
  = case prec1 `compare` prec2 of
	GT -> left
	LT -> right
	EQ -> case (dir1, dir2) of
			(InfixR, InfixR) -> right
			(InfixL, InfixL) -> left
			_		 -> error_please
  where
    right	 = (False, True)
    left         = (False, False)
    error_please = (True,  False)
\end{code} %************************************************************************ %* * \subsection[Top-level/local]{Top-level/not-top level flag} %* * %************************************************************************ \begin{code}
data TopLevelFlag
  = TopLevel
  | NotTopLevel

isTopLevel, isNotTopLevel :: TopLevelFlag -> Bool

isNotTopLevel NotTopLevel = True
isNotTopLevel TopLevel    = False

isTopLevel TopLevel	= True
isTopLevel NotTopLevel  = False

instance Outputable TopLevelFlag where
  ppr TopLevel    = ptext (sLit "<TopLevel>")
  ppr NotTopLevel = ptext (sLit "<NotTopLevel>")
\end{code} %************************************************************************ %* * Boxity flag %* * %************************************************************************ \begin{code}
data Boxity
  = Boxed
  | Unboxed
  deriving( Eq, Data, Typeable )

isBoxed :: Boxity -> Bool
isBoxed Boxed   = True
isBoxed Unboxed = False
\end{code} %************************************************************************ %* * Recursive/Non-Recursive flag %* * %************************************************************************ \begin{code}
data RecFlag = Recursive 
	     | NonRecursive
	     deriving( Eq, Data, Typeable )

isRec :: RecFlag -> Bool
isRec Recursive    = True
isRec NonRecursive = False

isNonRec :: RecFlag -> Bool
isNonRec Recursive    = False
isNonRec NonRecursive = True

boolToRecFlag :: Bool -> RecFlag
boolToRecFlag True  = Recursive
boolToRecFlag False = NonRecursive

instance Outputable RecFlag where
  ppr Recursive    = ptext (sLit "Recursive")
  ppr NonRecursive = ptext (sLit "NonRecursive")
\end{code} %************************************************************************ %* * Instance overlap flag %* * %************************************************************************ \begin{code}
data OverlapFlag
  -- | This instance must not overlap another
  = NoOverlap { isSafeOverlap :: Bool }

  -- | Silently ignore this instance if you find a 
  -- more specific one that matches the constraint
  -- you are trying to resolve
  --
  -- Example: constraint (Foo [Int])
  -- 	    instances  (Foo [Int])
  --		       (Foo [a])	OverlapOk
  -- Since the second instance has the OverlapOk flag,
  -- the first instance will be chosen (otherwise 
  -- its ambiguous which to choose)
  | OverlapOk { isSafeOverlap :: Bool }

  -- | Like OverlapOk, but also ignore this instance 
  -- if it doesn't match the constraint you are
  -- trying to resolve, but could match if the type variables
  -- in the constraint were instantiated
  --
  -- Example: constraint (Foo [b])
  --	    instances  (Foo [Int])	Incoherent
  --		       (Foo [a])
  -- Without the Incoherent flag, we'd complain that
  -- instantiating 'b' would change which instance 
  -- was chosen
  | Incoherent { isSafeOverlap :: Bool }
  deriving (Eq, Data, Typeable)

instance Outputable OverlapFlag where
   ppr (NoOverlap  b) = empty <+> pprSafeOverlap b
   ppr (OverlapOk  b) = ptext (sLit "[overlap ok]") <+> pprSafeOverlap b
   ppr (Incoherent b) = ptext (sLit "[incoherent]") <+> pprSafeOverlap b

pprSafeOverlap :: Bool -> SDoc
pprSafeOverlap True  = ptext $ sLit "[safe]"
pprSafeOverlap False = empty
\end{code} %************************************************************************ %* * Tuples %* * %************************************************************************ \begin{code}
data TupleSort
  = BoxedTuple
  | UnboxedTuple
  | ConstraintTuple
  deriving( Eq, Data, Typeable )

tupleSortBoxity :: TupleSort -> Boxity
tupleSortBoxity BoxedTuple     = Boxed
tupleSortBoxity UnboxedTuple   = Unboxed
tupleSortBoxity ConstraintTuple = Boxed

boxityNormalTupleSort :: Boxity -> TupleSort
boxityNormalTupleSort Boxed   = BoxedTuple
boxityNormalTupleSort Unboxed = UnboxedTuple

tupleParens :: TupleSort -> SDoc -> SDoc
tupleParens BoxedTuple      p = parens p
tupleParens ConstraintTuple p = parens p -- The user can't write fact tuples 
                                         -- directly, we overload the (,,) syntax
tupleParens UnboxedTuple p = ptext (sLit "(#") <+> p <+> ptext (sLit "#)")
\end{code} %************************************************************************ %* * \subsection[Generic]{Generic flag} %* * %************************************************************************ This is the "Embedding-Projection pair" datatype, it contains two pieces of code (normally either RenamedExpr's or Id's) If we have a such a pair (EP from to), the idea is that 'from' and 'to' represents functions of type from :: T -> Tring to :: Tring -> T And we should have to (from x) = x T and Tring are arbitrary, but typically T is the 'main' type while Tring is the 'representation' type. (This just helps us remember whether to use 'from' or 'to'. \begin{code}
data EP a = EP { fromEP :: a,	-- :: T -> Tring
		 toEP   :: a }	-- :: Tring -> T
\end{code} Embedding-projection pairs are used in several places: First of all, each type constructor has an EP associated with it, the code in EP converts (datatype T) from T to Tring and back again. Secondly, when we are filling in Generic methods (in the typechecker, tcMethodBinds), we are constructing bimaps by induction on the structure of the type of the method signature. %************************************************************************ %* * \subsection{Occurrence information} %* * %************************************************************************ This data type is used exclusively by the simplifier, but it appears in a SubstResult, which is currently defined in VarEnv, which is pretty near the base of the module hierarchy. So it seemed simpler to put the defn of OccInfo here, safely at the bottom \begin{code}
-- | Identifier occurrence information
data OccInfo 
  = NoOccInfo		-- ^ There are many occurrences, or unknown occurences

  | IAmDead		-- ^ Marks unused variables.  Sometimes useful for
			-- lambda and case-bound variables.

  | OneOcc
	!InsideLam
 	!OneBranch
	!InterestingCxt -- ^ Occurs exactly once, not inside a rule

  -- | This identifier breaks a loop of mutually recursive functions. The field
  -- marks whether it is only a loop breaker due to a reference in a rule
  | IAmALoopBreaker	-- Note [LoopBreaker OccInfo]
	!RulesOnly

type RulesOnly = Bool
\end{code} Note [LoopBreaker OccInfo] ~~~~~~~~~~~~~~~~~~~~~~~~~~ IAmALoopBreaker True <=> A "weak" or rules-only loop breaker Do not preInlineUnconditionally IAmALoopBreaker False <=> A "strong" loop breaker Do not inline at all See OccurAnal Note [Weak loop breakers] \begin{code}
isNoOcc :: OccInfo -> Bool
isNoOcc NoOccInfo = True
isNoOcc _         = False

seqOccInfo :: OccInfo -> ()
seqOccInfo occ = occ `seq` ()

-----------------
type InterestingCxt = Bool	-- True <=> Function: is applied
				--	    Data value: scrutinised by a case with
				--			at least one non-DEFAULT branch

-----------------
type InsideLam = Bool	-- True <=> Occurs inside a non-linear lambda
			-- Substituting a redex for this occurrence is
			-- dangerous because it might duplicate work.
insideLam, notInsideLam :: InsideLam
insideLam    = True
notInsideLam = False

-----------------
type OneBranch = Bool	-- True <=> Occurs in only one case branch
			--	so no code-duplication issue to worry about
oneBranch, notOneBranch :: OneBranch
oneBranch    = True
notOneBranch = False

strongLoopBreaker, weakLoopBreaker :: OccInfo
strongLoopBreaker = IAmALoopBreaker False
weakLoopBreaker   = IAmALoopBreaker True

isWeakLoopBreaker :: OccInfo -> Bool
isWeakLoopBreaker (IAmALoopBreaker _) = True
isWeakLoopBreaker _                   = False

isStrongLoopBreaker :: OccInfo -> Bool
isStrongLoopBreaker (IAmALoopBreaker False) = True   -- Loop-breaker that breaks a non-rule cycle
isStrongLoopBreaker _                       = False

isDeadOcc :: OccInfo -> Bool
isDeadOcc IAmDead = True
isDeadOcc _       = False

isOneOcc :: OccInfo -> Bool
isOneOcc (OneOcc {}) = True
isOneOcc _           = False

zapFragileOcc :: OccInfo -> OccInfo
zapFragileOcc (OneOcc {}) = NoOccInfo
zapFragileOcc occ         = occ
\end{code} \begin{code}
instance Outputable OccInfo where
  -- only used for debugging; never parsed.  KSW 1999-07
  ppr NoOccInfo  	   = empty
  ppr (IAmALoopBreaker ro) = ptext (sLit "LoopBreaker") <> if ro then char '!' else empty
  ppr IAmDead		   = ptext (sLit "Dead")
  ppr (OneOcc inside_lam one_branch int_cxt)
	= ptext (sLit "Once") <> pp_lam <> pp_br <> pp_args
	where
	  pp_lam | inside_lam = char 'L'
		 | otherwise  = empty
	  pp_br  | one_branch = empty
		 | otherwise  = char '*'
	  pp_args | int_cxt   = char '!'
		  | otherwise = empty
\end{code} %************************************************************************ %* * Strictness indication %* * %************************************************************************ The strictness annotations on types in data type declarations e.g. data T = MkT !Int !(Bool,Bool) \begin{code}
-------------------------
-- HsBang describes what the *programmer* wrote
-- This info is retained in the DataCon.dcStrictMarks field
data HsBang = HsNoBang	

	    | HsStrict	

	    | HsUnpack	       -- {-# UNPACK #-} ! (GHC extension, meaning "unbox")

	    | HsUnpackFailed   -- An UNPACK pragma that we could not make 
	      		       -- use of, because the type isn't unboxable; 
                               -- equivalant to HsStrict except for checkValidDataCon
            | HsNoUnpack       -- {-# NOUNPACK #-} ! (GHC extension, meaning "strict but not unboxed")
  deriving (Eq, Data, Typeable)

instance Outputable HsBang where
    ppr HsNoBang       = empty
    ppr HsStrict       = char '!'
    ppr HsUnpack       = ptext (sLit "{-# UNPACK #-} !")
    ppr HsUnpackFailed = ptext (sLit "{-# UNPACK (failed) #-} !")
    ppr HsNoUnpack     = ptext (sLit "{-# NOUNPACK #-} !")

isBanged :: HsBang -> Bool
isBanged HsNoBang = False
isBanged _        = True

isMarkedUnboxed :: HsBang -> Bool
isMarkedUnboxed HsUnpack = True
isMarkedUnboxed _        = False

-------------------------
-- StrictnessMark is internal only, used to indicate strictness 
-- of the DataCon *worker* fields
data StrictnessMark = MarkedStrict | NotMarkedStrict	

instance Outputable StrictnessMark where
  ppr MarkedStrict     = ptext (sLit "!")
  ppr NotMarkedStrict  = empty

isMarkedStrict :: StrictnessMark -> Bool
isMarkedStrict NotMarkedStrict = False
isMarkedStrict _               = True   -- All others are strict
\end{code} %************************************************************************ %* * Default method specfication %* * %************************************************************************ The DefMethSpec enumeration just indicates what sort of default method is used for a class. It is generated from source code, and present in interface files; it is converted to Class.DefMeth before begin put in a Class object. \begin{code}
data DefMethSpec = NoDM        -- No default method
                 | VanillaDM   -- Default method given with polymorphic code
                 | GenericDM   -- Default method given with generic code

instance Outputable DefMethSpec where
  ppr NoDM      = empty
  ppr VanillaDM = ptext (sLit "{- Has default method -}")
  ppr GenericDM = ptext (sLit "{- Has generic default method -}")
\end{code} %************************************************************************ %* * \subsection{Success flag} %* * %************************************************************************ \begin{code}
data SuccessFlag = Succeeded | Failed

instance Outputable SuccessFlag where
    ppr Succeeded = ptext (sLit "Succeeded")
    ppr Failed    = ptext (sLit "Failed")

successIf :: Bool -> SuccessFlag
successIf True  = Succeeded
successIf False = Failed

succeeded, failed :: SuccessFlag -> Bool
succeeded Succeeded = True
succeeded Failed    = False

failed Succeeded = False
failed Failed    = True
\end{code} %************************************************************************ %* * \subsection{Activation} %* * %************************************************************************ When a rule or inlining is active \begin{code}
type PhaseNum = Int  -- Compilation phase
                     -- Phases decrease towards zero
                     -- Zero is the last phase

data CompilerPhase
  = Phase PhaseNum
  | InitialPhase    -- The first phase -- number = infinity!

instance Outputable CompilerPhase where
   ppr (Phase n)    = int n
   ppr InitialPhase = ptext (sLit "InitialPhase")

data Activation = NeverActive
		| AlwaysActive
                | ActiveBefore PhaseNum -- Active only *before* this phase
                | ActiveAfter PhaseNum  -- Active in this phase and later
		deriving( Eq, Data, Typeable )	-- Eq used in comparing rules in HsDecls

data RuleMatchInfo = ConLike 			-- See Note [CONLIKE pragma]
                   | FunLike
                   deriving( Eq, Data, Typeable, Show )
	-- Show needed for Lexer.x

data InlinePragma  	     -- Note [InlinePragma]
  = InlinePragma
      { inl_inline :: InlineSpec

      , inl_sat    :: Maybe Arity    -- Just n <=> Inline only when applied to n 
      		      	    	     --            explicit (non-type, non-dictionary) args
				     --   That is, inl_sat describes the number of *source-code*
                                     --   arguments the thing must be applied to.  We add on the 
                                     --   number of implicit, dictionary arguments when making
			             --   the InlineRule, and don't look at inl_sat further

      , inl_act    :: Activation     -- Says during which phases inlining is allowed

      , inl_rule   :: RuleMatchInfo  -- Should the function be treated like a constructor?
    } deriving( Eq, Data, Typeable )

data InlineSpec   -- What the user's INLINE pragama looked like
  = Inline
  | Inlinable
  | NoInline
  | EmptyInlineSpec
  deriving( Eq, Data, Typeable, Show )
	-- Show needed for Lexer.x
\end{code} Note [InlinePragma] ~~~~~~~~~~~~~~~~~~~ This data type mirrors what you can write in an INLINE or NOINLINE pragma in the source program. If you write nothing at all, you get defaultInlinePragma: inl_inline = False inl_act = AlwaysActive inl_rule = FunLike It's not possible to get that combination by *writing* something, so if an Id has defaultInlinePragma it means the user didn't specify anything. If inl_inline = True, then the Id should have an InlineRule unfolding. Note [CONLIKE pragma] ~~~~~~~~~~~~~~~~~~~~~ The ConLike constructor of a RuleMatchInfo is aimed at the following. Consider first {-# RULE "r/cons" forall a as. r (a:as) = f (a+1) #-} g b bs = let x = b:bs in ..x...x...(r x)... Now, the rule applies to the (r x) term, because GHC "looks through" the definition of 'x' to see that it is (b:bs). Now consider {-# RULE "r/f" forall v. r (f v) = f (v+1) #-} g v = let x = f v in ..x...x...(r x)... Normally the (r x) would *not* match the rule, because GHC would be scared about duplicating the redex (f v), so it does not "look through" the bindings. However the CONLIKE modifier says to treat 'f' like a constructor in this situation, and "look through" the unfolding for x. So (r x) fires, yielding (f (v+1)). This is all controlled with a user-visible pragma: {-# NOINLINE CONLIKE [1] f #-} The main effects of CONLIKE are: - The occurrence analyser (OccAnal) and simplifier (Simplify) treat CONLIKE thing like constructors, by ANF-ing them - New function coreUtils.exprIsExpandable is like exprIsCheap, but additionally spots applications of CONLIKE functions - A CoreUnfolding has a field that caches exprIsExpandable - The rule matcher consults this field. See Note [Expanding variables] in Rules.lhs. \begin{code}
isConLike :: RuleMatchInfo -> Bool
isConLike ConLike = True
isConLike _            = False

isFunLike :: RuleMatchInfo -> Bool
isFunLike FunLike = True
isFunLike _            = False

isEmptyInlineSpec :: InlineSpec -> Bool
isEmptyInlineSpec EmptyInlineSpec = True
isEmptyInlineSpec _               = False

defaultInlinePragma, alwaysInlinePragma, neverInlinePragma, dfunInlinePragma
  :: InlinePragma
defaultInlinePragma = InlinePragma { inl_act = AlwaysActive
                                   , inl_rule = FunLike
                                   , inl_inline = EmptyInlineSpec
                                   , inl_sat = Nothing }

alwaysInlinePragma = defaultInlinePragma { inl_inline = Inline }
neverInlinePragma  = defaultInlinePragma { inl_act    = NeverActive }

inlinePragmaSpec :: InlinePragma -> InlineSpec
inlinePragmaSpec = inl_inline

-- A DFun has an always-active inline activation so that 
-- exprIsConApp_maybe can "see" its unfolding
-- (However, its actual Unfolding is a DFunUnfolding, which is
--  never inlined other than via exprIsConApp_maybe.)
dfunInlinePragma   = defaultInlinePragma { inl_act  = AlwaysActive
                                         , inl_rule = ConLike }

isDefaultInlinePragma :: InlinePragma -> Bool
isDefaultInlinePragma (InlinePragma { inl_act = activation
                                    , inl_rule = match_info
                                    , inl_inline = inline })
  = isEmptyInlineSpec inline && isAlwaysActive activation && isFunLike match_info

isInlinePragma :: InlinePragma -> Bool
isInlinePragma prag = case inl_inline prag of
                        Inline -> True
                        _      -> False

isInlinablePragma :: InlinePragma -> Bool
isInlinablePragma prag = case inl_inline prag of
                           Inlinable -> True
                           _         -> False

isAnyInlinePragma :: InlinePragma -> Bool
-- INLINE or INLINABLE
isAnyInlinePragma prag = case inl_inline prag of
                        Inline    -> True
                        Inlinable -> True
                        _         -> False
 
inlinePragmaSat :: InlinePragma -> Maybe Arity
inlinePragmaSat = inl_sat

inlinePragmaActivation :: InlinePragma -> Activation
inlinePragmaActivation (InlinePragma { inl_act = activation }) = activation

inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo
inlinePragmaRuleMatchInfo (InlinePragma { inl_rule = info }) = info

setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma
setInlinePragmaActivation prag activation = prag { inl_act = activation }

setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma
setInlinePragmaRuleMatchInfo prag info = prag { inl_rule = info }

instance Outputable Activation where
   ppr AlwaysActive     = brackets (ptext (sLit "ALWAYS"))
   ppr NeverActive      = brackets (ptext (sLit "NEVER"))
   ppr (ActiveBefore n) = brackets (char '~' <> int n)
   ppr (ActiveAfter n)  = brackets (int n)

instance Outputable RuleMatchInfo where
   ppr ConLike = ptext (sLit "CONLIKE")
   ppr FunLike = ptext (sLit "FUNLIKE")

instance Outputable InlineSpec where
   ppr Inline          = ptext (sLit "INLINE")
   ppr NoInline        = ptext (sLit "NOINLINE")
   ppr Inlinable       = ptext (sLit "INLINABLE")
   ppr EmptyInlineSpec = empty

instance Outputable InlinePragma where
  ppr (InlinePragma { inl_inline = inline, inl_act = activation
                    , inl_rule = info, inl_sat = mb_arity })
    = ppr inline <> pp_act inline activation <+> pp_sat <+> pp_info 
    where
      pp_act Inline   AlwaysActive = empty	
      pp_act NoInline NeverActive  = empty
      pp_act _        act          = ppr act

      pp_sat | Just ar <- mb_arity = parens (ptext (sLit "sat-args=") <> int ar)
             | otherwise           = empty
      pp_info | isFunLike info = empty
              | otherwise      = ppr info

isActive :: CompilerPhase -> Activation -> Bool
isActive InitialPhase AlwaysActive      = True
isActive InitialPhase (ActiveBefore {}) = True
isActive InitialPhase _                 = False
isActive (Phase p)    act               = isActiveIn p act

isActiveIn :: PhaseNum -> Activation -> Bool
isActiveIn _ NeverActive      = False
isActiveIn _ AlwaysActive     = True
isActiveIn p (ActiveAfter n)  = p <= n
isActiveIn p (ActiveBefore n) = p >  n

isNeverActive, isAlwaysActive, isEarlyActive :: Activation -> Bool
isNeverActive NeverActive = True
isNeverActive _           = False

isAlwaysActive AlwaysActive = True
isAlwaysActive _            = False

isEarlyActive AlwaysActive      = True
isEarlyActive (ActiveBefore {}) = True
isEarlyActive _		        = False
\end{code} \begin{code}
-- Used (instead of Rational) to represent exactly the floating point literal that we
-- encountered in the user's source program. This allows us to pretty-print exactly what
-- the user wrote, which is important e.g. for floating point numbers that can't represented
-- as Doubles (we used to via Double for pretty-printing). See also #2245.
data FractionalLit
  = FL { fl_text :: String         -- How the value was written in the source
       , fl_value :: Rational      -- Numeric value of the literal
       }
  deriving (Data, Typeable, Show)
  -- The Show instance is required for the derived Lexer.x:Token instance when DEBUG is on

negateFractionalLit :: FractionalLit -> FractionalLit
negateFractionalLit (FL { fl_text = '-':text, fl_value = value }) = FL { fl_text = text, fl_value = negate value }
negateFractionalLit (FL { fl_text = text, fl_value = value }) = FL { fl_text = '-':text, fl_value = negate value }

integralFractionalLit :: Integer -> FractionalLit
integralFractionalLit i = FL { fl_text = show i, fl_value = fromInteger i }

-- Comparison operations are needed when grouping literals
-- for compiling pattern-matching (module MatchLit)

instance Eq FractionalLit where
  (==) = (==) `on` fl_value

instance Ord FractionalLit where
  compare = compare `on` fl_value

instance Outputable FractionalLit where
  ppr = text . fl_text
\end{code}