%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
The Code Generator
This module says how things get going at the top level.
@codeGen@ is the interface to the outside world. The \tr{cgTop*}
functions drive the mangling of top-level bindings.
\begin{code}
module CodeGen ( codeGen ) where
#include "HsVersions.h"
import CgExpr ( )
import CgProf
import CgMonad
import CgBindery
import CgClosure
import CgCon
import CgUtils
import CgHpc
import CLabel
import OldCmm
import OldPprCmm ()
import StgSyn
import PrelNames
import DynFlags
import StaticFlags
import HscTypes
import CostCentre
import Id
import Name
import TyCon
import Module
import ErrUtils
import Panic
import Outputable
import Util
import OrdList
import Stream (Stream, liftIO)
import qualified Stream
import Data.IORef
codeGen :: DynFlags
-> Module
-> [TyCon]
-> CollectedCCs
-> [(StgBinding,[(Id,[Id])])]
-> HpcInfo
-> Stream IO CmmGroup ()
codeGen dflags this_mod data_tycons cost_centre_info stg_binds hpc_info
= do { liftIO $ showPass dflags "CodeGen"
; cgref <- liftIO $ newIORef =<< initC
; let cg :: FCode CmmGroup -> Stream IO CmmGroup ()
cg fcode = do
cmm <- liftIO $ do
st <- readIORef cgref
let (a,st') = runC dflags this_mod st fcode
dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" $ ppr a
writeIORef cgref $! st'{ cgs_tops = nilOL,
cgs_stmts = nilOL }
return a
Stream.yield cmm
; cg (getCmm $ mkModuleInit dflags cost_centre_info this_mod hpc_info)
; mapM_ (cg . getCmm . cgTopBinding dflags) stg_binds
; mapM_ (cg . cgTyCon) data_tycons
}
mkModuleInit
:: DynFlags
-> CollectedCCs
-> Module
-> HpcInfo
-> Code
mkModuleInit dflags cost_centre_info this_mod hpc_info
= do {
; whenC (opt_Hpc) $
hpcTable this_mod hpc_info
; whenC (opt_SccProfilingOn) $ do
initCostCentres cost_centre_info
; emitDecl (CmmData Data (Statics (mkPlainModuleInitLabel this_mod) []))
; whenC (this_mod == mainModIs dflags) $
emitSimpleProc (mkPlainModuleInitLabel rOOT_MAIN) $ return ()
}
\end{code}
Cost-centre profiling: Besides the usual stuff, we must produce
declarations for the cost-centres defined in this module;
(The local cost-centres involved in this are passed into the
code-generator.)
\begin{code}
initCostCentres :: CollectedCCs -> Code
initCostCentres (local_CCs, ___extern_CCs, singleton_CCSs)
| not opt_SccProfilingOn = nopC
| otherwise
= do { mapM_ emitCostCentreDecl local_CCs
; mapM_ emitCostCentreStackDecl singleton_CCSs
}
\end{code}
%************************************************************************
%* *
\subsection[codegen-top-bindings]{Converting top-level STG bindings}
%* *
%************************************************************************
@cgTopBinding@ is only used for top-level bindings, since they need
to be allocated statically (not in the heap) and need to be labelled.
No unboxed bindings can happen at top level.
In the code below, the static bindings are accumulated in the
@MkCgState@, and transferred into the ``statics'' slot by @forkStatics@.
This is so that we can write the top level processing in a compositional
style, with the increasing static environment being plumbed as a state
variable.
\begin{code}
cgTopBinding :: DynFlags -> (StgBinding,[(Id,[Id])]) -> Code
cgTopBinding dflags (StgNonRec id rhs, srts)
= do { id' <- maybeExternaliseId dflags id
; mapM_ (mkSRT [id']) srts
; (id,info) <- cgTopRhs id' rhs
; addBindC id info
}
cgTopBinding dflags (StgRec pairs, srts)
= do { let (bndrs, rhss) = unzip pairs
; bndrs' <- mapFCs (maybeExternaliseId dflags) bndrs
; let pairs' = zip bndrs' rhss
; mapM_ (mkSRT bndrs') srts
; _new_binds <- fixC (\ new_binds -> do
{ addBindsC new_binds
; mapFCs ( \ (b,e) -> cgTopRhs b e ) pairs' })
; nopC }
mkSRT :: [Id] -> (Id,[Id]) -> Code
mkSRT _ (_,[]) = nopC
mkSRT these (id,ids)
= do { ids <- mapFCs remap ids
; id <- remap id
; emitRODataLits "CodeGen.mkSRT" (mkSRTLabel (idName id) (idCafInfo id))
(map (\id -> CmmLabel $ mkClosureLabel (idName id) (idCafInfo id)) ids)
}
where
remap id = case filter (==id) these of
(id':_) -> returnFC id'
[] -> do { info <- getCgIdInfo id; return (cgIdInfoId info) }
cgTopRhs :: Id -> StgRhs -> FCode (Id, CgIdInfo)
cgTopRhs bndr (StgRhsCon _cc con args)
= forkStatics (cgTopRhsCon bndr con args)
cgTopRhs bndr (StgRhsClosure cc bi fvs upd_flag srt args body)
= ASSERT(null fvs)
setSRTLabel (mkSRTLabel (idName bndr) (idCafInfo bndr)) $
setSRT srt $
forkStatics (cgTopRhsClosure bndr cc bi upd_flag args body)
\end{code}
%************************************************************************
%* *
\subsection{Stuff to support splitting}
%* *
%************************************************************************
If we're splitting the object, we need to externalise all the top-level names
(and then make sure we only use the externalised one in any C label we use
which refers to this name).
\begin{code}
maybeExternaliseId :: DynFlags -> Id -> FCode Id
maybeExternaliseId dflags id
| dopt Opt_SplitObjs dflags,
isInternalName name = do { mod <- getModuleName
; returnFC (setIdName id (externalise mod)) }
| otherwise = returnFC id
where
externalise mod = mkExternalName uniq mod new_occ loc
name = idName id
uniq = nameUnique name
new_occ = mkLocalOcc uniq (nameOccName name)
loc = nameSrcSpan name
\end{code}