% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The @match@ function \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module Match ( match, matchEquations, matchWrapper, matchSimply, matchSinglePat ) where

#include "HsVersions.h"

import {-#SOURCE#-} DsExpr (dsLExpr)

import DynFlags
import HsSyn		
import TcHsSyn
import TcEvidence
import Check
import CoreSyn
import Literal
import CoreUtils
import MkCore
import DsMonad
import DsBinds
import DsGRHSs
import DsUtils
import Id
import DataCon
import MatchCon
import MatchLit
import Type
import TysWiredIn
import ListSetOps
import SrcLoc
import Maybes
import Util
import Name
import Outputable
import BasicTypes ( boxityNormalTupleSort )
import FastString

import Control.Monad( when )
import qualified Data.Map as Map
\end{code} This function is a wrapper of @match@, it must be called from all the parts where it was called match, but only substitutes the firs call, .... if the associated flags are declared, warnings will be issued. It can not be called matchWrapper because this name already exists :-( JJCQ 30-Nov-1997 \begin{code}
matchCheck ::  DsMatchContext
	    -> [Id]	        -- Vars rep'ing the exprs we're matching with
            -> Type             -- Type of the case expression
            -> [EquationInfo]   -- Info about patterns, etc. (type synonym below)
            -> DsM MatchResult  -- Desugared result!

matchCheck ctx vars ty qs
  = do { dflags <- getDynFlags
       ; matchCheck_really dflags ctx vars ty qs }

matchCheck_really :: DynFlags
                  -> DsMatchContext
                  -> [Id]
                  -> Type
                  -> [EquationInfo]
                  -> DsM MatchResult
matchCheck_really dflags ctx@(DsMatchContext hs_ctx _) vars ty qs
  = do { when shadow (dsShadowWarn ctx eqns_shadow)
       ; when incomplete (dsIncompleteWarn ctx pats)
       ; match vars ty qs }
  where 
    (pats, eqns_shadow) = check qs
    incomplete = incomplete_flag hs_ctx && (notNull pats)
    shadow     = wopt Opt_WarnOverlappingPatterns dflags
              	 && notNull eqns_shadow

    incomplete_flag :: HsMatchContext id -> Bool
    incomplete_flag (FunRhs {})   = wopt Opt_WarnIncompletePatterns dflags
    incomplete_flag CaseAlt       = wopt Opt_WarnIncompletePatterns dflags
    incomplete_flag IfAlt         = False

    incomplete_flag LambdaExpr    = wopt Opt_WarnIncompleteUniPatterns dflags
    incomplete_flag PatBindRhs    = wopt Opt_WarnIncompleteUniPatterns dflags
    incomplete_flag ProcExpr      = wopt Opt_WarnIncompleteUniPatterns dflags

    incomplete_flag RecUpd        = wopt Opt_WarnIncompletePatternsRecUpd dflags

    incomplete_flag ThPatQuote    = False
    incomplete_flag (StmtCtxt {}) = False  -- Don't warn about incomplete patterns
    		    	      	    	   -- in list comprehensions, pattern guards
					   -- etc.  They are often *supposed* to be
					   -- incomplete 
\end{code} This variable shows the maximum number of lines of output generated for warnings. It will limit the number of patterns/equations displayed to@ maximum_output@. (ToDo: add command-line option?) \begin{code}
maximum_output :: Int
maximum_output = 4
\end{code} The next two functions create the warning message. \begin{code}
dsShadowWarn :: DsMatchContext -> [EquationInfo] -> DsM ()
dsShadowWarn ctx@(DsMatchContext kind loc) qs
  = putSrcSpanDs loc (warnDs warn)
  where
    warn | qs `lengthExceeds` maximum_output
         = pp_context ctx (ptext (sLit "are overlapped"))
		      (\ f -> vcat (map (ppr_eqn f kind) (take maximum_output qs)) $$
		      ptext (sLit "..."))
	 | otherwise
         = pp_context ctx (ptext (sLit "are overlapped"))
	              (\ f -> vcat $ map (ppr_eqn f kind) qs)


dsIncompleteWarn :: DsMatchContext -> [ExhaustivePat] -> DsM ()
dsIncompleteWarn ctx@(DsMatchContext kind loc) pats 
  = putSrcSpanDs loc (warnDs warn)
	where
	  warn = pp_context ctx (ptext (sLit "are non-exhaustive"))
                            (\_ -> hang (ptext (sLit "Patterns not matched:"))
		                   4 ((vcat $ map (ppr_incomplete_pats kind)
						  (take maximum_output pats))
		                      $$ dots))

	  dots | pats `lengthExceeds` maximum_output = ptext (sLit "...")
	       | otherwise                           = empty

pp_context :: DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pp_context (DsMatchContext kind _loc) msg rest_of_msg_fun
  = vcat [ptext (sLit "Pattern match(es)") <+> msg,
	  sep [ptext (sLit "In") <+> ppr_match <> char ':', nest 4 (rest_of_msg_fun pref)]]
  where
    (ppr_match, pref)
	= case kind of
	     FunRhs fun _ -> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
             _            -> (pprMatchContext kind, \ pp -> pp)

ppr_pats :: Outputable a => [a] -> SDoc
ppr_pats pats = sep (map ppr pats)

ppr_shadow_pats :: HsMatchContext Name -> [Pat Id] -> SDoc
ppr_shadow_pats kind pats
  = sep [ppr_pats pats, matchSeparator kind, ptext (sLit "...")]

ppr_incomplete_pats :: HsMatchContext Name -> ExhaustivePat -> SDoc
ppr_incomplete_pats _ (pats,[]) = ppr_pats pats
ppr_incomplete_pats _ (pats,constraints) =
	                 sep [ppr_pats pats, ptext (sLit "with"), 
	                      sep (map ppr_constraint constraints)]

ppr_constraint :: (Name,[HsLit]) -> SDoc
ppr_constraint (var,pats) = sep [ppr var, ptext (sLit "`notElem`"), ppr pats]

ppr_eqn :: (SDoc -> SDoc) -> HsMatchContext Name -> EquationInfo -> SDoc
ppr_eqn prefixF kind eqn = prefixF (ppr_shadow_pats kind (eqn_pats eqn))
\end{code} %************************************************************************ %* * The main matching function %* * %************************************************************************ The function @match@ is basically the same as in the Wadler chapter, except it is monadised, to carry around the name supply, info about annotations, etc. Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns: \begin{enumerate} \item A list of $n$ variable names, those variables presumably bound to the $n$ expressions being matched against the $n$ patterns. Using the list of $n$ expressions as the first argument showed no benefit and some inelegance. \item The second argument, a list giving the ``equation info'' for each of the $m$ equations: \begin{itemize} \item the $n$ patterns for that equation, and \item a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on the front'' of the matching code, as in: \begin{verbatim} let in \end{verbatim} \item and finally: (ToDo: fill in) The right way to think about the ``after-match function'' is that it is an embryonic @CoreExpr@ with a ``hole'' at the end for the final ``else expression''. \end{itemize} There is a type synonym, @EquationInfo@, defined in module @DsUtils@. An experiment with re-ordering this information about equations (in particular, having the patterns available in column-major order) showed no benefit. \item A default expression---what to evaluate if the overall pattern-match fails. This expression will (almost?) always be a measly expression @Var@, unless we know it will only be used once (as we do in @glue_success_exprs@). Leaving out this third argument to @match@ (and slamming in lots of @Var "fail"@s) is a positively {\em bad} idea, because it makes it impossible to share the default expressions. (Also, it stands no chance of working in our post-upheaval world of @Locals@.) \end{enumerate} Note: @match@ is often called via @matchWrapper@ (end of this module), a function that does much of the house-keeping that goes with a call to @match@. It is also worth mentioning the {\em typical} way a block of equations is desugared with @match@. At each stage, it is the first column of patterns that is examined. The steps carried out are roughly: \begin{enumerate} \item Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add bindings to the second component of the equation-info): \begin{itemize} \item Remove the `as' patterns from column~1. \item Make all constructor patterns in column~1 into @ConPats@, notably @ListPats@ and @TuplePats@. \item Handle any irrefutable (or ``twiddle'') @LazyPats@. \end{itemize} \item Now {\em unmix} the equations into {\em blocks} [w\/ local function @unmix_eqns@], in which the equations in a block all have variable patterns in column~1, or they all have constructor patterns in ... (see ``the mixture rule'' in SLPJ). \item Call @matchEqnBlock@ on each block of equations; it will do the appropriate thing for each kind of column-1 pattern, usually ending up in a recursive call to @match@. \end{enumerate} We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87) than the Wadler-chapter code for @match@ (p.~93, first @match@ clause). And gluing the ``success expressions'' together isn't quite so pretty. This (more interesting) clause of @match@ uses @tidy_and_unmix_eqns@ (a)~to get `as'- and `twiddle'-patterns out of the way (tidying), and (b)~to do ``the mixture rule'' (SLPJ, p.~88) [which really {\em un}mixes the equations], producing a list of equation-info blocks, each block having as its first column of patterns either all constructors, or all variables (or similar beasts), etc. @match_unmixed_eqn_blks@ simply takes the place of the @foldr@ in the Wadler-chapter @match@ (p.~93, last clause), and @match_unmixed_blk@ corresponds roughly to @matchVarCon@. \begin{code}
match :: [Id]		  -- Variables rep\'ing the exprs we\'re matching with
      -> Type             -- Type of the case expression
      -> [EquationInfo]	  -- Info about patterns, etc. (type synonym below)
      -> DsM MatchResult  -- Desugared result!

match [] ty eqns
  = ASSERT2( not (null eqns), ppr ty )
    return (foldr1 combineMatchResults match_results)
  where
    match_results = [ ASSERT( null (eqn_pats eqn) ) 
		      eqn_rhs eqn
		    | eqn <- eqns ]

match vars@(v:_) ty eqns
  = ASSERT( not (null eqns ) )
    do	{ 	-- Tidy the first pattern, generating
		-- auxiliary bindings if necessary
          (aux_binds, tidy_eqns) <- mapAndUnzipM (tidyEqnInfo v) eqns

		-- Group the equations and match each group in turn
        ; let grouped = groupEquations tidy_eqns

         -- print the view patterns that are commoned up to help debug
        ; ifDOptM Opt_D_dump_view_pattern_commoning (debug grouped)

	; match_results <- mapM match_group grouped
	; return (adjustMatchResult (foldr1 (.) aux_binds) $
		  foldr1 combineMatchResults match_results) }
  where
    dropGroup :: [(PatGroup,EquationInfo)] -> [EquationInfo]
    dropGroup = map snd

    match_group :: [(PatGroup,EquationInfo)] -> DsM MatchResult
    match_group [] = panic "match_group"
    match_group eqns@((group,_) : _)
        = case group of
            PgCon _    -> matchConFamily  vars ty (subGroup [(c,e) | (PgCon c, e) <- eqns])
            PgLit _    -> matchLiterals   vars ty (subGroup [(l,e) | (PgLit l, e) <- eqns])
            PgAny      -> matchVariables  vars ty (dropGroup eqns)
            PgN _      -> matchNPats      vars ty (dropGroup eqns)
            PgNpK _    -> matchNPlusKPats vars ty (dropGroup eqns)
            PgBang     -> matchBangs      vars ty (dropGroup eqns)
            PgCo _     -> matchCoercion   vars ty (dropGroup eqns)
            PgView _ _ -> matchView       vars ty (dropGroup eqns)

    -- FIXME: we should also warn about view patterns that should be
    -- commoned up but are not

    -- print some stuff to see what's getting grouped
    -- use -dppr-debug to see the resolution of overloaded lits
    debug eqns = 
        let gs = map (\group -> foldr (\ (p,_) -> \acc -> 
                                           case p of PgView e _ -> e:acc 
                                                     _ -> acc) [] group) eqns
            maybeWarn [] = return ()
            maybeWarn l = warnDs (vcat l)
        in 
          maybeWarn $ (map (\g -> text "Putting these view expressions into the same case:" <+> (ppr g))
                       (filter (not . null) gs))

matchVariables :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Real true variables, just like in matchVar, SLPJ p 94
-- No binding to do: they'll all be wildcards by now (done in tidy)
matchVariables (_:vars) ty eqns = match vars ty (shiftEqns eqns)
matchVariables [] _ _ = panic "matchVariables"

matchBangs :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchBangs (var:vars) ty eqns
  = do	{ match_result <- match (var:vars) ty $
                          map (decomposeFirstPat getBangPat) eqns
	; return (mkEvalMatchResult var ty match_result) }
matchBangs [] _ _ = panic "matchBangs"

matchCoercion :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the coercion to the match variable and then match that
matchCoercion (var:vars) ty (eqns@(eqn1:_))
  = do	{ let CoPat co pat _ = firstPat eqn1
	; var' <- newUniqueId var (hsPatType pat)
	; match_result <- match (var':vars) ty $
                          map (decomposeFirstPat getCoPat) eqns
        ; rhs' <- dsHsWrapper co (Var var)
	; return (mkCoLetMatchResult (NonRec var' rhs') match_result) }
matchCoercion _ _ _ = panic "matchCoercion"

matchView :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- Apply the view function to the match variable and then match that
matchView (var:vars) ty (eqns@(eqn1:_))
  = do	{ -- we could pass in the expr from the PgView,
         -- but this needs to extract the pat anyway 
         -- to figure out the type of the fresh variable
         let ViewPat viewExpr (L _ pat) _ = firstPat eqn1
         -- do the rest of the compilation 
	; var' <- newUniqueId var (hsPatType pat)
	; match_result <- match (var':vars) ty $
                          map (decomposeFirstPat getViewPat) eqns
         -- compile the view expressions
        ; viewExpr' <- dsLExpr viewExpr
	; return (mkViewMatchResult var' viewExpr' var match_result) }
matchView _ _ _ = panic "matchView"

-- decompose the first pattern and leave the rest alone
decomposeFirstPat :: (Pat Id -> Pat Id) -> EquationInfo -> EquationInfo
decomposeFirstPat extractpat (eqn@(EqnInfo { eqn_pats = pat : pats }))
	= eqn { eqn_pats = extractpat pat : pats}
decomposeFirstPat _ _ = panic "decomposeFirstPat"

getCoPat, getBangPat, getViewPat :: Pat Id -> Pat Id
getCoPat (CoPat _ pat _)     = pat
getCoPat _                   = panic "getCoPat"
getBangPat (BangPat pat  )   = unLoc pat
getBangPat _                 = panic "getBangPat"
getViewPat (ViewPat _ pat _) = unLoc pat
getViewPat _                 = panic "getBangPat"
\end{code} %************************************************************************ %* * Tidying patterns %* * %************************************************************************ Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@ which will be scrutinised. This means: \begin{itemize} \item Replace variable patterns @x@ (@x /= v@) with the pattern @_@, together with the binding @x = v@. \item Replace the `as' pattern @x@@p@ with the pattern p and a binding @x = v@. \item Removing lazy (irrefutable) patterns (you don't want to know...). \item Converting explicit tuple-, list-, and parallel-array-pats into ordinary @ConPats@. \item Convert the literal pat "" to []. \end{itemize} The result of this tidying is that the column of patterns will include {\em only}: \begin{description} \item[@WildPats@:] The @VarPat@ information isn't needed any more after this. \item[@ConPats@:] @ListPats@, @TuplePats@, etc., are all converted into @ConPats@. \item[@LitPats@ and @NPats@:] @LitPats@/@NPats@ of ``known friendly types'' (Int, Char, Float, Double, at least) are converted to unboxed form; e.g., \tr{(NPat (HsInt i) _ _)} is converted to: \begin{verbatim} (ConPat I# _ _ [LitPat (HsIntPrim i)]) \end{verbatim} \end{description} \begin{code}
tidyEqnInfo :: Id -> EquationInfo
	    -> DsM (DsWrapper, EquationInfo)
	-- DsM'd because of internal call to dsLHsBinds
	-- 	and mkSelectorBinds.
	-- "tidy1" does the interesting stuff, looking at
	-- one pattern and fiddling the list of bindings.
	--
	-- POST CONDITION: head pattern in the EqnInfo is
	--	WildPat
	--	ConPat
	--	NPat
	--	LitPat
	--	NPlusKPat
	-- but no other

tidyEqnInfo _ (EqnInfo { eqn_pats = [] }) 
  = panic "tidyEqnInfo"

tidyEqnInfo v eqn@(EqnInfo { eqn_pats = pat : pats })
  = do { (wrap, pat') <- tidy1 v pat
       ; return (wrap, eqn { eqn_pats = do pat' : pats }) }

tidy1 :: Id 			-- The Id being scrutinised
      -> Pat Id 		-- The pattern against which it is to be matched
      -> DsM (DsWrapper,	-- Extra bindings to do before the match
	      Pat Id) 		-- Equivalent pattern

-------------------------------------------------------
--	(pat', mr') = tidy1 v pat mr
-- tidies the *outer level only* of pat, giving pat'
-- It eliminates many pattern forms (as-patterns, variable patterns,
-- list patterns, etc) yielding one of:
--	WildPat
--	ConPatOut
--	LitPat
--	NPat
--	NPlusKPat

tidy1 v (ParPat pat)      = tidy1 v (unLoc pat) 
tidy1 v (SigPatOut pat _) = tidy1 v (unLoc pat) 
tidy1 _ (WildPat ty)      = return (idDsWrapper, WildPat ty)

	-- case v of { x -> mr[] }
	-- = case v of { _ -> let x=v in mr[] }
tidy1 v (VarPat var)
  = return (wrapBind var v, WildPat (idType var)) 

	-- case v of { x@p -> mr[] }
	-- = case v of { p -> let x=v in mr[] }
tidy1 v (AsPat (L _ var) pat)
  = do	{ (wrap, pat') <- tidy1 v (unLoc pat)
	; return (wrapBind var v . wrap, pat') }

{- now, here we handle lazy patterns:
    tidy1 v ~p bs = (v, v1 = case v of p -> v1 :
			v2 = case v of p -> v2 : ... : bs )

    where the v_i's are the binders in the pattern.

    ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing?

    The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr
-}

tidy1 v (LazyPat pat)
  = do  { sel_prs <- mkSelectorBinds [] pat (Var v)
	; let sel_binds =  [NonRec b rhs | (b,rhs) <- sel_prs]
	; return (mkCoreLets sel_binds, WildPat (idType v)) }

tidy1 _ (ListPat pats ty)
  = return (idDsWrapper, unLoc list_ConPat)
  where
    list_ty     = mkListTy ty
    list_ConPat = foldr (\ x y -> mkPrefixConPat consDataCon [x, y] list_ty)
	      	  	(mkNilPat list_ty)
	      	  	pats

-- Introduce fake parallel array constructors to be able to handle parallel
-- arrays with the existing machinery for constructor pattern
tidy1 _ (PArrPat pats ty)
  = return (idDsWrapper, unLoc parrConPat)
  where
    arity      = length pats
    parrConPat = mkPrefixConPat (parrFakeCon arity) pats (mkPArrTy ty)

tidy1 _ (TuplePat pats boxity ty)
  = return (idDsWrapper, unLoc tuple_ConPat)
  where
    arity = length pats
    tuple_ConPat = mkPrefixConPat (tupleCon (boxityNormalTupleSort boxity) arity) pats ty

-- LitPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (LitPat lit)
  = return (idDsWrapper, tidyLitPat lit)

-- NPats: we *might* be able to replace these w/ a simpler form
tidy1 _ (NPat lit mb_neg eq)
  = return (idDsWrapper, tidyNPat tidyLitPat lit mb_neg eq)

-- BangPatterns: Pattern matching is already strict in constructors,
-- tuples etc, so the last case strips off the bang for thoses patterns.
tidy1 v (BangPat (L _ (LazyPat p)))       = tidy1 v (BangPat p)
tidy1 v (BangPat (L _ (ParPat p)))        = tidy1 v (BangPat p)
tidy1 _ p@(BangPat (L _(VarPat _)))       = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (WildPat _)))     = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (CoPat _ _ _)))   = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (SigPatIn _ _)))  = return (idDsWrapper, p)
tidy1 _ p@(BangPat (L _ (SigPatOut _ _))) = return (idDsWrapper, p)
tidy1 v (BangPat (L _ (AsPat (L _ var) pat)))
  = do	{ (wrap, pat') <- tidy1 v (BangPat pat)
        ; return (wrapBind var v . wrap, pat') }
tidy1 v (BangPat (L _ p))                   = tidy1 v p

-- Everything else goes through unchanged...

tidy1 _ non_interesting_pat
  = return (idDsWrapper, non_interesting_pat)
\end{code} \noindent {\bf Previous @matchTwiddled@ stuff:} Now we get to the only interesting part; note: there are choices for translation [from Simon's notes]; translation~1: \begin{verbatim} deTwiddle [s,t] e \end{verbatim} returns \begin{verbatim} [ w = e, s = case w of [s,t] -> s t = case w of [s,t] -> t ] \end{verbatim} Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple evaluation of \tr{e}. An alternative translation (No.~2): \begin{verbatim} [ w = case e of [s,t] -> (s,t) s = case w of (s,t) -> s t = case w of (s,t) -> t ] \end{verbatim} %************************************************************************ %* * \subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing} %* * %************************************************************************ We might be able to optimise unmixing when confronted by only-one-constructor-possible, of which tuples are the most notable examples. Consider: \begin{verbatim} f (a,b,c) ... = ... f d ... (e:f) = ... f (g,h,i) ... = ... f j ... = ... \end{verbatim} This definition would normally be unmixed into four equation blocks, one per equation. But it could be unmixed into just one equation block, because if the one equation matches (on the first column), the others certainly will. You have to be careful, though; the example \begin{verbatim} f j ... = ... ------------------- f (a,b,c) ... = ... f d ... (e:f) = ... f (g,h,i) ... = ... \end{verbatim} {\em must} be broken into two blocks at the line shown; otherwise, you are forcing unnecessary evaluation. In any case, the top-left pattern always gives the cue. You could then unmix blocks into groups of... \begin{description} \item[all variables:] As it is now. \item[constructors or variables (mixed):] Need to make sure the right names get bound for the variable patterns. \item[literals or variables (mixed):] Presumably just a variant on the constructor case (as it is now). \end{description} %************************************************************************ %* * %* matchWrapper: a convenient way to call @match@ * %* * %************************************************************************ \subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@} Calls to @match@ often involve similar (non-trivial) work; that work is collected here, in @matchWrapper@. This function takes as arguments: \begin{itemize} \item Typchecked @Matches@ (of a function definition, or a case or lambda expression)---the main input; \item An error message to be inserted into any (runtime) pattern-matching failure messages. \end{itemize} As results, @matchWrapper@ produces: \begin{itemize} \item A list of variables (@Locals@) that the caller must ``promise'' to bind to appropriate values; and \item a @CoreExpr@, the desugared output (main result). \end{itemize} The main actions of @matchWrapper@ include: \begin{enumerate} \item Flatten the @[TypecheckedMatch]@ into a suitable list of @EquationInfo@s. \item Create as many new variables as there are patterns in a pattern-list (in any one of the @EquationInfo@s). \item Create a suitable ``if it fails'' expression---a call to @error@ using the error-string input; the {\em type} of this fail value can be found by examining one of the RHS expressions in one of the @EquationInfo@s. \item Call @match@ with all of this information! \end{enumerate} \begin{code}
matchWrapper :: HsMatchContext Name	-- For shadowing warning messages
	     -> MatchGroup Id		-- Matches being desugared
	     -> DsM ([Id], CoreExpr) 	-- Results
\end{code} There is one small problem with the Lambda Patterns, when somebody writes something similar to: \begin{verbatim} (\ (x:xs) -> ...) \end{verbatim} he/she don't want a warning about incomplete patterns, that is done with the flag @opt_WarnSimplePatterns@. This problem also appears in the: \begin{itemize} \item @do@ patterns, but if the @do@ can fail it creates another equation if the match can fail (see @DsExpr.doDo@ function) \item @let@ patterns, are treated by @matchSimply@ List Comprension Patterns, are treated by @matchSimply@ also \end{itemize} We can't call @matchSimply@ with Lambda patterns, due to the fact that lambda patterns can have more than one pattern, and match simply only accepts one pattern. JJQC 30-Nov-1997 \begin{code}
matchWrapper ctxt (MatchGroup matches match_ty)
  = ASSERT( notNull matches )
    do	{ eqns_info   <- mapM mk_eqn_info matches
	; new_vars    <- selectMatchVars arg_pats
	; result_expr <- matchEquations ctxt new_vars eqns_info rhs_ty
	; return (new_vars, result_expr) }
  where
    arg_pats    = map unLoc (hsLMatchPats (head matches))
    n_pats	= length arg_pats
    (_, rhs_ty) = splitFunTysN n_pats match_ty

    mk_eqn_info (L _ (Match pats _ grhss))
      = do { let upats = map unLoc pats
	   ; match_result <- dsGRHSs ctxt upats grhss rhs_ty
	   ; return (EqnInfo { eqn_pats = upats, eqn_rhs  = match_result}) }


matchEquations  :: HsMatchContext Name
		-> [Id]	-> [EquationInfo] -> Type
		-> DsM CoreExpr
matchEquations ctxt vars eqns_info rhs_ty
  = do	{ locn <- getSrcSpanDs
	; let   ds_ctxt   = DsMatchContext ctxt locn
		error_doc = matchContextErrString ctxt

	; match_result <- matchCheck ds_ctxt vars rhs_ty eqns_info

	; fail_expr <- mkErrorAppDs pAT_ERROR_ID rhs_ty error_doc
	; extractMatchResult match_result fail_expr }
\end{code} %************************************************************************ %* * \subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern} %* * %************************************************************************ @mkSimpleMatch@ is a wrapper for @match@ which deals with the situation where we want to match a single expression against a single pattern. It returns an expression. \begin{code}
matchSimply :: CoreExpr			-- Scrutinee
	    -> HsMatchContext Name	-- Match kind
	    -> LPat Id			-- Pattern it should match
	    -> CoreExpr			-- Return this if it matches
	    -> CoreExpr			-- Return this if it doesn't
	    -> DsM CoreExpr
-- Do not warn about incomplete patterns; see matchSinglePat comments
matchSimply scrut hs_ctx pat result_expr fail_expr = do
    let
      match_result = cantFailMatchResult result_expr
      rhs_ty       = exprType fail_expr
        -- Use exprType of fail_expr, because won't refine in the case of failure!
    match_result' <- matchSinglePat scrut hs_ctx pat rhs_ty match_result
    extractMatchResult match_result' fail_expr

matchSinglePat :: CoreExpr -> HsMatchContext Name -> LPat Id
	       -> Type -> MatchResult -> DsM MatchResult
-- Do not warn about incomplete patterns
-- Used for things like [ e | pat <- stuff ], where 
-- incomplete patterns are just fine
matchSinglePat (Var var) ctx (L _ pat) ty match_result 
  = do { locn <- getSrcSpanDs
       ; matchCheck (DsMatchContext ctx locn)
                    [var] ty  
                    [EqnInfo { eqn_pats = [pat], eqn_rhs  = match_result }] }

matchSinglePat scrut hs_ctx pat ty match_result
  = do { var <- selectSimpleMatchVarL pat
       ; match_result' <- matchSinglePat (Var var) hs_ctx pat ty match_result
       ; return (adjustMatchResult (bindNonRec var scrut) match_result') }
\end{code} %************************************************************************ %* * Pattern classification %* * %************************************************************************ \begin{code}
data PatGroup
  = PgAny		-- Immediate match: variables, wildcards, 
			--		    lazy patterns
  | PgCon DataCon	-- Constructor patterns (incl list, tuple)
  | PgLit Literal	-- Literal patterns
  | PgN   Literal	-- Overloaded literals
  | PgNpK Literal	-- n+k patterns
  | PgBang		-- Bang patterns
  | PgCo Type		-- Coercion patterns; the type is the type
			--	of the pattern *inside*
  | PgView (LHsExpr Id) -- view pattern (e -> p):
                        -- the LHsExpr is the expression e
           Type         -- the Type is the type of p (equivalently, the result type of e)

groupEquations :: [EquationInfo] -> [[(PatGroup, EquationInfo)]]
-- If the result is of form [g1, g2, g3], 
-- (a) all the (pg,eq) pairs in g1 have the same pg
-- (b) none of the gi are empty
-- The ordering of equations is unchanged
groupEquations eqns
  = runs same_gp [(patGroup (firstPat eqn), eqn) | eqn <- eqns]
  where
    same_gp :: (PatGroup,EquationInfo) -> (PatGroup,EquationInfo) -> Bool
    (pg1,_) `same_gp` (pg2,_) = pg1 `sameGroup` pg2

subGroup :: Ord a => [(a, EquationInfo)] -> [[EquationInfo]]
-- Input is a particular group.  The result sub-groups the 
-- equations by with particular constructor, literal etc they match.
-- Each sub-list in the result has the same PatGroup
-- See Note [Take care with pattern order]
subGroup group 
    = map reverse $ Map.elems $ foldl accumulate Map.empty group
  where
    accumulate pg_map (pg, eqn)
      = case Map.lookup pg pg_map of
          Just eqns -> Map.insert pg (eqn:eqns) pg_map
          Nothing   -> Map.insert pg [eqn]      pg_map

    -- pg_map :: Map a [EquationInfo]
    -- Equations seen so far in reverse order of appearance
\end{code} Note [Take care with pattern order] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the subGroup function we must be very careful about pattern re-ordering, Consider the patterns [ (True, Nothing), (False, x), (True, y) ] Then in bringing together the patterns for True, we must not swap the Nothing and y! \begin{code}
sameGroup :: PatGroup -> PatGroup -> Bool
-- Same group means that a single case expression 
-- or test will suffice to match both, *and* the order
-- of testing within the group is insignificant.
sameGroup PgAny      PgAny      = True
sameGroup PgBang     PgBang     = True
sameGroup (PgCon _)  (PgCon _)  = True		-- One case expression
sameGroup (PgLit _)  (PgLit _)  = True		-- One case expression
sameGroup (PgN l1)   (PgN l2)   = l1==l2	-- Order is significant
sameGroup (PgNpK l1) (PgNpK l2) = l1==l2	-- See Note [Grouping overloaded literal patterns]
sameGroup (PgCo	t1)  (PgCo t2)  = t1 `eqType` t2
	-- CoPats are in the same goup only if the type of the
	-- enclosed pattern is the same. The patterns outside the CoPat
	-- always have the same type, so this boils down to saying that
	-- the two coercions are identical.
sameGroup (PgView e1 t1) (PgView e2 t2) = viewLExprEq (e1,t1) (e2,t2) 
       -- ViewPats are in the same gorup iff the expressions
       -- are "equal"---conservatively, we use syntactic equality
sameGroup _          _          = False

-- An approximation of syntactic equality used for determining when view
-- exprs are in the same group.
-- This function can always safely return false;
-- but doing so will result in the application of the view function being repeated.
--
-- Currently: compare applications of literals and variables
--            and anything else that we can do without involving other
--            HsSyn types in the recursion
--
-- NB we can't assume that the two view expressions have the same type.  Consider
--   f (e1 -> True) = ...
--   f (e2 -> "hi") = ...
viewLExprEq :: (LHsExpr Id,Type) -> (LHsExpr Id,Type) -> Bool
viewLExprEq (e1,_) (e2,_) = lexp e1 e2
  where
    lexp :: LHsExpr Id -> LHsExpr Id -> Bool
    lexp e e' = exp (unLoc e) (unLoc e')

    ---------
    exp :: HsExpr Id -> HsExpr Id -> Bool
    -- real comparison is on HsExpr's
    -- strip parens 
    exp (HsPar (L _ e)) e'   = exp e e'
    exp e (HsPar (L _ e'))   = exp e e'
    -- because the expressions do not necessarily have the same type,
    -- we have to compare the wrappers
    exp (HsWrap h e) (HsWrap h' e') = wrap h h' && exp e e'
    exp (HsVar i) (HsVar i') =  i == i' 
    -- the instance for IPName derives using the id, so this works if the
    -- above does
    exp (HsIPVar i) (HsIPVar i') = i == i' 
    exp (HsOverLit l) (HsOverLit l') = 
        -- Overloaded lits are equal if they have the same type
        -- and the data is the same.
        -- this is coarser than comparing the SyntaxExpr's in l and l',
        -- which resolve the overloading (e.g., fromInteger 1),
        -- because these expressions get written as a bunch of different variables
        -- (presumably to improve sharing)
        eqType (overLitType l) (overLitType l') && l == l'
    exp (HsApp e1 e2) (HsApp e1' e2') = lexp e1 e1' && lexp e2 e2'
    -- the fixities have been straightened out by now, so it's safe
    -- to ignore them?
    exp (OpApp l o _ ri) (OpApp l' o' _ ri') = 
        lexp l l' && lexp o o' && lexp ri ri'
    exp (NegApp e n) (NegApp e' n') = lexp e e' && exp n n'
    exp (SectionL e1 e2) (SectionL e1' e2') = 
        lexp e1 e1' && lexp e2 e2'
    exp (SectionR e1 e2) (SectionR e1' e2') = 
        lexp e1 e1' && lexp e2 e2'
    exp (ExplicitTuple es1 _) (ExplicitTuple es2 _) =
        eq_list tup_arg es1 es2
    exp (HsIf _ e e1 e2) (HsIf _ e' e1' e2') =
        lexp e e' && lexp e1 e1' && lexp e2 e2'

    -- Enhancement: could implement equality for more expressions
    --   if it seems useful
    -- But no need for HsLit, ExplicitList, ExplicitTuple, 
    -- because they cannot be functions
    exp _ _  = False

    ---------
    tup_arg (Present e1) (Present e2) = lexp e1 e2
    tup_arg (Missing t1) (Missing t2) = eqType t1 t2
    tup_arg _ _ = False

    ---------
    wrap :: HsWrapper -> HsWrapper -> Bool
    -- Conservative, in that it demands that wrappers be
    -- syntactically identical and doesn't look under binders
    --
    -- Coarser notions of equality are possible
    -- (e.g., reassociating compositions,
    --        equating different ways of writing a coercion)
    wrap WpHole WpHole = True
    wrap (WpCompose w1 w2) (WpCompose w1' w2') = wrap w1 w1' && wrap w2 w2'
    wrap (WpCast co)       (WpCast co')        = co `eq_co` co'
    wrap (WpEvApp et1)     (WpEvApp et2)       = et1 `ev_term` et2
    wrap (WpTyApp t)       (WpTyApp t')        = eqType t t'
    -- Enhancement: could implement equality for more wrappers
    --   if it seems useful (lams and lets)
    wrap _ _ = False

    ---------
    ev_term :: EvTerm -> EvTerm -> Bool
    ev_term (EvId a)       (EvId b)       = a==b
    ev_term (EvCoercion a) (EvCoercion b) = a `eq_co` b
    ev_term _ _ = False	

    ---------
    eq_list :: (a->a->Bool) -> [a] -> [a] -> Bool
    eq_list _  []     []     = True
    eq_list _  []     (_:_)  = False
    eq_list _  (_:_)  []     = False
    eq_list eq (x:xs) (y:ys) = eq x y && eq_list eq xs ys

    ---------
    eq_co :: TcCoercion -> TcCoercion -> Bool 
    -- Just some simple cases
    eq_co (TcRefl t1)             (TcRefl t2)             = eqType t1 t2
    eq_co (TcCoVarCo v1) 	  (TcCoVarCo v2)          = v1==v2
    eq_co (TcSymCo co1)    	  (TcSymCo co2)           = co1 `eq_co` co2
    eq_co (TcTyConAppCo tc1 cos1) (TcTyConAppCo tc2 cos2) = tc1==tc2 && eq_list eq_co cos1 cos2
    eq_co _ _ = False

patGroup :: Pat Id -> PatGroup
patGroup (WildPat {})       	      = PgAny
patGroup (BangPat {})       	      = PgBang  
patGroup (ConPatOut { pat_con = dc }) = PgCon (unLoc dc)
patGroup (LitPat lit)		      = PgLit (hsLitKey lit)
patGroup (NPat olit mb_neg _)	      = PgN   (hsOverLitKey olit (isJust mb_neg))
patGroup (NPlusKPat _ olit _ _)	      = PgNpK (hsOverLitKey olit False)
patGroup (CoPat _ p _)		      = PgCo  (hsPatType p)	-- Type of innelexp pattern
patGroup (ViewPat expr p _)               = PgView expr (hsPatType (unLoc p))
patGroup pat = pprPanic "patGroup" (ppr pat)
\end{code} Note [Grouping overloaded literal patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ WATCH OUT! Consider f (n+1) = ... f (n+2) = ... f (n+1) = ... We can't group the first and third together, because the second may match the same thing as the first. Same goes for *overloaded* literal patterns f 1 True = ... f 2 False = ... f 1 False = ... If the first arg matches '1' but the second does not match 'True', we cannot jump to the third equation! Because the same argument might match '2'! Hence we don't regard 1 and 2, or (n+1) and (n+2), as part of the same group.