module Language.Haskell.TH.Lib where
import Language.Haskell.TH.Syntax
import Control.Monad( liftM, liftM2 )
import Data.Word( Word8 )
type InfoQ = Q Info
type PatQ = Q Pat
type FieldPatQ = Q FieldPat
type ExpQ = Q Exp
type DecQ = Q Dec
type DecsQ = Q [Dec]
type ConQ = Q Con
type TypeQ = Q Type
type TyLitQ = Q TyLit
type CxtQ = Q Cxt
type PredQ = Q Pred
type MatchQ = Q Match
type ClauseQ = Q Clause
type BodyQ = Q Body
type GuardQ = Q Guard
type StmtQ = Q Stmt
type RangeQ = Q Range
type StrictTypeQ = Q StrictType
type VarStrictTypeQ = Q VarStrictType
type FieldExpQ = Q FieldExp
type RuleBndrQ = Q RuleBndr
intPrimL :: Integer -> Lit
intPrimL = IntPrimL
wordPrimL :: Integer -> Lit
wordPrimL = WordPrimL
floatPrimL :: Rational -> Lit
floatPrimL = FloatPrimL
doublePrimL :: Rational -> Lit
doublePrimL = DoublePrimL
integerL :: Integer -> Lit
integerL = IntegerL
charL :: Char -> Lit
charL = CharL
stringL :: String -> Lit
stringL = StringL
stringPrimL :: [Word8] -> Lit
stringPrimL = StringPrimL
rationalL :: Rational -> Lit
rationalL = RationalL
litP :: Lit -> PatQ
litP l = return (LitP l)
varP :: Name -> PatQ
varP v = return (VarP v)
tupP :: [PatQ] -> PatQ
tupP ps = do { ps1 <- sequence ps; return (TupP ps1)}
unboxedTupP :: [PatQ] -> PatQ
unboxedTupP ps = do { ps1 <- sequence ps; return (UnboxedTupP ps1)}
conP :: Name -> [PatQ] -> PatQ
conP n ps = do ps' <- sequence ps
return (ConP n ps')
infixP :: PatQ -> Name -> PatQ -> PatQ
infixP p1 n p2 = do p1' <- p1
p2' <- p2
return (InfixP p1' n p2')
uInfixP :: PatQ -> Name -> PatQ -> PatQ
uInfixP p1 n p2 = do p1' <- p1
p2' <- p2
return (UInfixP p1' n p2')
parensP :: PatQ -> PatQ
parensP p = do p' <- p
return (ParensP p')
tildeP :: PatQ -> PatQ
tildeP p = do p' <- p
return (TildeP p')
bangP :: PatQ -> PatQ
bangP p = do p' <- p
return (BangP p')
asP :: Name -> PatQ -> PatQ
asP n p = do p' <- p
return (AsP n p')
wildP :: PatQ
wildP = return WildP
recP :: Name -> [FieldPatQ] -> PatQ
recP n fps = do fps' <- sequence fps
return (RecP n fps')
listP :: [PatQ] -> PatQ
listP ps = do ps' <- sequence ps
return (ListP ps')
sigP :: PatQ -> TypeQ -> PatQ
sigP p t = do p' <- p
t' <- t
return (SigP p' t')
viewP :: ExpQ -> PatQ -> PatQ
viewP e p = do e' <- e
p' <- p
return (ViewP e' p')
fieldPat :: Name -> PatQ -> FieldPatQ
fieldPat n p = do p' <- p
return (n, p')
bindS :: PatQ -> ExpQ -> StmtQ
bindS p e = liftM2 BindS p e
letS :: [DecQ] -> StmtQ
letS ds = do { ds1 <- sequence ds; return (LetS ds1) }
noBindS :: ExpQ -> StmtQ
noBindS e = do { e1 <- e; return (NoBindS e1) }
parS :: [[StmtQ]] -> StmtQ
parS _ = fail "No parallel comprehensions yet"
fromR :: ExpQ -> RangeQ
fromR x = do { a <- x; return (FromR a) }
fromThenR :: ExpQ -> ExpQ -> RangeQ
fromThenR x y = do { a <- x; b <- y; return (FromThenR a b) }
fromToR :: ExpQ -> ExpQ -> RangeQ
fromToR x y = do { a <- x; b <- y; return (FromToR a b) }
fromThenToR :: ExpQ -> ExpQ -> ExpQ -> RangeQ
fromThenToR x y z = do { a <- x; b <- y; c <- z;
return (FromThenToR a b c) }
normalB :: ExpQ -> BodyQ
normalB e = do { e1 <- e; return (NormalB e1) }
guardedB :: [Q (Guard,Exp)] -> BodyQ
guardedB ges = do { ges' <- sequence ges; return (GuardedB ges') }
normalG :: ExpQ -> GuardQ
normalG e = do { e1 <- e; return (NormalG e1) }
normalGE :: ExpQ -> ExpQ -> Q (Guard, Exp)
normalGE g e = do { g1 <- g; e1 <- e; return (NormalG g1, e1) }
patG :: [StmtQ] -> GuardQ
patG ss = do { ss' <- sequence ss; return (PatG ss') }
patGE :: [StmtQ] -> ExpQ -> Q (Guard, Exp)
patGE ss e = do { ss' <- sequence ss;
e' <- e;
return (PatG ss', e') }
match :: PatQ -> BodyQ -> [DecQ] -> MatchQ
match p rhs ds = do { p' <- p;
r' <- rhs;
ds' <- sequence ds;
return (Match p' r' ds') }
clause :: [PatQ] -> BodyQ -> [DecQ] -> ClauseQ
clause ps r ds = do { ps' <- sequence ps;
r' <- r;
ds' <- sequence ds;
return (Clause ps' r' ds') }
dyn :: String -> Q Exp
dyn s = return (VarE (mkName s))
global :: Name -> ExpQ
global s = return (VarE s)
varE :: Name -> ExpQ
varE s = return (VarE s)
conE :: Name -> ExpQ
conE s = return (ConE s)
litE :: Lit -> ExpQ
litE c = return (LitE c)
appE :: ExpQ -> ExpQ -> ExpQ
appE x y = do { a <- x; b <- y; return (AppE a b)}
parensE :: ExpQ -> ExpQ
parensE x = do { x' <- x; return (ParensE x') }
uInfixE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
uInfixE x s y = do { x' <- x; s' <- s; y' <- y;
return (UInfixE x' s' y') }
infixE :: Maybe ExpQ -> ExpQ -> Maybe ExpQ -> ExpQ
infixE (Just x) s (Just y) = do { a <- x; s' <- s; b <- y;
return (InfixE (Just a) s' (Just b))}
infixE Nothing s (Just y) = do { s' <- s; b <- y;
return (InfixE Nothing s' (Just b))}
infixE (Just x) s Nothing = do { a <- x; s' <- s;
return (InfixE (Just a) s' Nothing)}
infixE Nothing s Nothing = do { s' <- s; return (InfixE Nothing s' Nothing) }
infixApp :: ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp x y z = infixE (Just x) y (Just z)
sectionL :: ExpQ -> ExpQ -> ExpQ
sectionL x y = infixE (Just x) y Nothing
sectionR :: ExpQ -> ExpQ -> ExpQ
sectionR x y = infixE Nothing x (Just y)
lamE :: [PatQ] -> ExpQ -> ExpQ
lamE ps e = do ps' <- sequence ps
e' <- e
return (LamE ps' e')
lam1E :: PatQ -> ExpQ -> ExpQ
lam1E p e = lamE [p] e
lamCaseE :: [MatchQ] -> ExpQ
lamCaseE ms = sequence ms >>= return . LamCaseE
tupE :: [ExpQ] -> ExpQ
tupE es = do { es1 <- sequence es; return (TupE es1)}
unboxedTupE :: [ExpQ] -> ExpQ
unboxedTupE es = do { es1 <- sequence es; return (UnboxedTupE es1)}
condE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
condE x y z = do { a <- x; b <- y; c <- z; return (CondE a b c)}
multiIfE :: [Q (Guard, Exp)] -> ExpQ
multiIfE alts = sequence alts >>= return . MultiIfE
letE :: [DecQ] -> ExpQ -> ExpQ
letE ds e = do { ds2 <- sequence ds; e2 <- e; return (LetE ds2 e2) }
caseE :: ExpQ -> [MatchQ] -> ExpQ
caseE e ms = do { e1 <- e; ms1 <- sequence ms; return (CaseE e1 ms1) }
doE :: [StmtQ] -> ExpQ
doE ss = do { ss1 <- sequence ss; return (DoE ss1) }
compE :: [StmtQ] -> ExpQ
compE ss = do { ss1 <- sequence ss; return (CompE ss1) }
arithSeqE :: RangeQ -> ExpQ
arithSeqE r = do { r' <- r; return (ArithSeqE r') }
listE :: [ExpQ] -> ExpQ
listE es = do { es1 <- sequence es; return (ListE es1) }
sigE :: ExpQ -> TypeQ -> ExpQ
sigE e t = do { e1 <- e; t1 <- t; return (SigE e1 t1) }
recConE :: Name -> [Q (Name,Exp)] -> ExpQ
recConE c fs = do { flds <- sequence fs; return (RecConE c flds) }
recUpdE :: ExpQ -> [Q (Name,Exp)] -> ExpQ
recUpdE e fs = do { e1 <- e; flds <- sequence fs; return (RecUpdE e1 flds) }
stringE :: String -> ExpQ
stringE = litE . stringL
fieldExp :: Name -> ExpQ -> Q (Name, Exp)
fieldExp s e = do { e' <- e; return (s,e') }
fromE :: ExpQ -> ExpQ
fromE x = do { a <- x; return (ArithSeqE (FromR a)) }
fromThenE :: ExpQ -> ExpQ -> ExpQ
fromThenE x y = do { a <- x; b <- y; return (ArithSeqE (FromThenR a b)) }
fromToE :: ExpQ -> ExpQ -> ExpQ
fromToE x y = do { a <- x; b <- y; return (ArithSeqE (FromToR a b)) }
fromThenToE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
fromThenToE x y z = do { a <- x; b <- y; c <- z;
return (ArithSeqE (FromThenToR a b c)) }
valD :: PatQ -> BodyQ -> [DecQ] -> DecQ
valD p b ds =
do { p' <- p
; ds' <- sequence ds
; b' <- b
; return (ValD p' b' ds')
}
funD :: Name -> [ClauseQ] -> DecQ
funD nm cs =
do { cs1 <- sequence cs
; return (FunD nm cs1)
}
tySynD :: Name -> [TyVarBndr] -> TypeQ -> DecQ
tySynD tc tvs rhs = do { rhs1 <- rhs; return (TySynD tc tvs rhs1) }
dataD :: CxtQ -> Name -> [TyVarBndr] -> [ConQ] -> [Name] -> DecQ
dataD ctxt tc tvs cons derivs =
do
ctxt1 <- ctxt
cons1 <- sequence cons
return (DataD ctxt1 tc tvs cons1 derivs)
newtypeD :: CxtQ -> Name -> [TyVarBndr] -> ConQ -> [Name] -> DecQ
newtypeD ctxt tc tvs con derivs =
do
ctxt1 <- ctxt
con1 <- con
return (NewtypeD ctxt1 tc tvs con1 derivs)
classD :: CxtQ -> Name -> [TyVarBndr] -> [FunDep] -> [DecQ] -> DecQ
classD ctxt cls tvs fds decs =
do
decs1 <- sequence decs
ctxt1 <- ctxt
return $ ClassD ctxt1 cls tvs fds decs1
instanceD :: CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceD ctxt ty decs =
do
ctxt1 <- ctxt
decs1 <- sequence decs
ty1 <- ty
return $ InstanceD ctxt1 ty1 decs1
sigD :: Name -> TypeQ -> DecQ
sigD fun ty = liftM (SigD fun) $ ty
forImpD :: Callconv -> Safety -> String -> Name -> TypeQ -> DecQ
forImpD cc s str n ty
= do ty' <- ty
return $ ForeignD (ImportF cc s str n ty')
infixLD :: Int -> Name -> DecQ
infixLD prec nm = return (InfixD (Fixity prec InfixL) nm)
infixRD :: Int -> Name -> DecQ
infixRD prec nm = return (InfixD (Fixity prec InfixR) nm)
infixND :: Int -> Name -> DecQ
infixND prec nm = return (InfixD (Fixity prec InfixN) nm)
pragInlD :: Name -> Inline -> RuleMatch -> Phases -> DecQ
pragInlD name inline rm phases
= return $ PragmaD $ InlineP name inline rm phases
pragSpecD :: Name -> TypeQ -> Phases -> DecQ
pragSpecD n ty phases
= do
ty1 <- ty
return $ PragmaD $ SpecialiseP n ty1 Nothing phases
pragSpecInlD :: Name -> TypeQ -> Inline -> Phases -> DecQ
pragSpecInlD n ty inline phases
= do
ty1 <- ty
return $ PragmaD $ SpecialiseP n ty1 (Just inline) phases
pragSpecInstD :: TypeQ -> DecQ
pragSpecInstD ty
= do
ty1 <- ty
return $ PragmaD $ SpecialiseInstP ty1
pragRuleD :: String -> [RuleBndrQ] -> ExpQ -> ExpQ -> Phases -> DecQ
pragRuleD n bndrs lhs rhs phases
= do
bndrs1 <- sequence bndrs
lhs1 <- lhs
rhs1 <- rhs
return $ PragmaD $ RuleP n bndrs1 lhs1 rhs1 phases
familyNoKindD :: FamFlavour -> Name -> [TyVarBndr] -> DecQ
familyNoKindD flav tc tvs = return $ FamilyD flav tc tvs Nothing
familyKindD :: FamFlavour -> Name -> [TyVarBndr] -> Kind -> DecQ
familyKindD flav tc tvs k = return $ FamilyD flav tc tvs (Just k)
dataInstD :: CxtQ -> Name -> [TypeQ] -> [ConQ] -> [Name] -> DecQ
dataInstD ctxt tc tys cons derivs =
do
ctxt1 <- ctxt
tys1 <- sequence tys
cons1 <- sequence cons
return (DataInstD ctxt1 tc tys1 cons1 derivs)
newtypeInstD :: CxtQ -> Name -> [TypeQ] -> ConQ -> [Name] -> DecQ
newtypeInstD ctxt tc tys con derivs =
do
ctxt1 <- ctxt
tys1 <- sequence tys
con1 <- con
return (NewtypeInstD ctxt1 tc tys1 con1 derivs)
tySynInstD :: Name -> [TypeQ] -> TypeQ -> DecQ
tySynInstD tc tys rhs =
do
tys1 <- sequence tys
rhs1 <- rhs
return (TySynInstD tc tys1 rhs1)
cxt :: [PredQ] -> CxtQ
cxt = sequence
classP :: Name -> [TypeQ] -> PredQ
classP cla tys
= do
tys1 <- sequence tys
return (ClassP cla tys1)
equalP :: TypeQ -> TypeQ -> PredQ
equalP tleft tright
= do
tleft1 <- tleft
tright1 <- tright
return (EqualP tleft1 tright1)
normalC :: Name -> [StrictTypeQ] -> ConQ
normalC con strtys = liftM (NormalC con) $ sequence strtys
recC :: Name -> [VarStrictTypeQ] -> ConQ
recC con varstrtys = liftM (RecC con) $ sequence varstrtys
infixC :: Q (Strict, Type) -> Name -> Q (Strict, Type) -> ConQ
infixC st1 con st2 = do st1' <- st1
st2' <- st2
return $ InfixC st1' con st2'
forallC :: [TyVarBndr] -> CxtQ -> ConQ -> ConQ
forallC ns ctxt con = liftM2 (ForallC ns) ctxt con
forallT :: [TyVarBndr] -> CxtQ -> TypeQ -> TypeQ
forallT tvars ctxt ty = do
ctxt1 <- ctxt
ty1 <- ty
return $ ForallT tvars ctxt1 ty1
varT :: Name -> TypeQ
varT = return . VarT
conT :: Name -> TypeQ
conT = return . ConT
appT :: TypeQ -> TypeQ -> TypeQ
appT t1 t2 = do
t1' <- t1
t2' <- t2
return $ AppT t1' t2'
arrowT :: TypeQ
arrowT = return ArrowT
listT :: TypeQ
listT = return ListT
litT :: TyLitQ -> TypeQ
litT l = fmap LitT l
tupleT :: Int -> TypeQ
tupleT i = return (TupleT i)
unboxedTupleT :: Int -> TypeQ
unboxedTupleT i = return (UnboxedTupleT i)
sigT :: TypeQ -> Kind -> TypeQ
sigT t k
= do
t' <- t
return $ SigT t' k
promotedT :: Name -> TypeQ
promotedT = return . PromotedT
promotedTupleT :: Int -> TypeQ
promotedTupleT i = return (PromotedTupleT i)
promotedNilT :: TypeQ
promotedNilT = return PromotedNilT
promotedConsT :: TypeQ
promotedConsT = return PromotedConsT
isStrict, notStrict, unpacked :: Q Strict
isStrict = return $ IsStrict
notStrict = return $ NotStrict
unpacked = return Unpacked
strictType :: Q Strict -> TypeQ -> StrictTypeQ
strictType = liftM2 (,)
varStrictType :: Name -> StrictTypeQ -> VarStrictTypeQ
varStrictType v st = do (s, t) <- st
return (v, s, t)
numTyLit :: Integer -> TyLitQ
numTyLit n = if n >= 0 then return (NumTyLit n)
else fail ("Negative type-level number: " ++ show n)
strTyLit :: String -> TyLitQ
strTyLit s = return (StrTyLit s)
plainTV :: Name -> TyVarBndr
plainTV = PlainTV
kindedTV :: Name -> Kind -> TyVarBndr
kindedTV = KindedTV
varK :: Name -> Kind
varK = VarT
conK :: Name -> Kind
conK = ConT
tupleK :: Int -> Kind
tupleK = TupleT
arrowK :: Kind
arrowK = ArrowT
listK :: Kind
listK = ListT
appK :: Kind -> Kind -> Kind
appK = AppT
starK :: Kind
starK = StarT
constraintK :: Kind
constraintK = ConstraintT
cCall, stdCall :: Callconv
cCall = CCall
stdCall = StdCall
unsafe, safe, interruptible :: Safety
unsafe = Unsafe
safe = Safe
interruptible = Interruptible
funDep :: [Name] -> [Name] -> FunDep
funDep = FunDep
typeFam, dataFam :: FamFlavour
typeFam = TypeFam
dataFam = DataFam
ruleVar :: Name -> RuleBndrQ
ruleVar = return . RuleVar
typedRuleVar :: Name -> TypeQ -> RuleBndrQ
typedRuleVar n ty = ty >>= return . TypedRuleVar n
appsE :: [ExpQ] -> ExpQ
appsE [] = error "appsE []"
appsE [x] = x
appsE (x:y:zs) = appsE ( (appE x y) : zs )