%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-2006
%
\section[RnEnv]{Environment manipulation for the renamer monad}
\begin{code}
module RnEnv (
newTopSrcBinder,
lookupLocatedTopBndrRn, lookupTopBndrRn,
lookupLocatedOccRn, lookupOccRn, lookupOccRn_maybe,
lookupLocalOccRn_maybe,
lookupLocalOccThLvl_maybe,
lookupTypeOccRn, lookupKindOccRn,
lookupGlobalOccRn, lookupGlobalOccRn_maybe,
reportUnboundName,
HsSigCtxt(..), lookupLocalTcNames, lookupSigOccRn,
lookupFixityRn, lookupTyFixityRn,
lookupInstDeclBndr, lookupSubBndrOcc, lookupFamInstName,
greRdrName,
lookupSubBndrGREs, lookupConstructorFields,
lookupSyntaxName, lookupSyntaxNames, lookupIfThenElse,
lookupGreRn, lookupGreRn_maybe,
lookupGreLocalRn_maybe,
getLookupOccRn, addUsedRdrNames,
newLocalBndrRn, newLocalBndrsRn,
bindLocalNames, bindLocalNamesFV,
MiniFixityEnv,
addLocalFixities,
bindLocatedLocalsFV, bindLocatedLocalsRn,
extendTyVarEnvFVRn,
checkDupRdrNames, checkShadowedRdrNames,
checkDupNames, checkDupAndShadowedNames, checkTupSize,
addFvRn, mapFvRn, mapMaybeFvRn, mapFvRnCPS,
warnUnusedMatches,
warnUnusedTopBinds, warnUnusedLocalBinds,
dataTcOccs, kindSigErr, perhapsForallMsg,
HsDocContext(..), docOfHsDocContext,
FastStringEnv, emptyFsEnv, lookupFsEnv, extendFsEnv, mkFsEnv
) where
#include "HsVersions.h"
import LoadIface ( loadInterfaceForName, loadSrcInterface_maybe )
import IfaceEnv
import HsSyn
import RdrName
import HscTypes
import TcEnv ( tcLookupDataCon, tcLookupField, isBrackStage )
import TcRnMonad
import Id ( isRecordSelector )
import Name
import NameSet
import NameEnv
import Avail
import Module
import UniqFM
import ConLike
import DataCon ( dataConFieldLabels, dataConTyCon )
import TyCon ( isTupleTyCon, tyConArity )
import PrelNames ( mkUnboundName, isUnboundName, rOOT_MAIN, forall_tv_RDR )
import ErrUtils ( MsgDoc )
import BasicTypes ( Fixity(..), FixityDirection(..), minPrecedence, defaultFixity )
import SrcLoc
import Outputable
import Util
import Maybes
import BasicTypes ( TopLevelFlag(..) )
import ListSetOps ( removeDups )
import DynFlags
import FastString
import Control.Monad
import Data.List
import qualified Data.Set as Set
import Constants ( mAX_TUPLE_SIZE )
\end{code}
%*********************************************************
%* *
Source-code binders
%* *
%*********************************************************
\begin{code}
newTopSrcBinder :: Located RdrName -> RnM Name
newTopSrcBinder (L loc rdr_name)
| Just name <- isExact_maybe rdr_name
=
if isExternalName name then
do { this_mod <- getModule
; unless (this_mod == nameModule name)
(addErrAt loc (badOrigBinding rdr_name))
; return name }
else
do { let occ = nameOccName name
; occ `seq` return ()
; this_mod <- getModule
; updNameCache $ \ ns ->
let name' = mkExternalName (nameUnique name) this_mod occ loc
ns' = ns { nsNames = extendNameCache (nsNames ns) this_mod occ name' }
in (ns', name') }
| Just (rdr_mod, rdr_occ) <- isOrig_maybe rdr_name
= do { this_mod <- getModule
; unless (rdr_mod == this_mod || rdr_mod == rOOT_MAIN)
(addErrAt loc (badOrigBinding rdr_name))
; newGlobalBinder rdr_mod rdr_occ loc }
| otherwise
= do { unless (not (isQual rdr_name))
(addErrAt loc (badQualBndrErr rdr_name))
; stage <- getStage
; if isBrackStage stage then
do { uniq <- newUnique
; return (mkInternalName uniq (rdrNameOcc rdr_name) loc) }
else
do { this_mod <- getModule
; newGlobalBinder this_mod (rdrNameOcc rdr_name) loc } }
\end{code}
%*********************************************************
%* *
Source code occurrences
%* *
%*********************************************************
Looking up a name in the RnEnv.
Note [Type and class operator definitions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to reject all of these unless we have -XTypeOperators (Trac #3265)
data a :*: b = ...
class a :*: b where ...
data (:*:) a b = ....
class (:*:) a b where ...
The latter two mean that we are not just looking for a
*syntactically-infix* declaration, but one that uses an operator
OccName. We use OccName.isSymOcc to detect that case, which isn't
terribly efficient, but there seems to be no better way.
\begin{code}
lookupTopBndrRn :: RdrName -> RnM Name
lookupTopBndrRn n = do nopt <- lookupTopBndrRn_maybe n
case nopt of
Just n' -> return n'
Nothing -> do traceRn $ text "lookupTopBndrRn"
unboundName WL_LocalTop n
lookupLocatedTopBndrRn :: Located RdrName -> RnM (Located Name)
lookupLocatedTopBndrRn = wrapLocM lookupTopBndrRn
lookupTopBndrRn_maybe :: RdrName -> RnM (Maybe Name)
lookupTopBndrRn_maybe rdr_name
| Just name <- isExact_maybe rdr_name
= do { name' <- lookupExactOcc name; return (Just name') }
| Just (rdr_mod, rdr_occ) <- isOrig_maybe rdr_name
= do { loc <- getSrcSpanM
; n <- newGlobalBinder rdr_mod rdr_occ loc
; return (Just n)}
| otherwise
= do {
let occ = rdrNameOcc rdr_name
; when (isTcOcc occ && isSymOcc occ)
(do { op_ok <- xoptM Opt_TypeOperators
; unless op_ok (addErr (opDeclErr rdr_name)) })
; mb_gre <- lookupGreLocalRn_maybe rdr_name
; case mb_gre of
Nothing -> return Nothing
Just gre -> return (Just $ gre_name gre) }
lookupExactOcc :: Name -> RnM Name
lookupExactOcc name
| Just thing <- wiredInNameTyThing_maybe name
, Just tycon <- case thing of
ATyCon tc -> Just tc
AConLike (RealDataCon dc) -> Just (dataConTyCon dc)
_ -> Nothing
, isTupleTyCon tycon
= do { checkTupSize (tyConArity tycon)
; return name }
| isExternalName name
= return name
| otherwise
= do { env <- getGlobalRdrEnv
; let
main_occ = nameOccName name
demoted_occs = case demoteOccName main_occ of
Just occ -> [occ]
Nothing -> []
gres = [ gre | occ <- main_occ : demoted_occs
, gre <- lookupGlobalRdrEnv env occ
, gre_name gre == name ]
; case gres of
[] ->
do { lcl_env <- getLocalRdrEnv
; unless (name `inLocalRdrEnvScope` lcl_env) $
#ifdef GHCI
do { th_topnames_var <- fmap tcg_th_topnames getGblEnv
; th_topnames <- readTcRef th_topnames_var
; unless (name `elemNameSet` th_topnames)
(addErr exact_nm_err)
}
#else /* !GHCI */
addErr exact_nm_err
#endif /* !GHCI */
; return name
}
[gre] -> return (gre_name gre)
_ -> pprPanic "lookupExactOcc" (ppr name $$ ppr gres) }
where
exact_nm_err = hang (ptext (sLit "The exact Name") <+> quotes (ppr name) <+> ptext (sLit "is not in scope"))
2 (vcat [ ptext (sLit "Probable cause: you used a unique Template Haskell name (NameU), ")
, ptext (sLit "perhaps via newName, but did not bind it")
, ptext (sLit "If that's it, then -ddump-splices might be useful") ])
lookupInstDeclBndr :: Name -> SDoc -> RdrName -> RnM Name
lookupInstDeclBndr cls what rdr
= do { when (isQual rdr)
(addErr (badQualBndrErr rdr))
; lookupSubBndrOcc False
(ParentIs cls) doc rdr }
where
doc = what <+> ptext (sLit "of class") <+> quotes (ppr cls)
lookupFamInstName :: Maybe Name -> Located RdrName -> RnM (Located Name)
lookupFamInstName (Just cls) tc_rdr
= wrapLocM (lookupInstDeclBndr cls (ptext (sLit "associated type"))) tc_rdr
lookupFamInstName Nothing tc_rdr
= lookupLocatedOccRn tc_rdr
lookupConstructorFields :: Name -> RnM [Name]
lookupConstructorFields con_name
= do { this_mod <- getModule
; if nameIsLocalOrFrom this_mod con_name then
do { RecFields field_env _ <- getRecFieldEnv
; return (lookupNameEnv field_env con_name `orElse` []) }
else
do { con <- tcLookupDataCon con_name
; return (dataConFieldLabels con) } }
lookupSubBndrOcc :: Bool
-> Parent
-> SDoc -> RdrName
-> RnM Name
lookupSubBndrOcc warnIfDeprec parent doc rdr_name
| Just n <- isExact_maybe rdr_name
= lookupExactOcc n
| Just (rdr_mod, rdr_occ) <- isOrig_maybe rdr_name
= lookupOrig rdr_mod rdr_occ
| otherwise
= do {
env <- getGlobalRdrEnv
; case lookupSubBndrGREs env parent rdr_name of
[gre] -> do { addUsedRdrName warnIfDeprec gre (used_rdr_name gre)
; return (gre_name gre) }
[] -> do { addErr (unknownSubordinateErr doc rdr_name)
; return (mkUnboundName rdr_name) }
gres -> do { addNameClashErrRn rdr_name gres
; return (gre_name (head gres)) } }
where
used_rdr_name gre
| isQual rdr_name = rdr_name
| otherwise = greRdrName gre
greRdrName :: GlobalRdrElt -> RdrName
greRdrName gre
= case gre_prov gre of
LocalDef -> unqual_rdr
Imported is -> used_rdr_name_from_is is
where
occ = nameOccName (gre_name gre)
unqual_rdr = mkRdrUnqual occ
used_rdr_name_from_is imp_specs
| not (all (is_qual . is_decl) imp_specs)
= unqual_rdr
| otherwise
=
ASSERT( not (null imp_specs) )
mkRdrQual (is_as (is_decl (head imp_specs))) occ
lookupSubBndrGREs :: GlobalRdrEnv -> Parent -> RdrName -> [GlobalRdrElt]
lookupSubBndrGREs env parent rdr_name
= case parent of
NoParent -> pickGREs rdr_name gres
ParentIs p
| isUnqual rdr_name -> filter (parent_is p) gres
| otherwise -> filter (parent_is p) (pickGREs rdr_name gres)
where
gres = lookupGlobalRdrEnv env (rdrNameOcc rdr_name)
parent_is p (GRE { gre_par = ParentIs p' }) = p == p'
parent_is _ _ = False
\end{code}
Note [Family instance binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data family F a
data instance F T = X1 | X2
The 'data instance' decl has an *occurrence* of F (and T), and *binds*
X1 and X2. (This is unlike a normal data type declaration which would
bind F too.) So we want an AvailTC F [X1,X2].
Now consider a similar pair:
class C a where
data G a
instance C S where
data G S = Y1 | Y2
The 'data G S' *binds* Y1 and Y2, and has an *occurrence* of G.
But there is a small complication: in an instance decl, we don't use
qualified names on the LHS; instead we use the class to disambiguate.
Thus:
module M where
import Blib( G )
class C a where
data G a
instance C S where
data G S = Y1 | Y2
Even though there are two G's in scope (M.G and Blib.G), the occurrence
of 'G' in the 'instance C S' decl is unambiguous, because C has only
one associated type called G. This is exactly what happens for methods,
and it is only consistent to do the same thing for types. That's the
role of the function lookupTcdName; the (Maybe Name) give the class of
the encloseing instance decl, if any.
Note [Looking up Exact RdrNames]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Exact RdrNames are generated by Template Haskell. See Note [Binders
in Template Haskell] in Convert.
For data types and classes have Exact system Names in the binding
positions for constructors, TyCons etc. For example
[d| data T = MkT Int |]
when we splice in and Convert to HsSyn RdrName, we'll get
data (Exact (system Name "T")) = (Exact (system Name "MkT")) ...
These System names are generated by Convert.thRdrName
But, constructors and the like need External Names, not System Names!
So we do the following
* In RnEnv.newGlobalBinder we spot Exact RdrNames that wrap a
non-External Name, and make an External name for it. This is
the name that goes in the GlobalRdrEnv
* When looking up an occurrence of an Exact name, done in
RnEnv.lookupExactOcc, we find the Name with the right unique in the
GlobalRdrEnv, and use the one from the envt -- it will be an
External Name in the case of the data type/constructor above.
* Exact names are also use for purely local binders generated
by TH, such as \x_33. x_33
Both binder and occurrence are Exact RdrNames. The occurrence
gets looked up in the LocalRdrEnv by RnEnv.lookupOccRn, and
misses, because lookupLocalRdrEnv always returns Nothing for
an Exact Name. Now we fall through to lookupExactOcc, which
will find the Name is not in the GlobalRdrEnv, so we just use
the Exact supplied Name.
Note [Splicing Exact names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the splice $(do { x <- newName "x"; return (VarE x) })
This will generate a (HsExpr RdrName) term that mentions the
Exact RdrName "x_56" (or whatever), but does not bind it. So
when looking such Exact names we want to check that it's in scope,
otherwise the type checker will get confused. To do this we need to
keep track of all the Names in scope, and the LocalRdrEnv does just that;
we consult it with RdrName.inLocalRdrEnvScope.
There is another wrinkle. With TH and -XDataKinds, consider
$( [d| data Nat = Zero
data T = MkT (Proxy 'Zero) |] )
After splicing, but before renaming we get this:
data Nat_77{tc} = Zero_78{d}
data T_79{tc} = MkT_80{d} (Proxy 'Zero_78{tc}) |] )
THe occurrence of 'Zero in the data type for T has the right unique,
but it has a TcClsName name-space in its OccName. (This is set by
the ctxt_ns argument of Convert.thRdrName.) When we check that is
in scope in the GlobalRdrEnv, we need to look up the DataName namespace
too. (An alternative would be to make the GlobalRdrEnv also have
a Name -> GRE mapping.)
Note [Usage for sub-bndrs]
~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have this
import qualified M( C( f ) )
instance M.C T where
f x = x
then is the qualified import M.f used? Obviously yes.
But the RdrName used in the instance decl is unqualified. In effect,
we fill in the qualification by looking for f's whose class is M.C
But when adding to the UsedRdrNames we must make that qualification
explicit (saying "used M.f"), otherwise we get "Redundant import of M.f".
So we make up a suitable (fake) RdrName. But be careful
import qualifed M
import M( C(f) )
instance C T where
f x = x
Here we want to record a use of 'f', not of 'M.f', otherwise
we'll miss the fact that the qualified import is redundant.
--------------------------------------------------
-- Occurrences
--------------------------------------------------
\begin{code}
getLookupOccRn :: RnM (Name -> Maybe Name)
getLookupOccRn
= do local_env <- getLocalRdrEnv
return (lookupLocalRdrOcc local_env . nameOccName)
lookupLocatedOccRn :: Located RdrName -> RnM (Located Name)
lookupLocatedOccRn = wrapLocM lookupOccRn
lookupLocalOccRn_maybe :: RdrName -> RnM (Maybe Name)
lookupLocalOccRn_maybe rdr_name
= do { local_env <- getLocalRdrEnv
; return (lookupLocalRdrEnv local_env rdr_name) }
lookupLocalOccThLvl_maybe :: Name -> RnM (Maybe (TopLevelFlag, ThLevel))
lookupLocalOccThLvl_maybe name
= do { lcl_env <- getLclEnv
; return (lookupNameEnv (tcl_th_bndrs lcl_env) name) }
lookupOccRn :: RdrName -> RnM Name
lookupOccRn rdr_name
= do { mb_name <- lookupOccRn_maybe rdr_name
; case mb_name of
Just name -> return name
Nothing -> reportUnboundName rdr_name }
lookupKindOccRn :: RdrName -> RnM Name
lookupKindOccRn rdr_name
= do { mb_name <- lookupOccRn_maybe rdr_name
; case mb_name of
Just name -> return name
Nothing -> reportUnboundName rdr_name }
lookupTypeOccRn :: RdrName -> RnM Name
lookupTypeOccRn rdr_name
= do { mb_name <- lookupOccRn_maybe rdr_name
; case mb_name of {
Just name -> return name ;
Nothing -> lookup_demoted rdr_name } }
lookup_demoted :: RdrName -> RnM Name
lookup_demoted rdr_name
| Just demoted_rdr <- demoteRdrName rdr_name
= do { data_kinds <- xoptM Opt_DataKinds
; mb_demoted_name <- lookupOccRn_maybe demoted_rdr
; case mb_demoted_name of
Nothing -> reportUnboundName rdr_name
Just demoted_name
| data_kinds -> return demoted_name
| otherwise -> unboundNameX WL_Any rdr_name suggest_dk }
| otherwise
= reportUnboundName rdr_name
where
suggest_dk = ptext (sLit "A data constructor of that name is in scope; did you mean DataKinds?")
\end{code}
Note [Demotion]
~~~~~~~~~~~~~~~
When the user writes:
data Nat = Zero | Succ Nat
foo :: f Zero -> Int
'Zero' in the type signature of 'foo' is parsed as:
HsTyVar ("Zero", TcClsName)
When the renamer hits this occurrence of 'Zero' it's going to realise
that it's not in scope. But because it is renaming a type, it knows
that 'Zero' might be a promoted data constructor, so it will demote
its namespace to DataName and do a second lookup.
The final result (after the renamer) will be:
HsTyVar ("Zero", DataName)
\begin{code}
lookupOccRn_maybe :: RdrName -> RnM (Maybe Name)
lookupOccRn_maybe rdr_name
= do { local_env <- getLocalRdrEnv
; case lookupLocalRdrEnv local_env rdr_name of {
Just name -> return (Just name) ;
Nothing -> do
{ mb_name <- lookupGlobalOccRn_maybe rdr_name
; case mb_name of {
Just name -> return (Just name) ;
Nothing -> do
{ dflags <- getDynFlags
; is_ghci <- getIsGHCi
; lookupQualifiedNameGHCi dflags is_ghci rdr_name } } } } }
lookupGlobalOccRn :: RdrName -> RnM Name
lookupGlobalOccRn rdr_name
= do { mb_name <- lookupGlobalOccRn_maybe rdr_name
; case mb_name of
Just n -> return n
Nothing -> do { traceRn (text "lookupGlobalOccRn" <+> ppr rdr_name)
; unboundName WL_Global rdr_name } }
lookupGlobalOccRn_maybe :: RdrName -> RnM (Maybe Name)
lookupGlobalOccRn_maybe rdr_name
| Just n <- isExact_maybe rdr_name
= do { n' <- lookupExactOcc n; return (Just n') }
| Just (rdr_mod, rdr_occ) <- isOrig_maybe rdr_name
= do { n <- lookupOrig rdr_mod rdr_occ
; return (Just n) }
| otherwise
= do { mb_gre <- lookupGreRn_maybe rdr_name
; case mb_gre of
Nothing -> return Nothing
Just gre -> return (Just (gre_name gre)) }
lookupGreRn_maybe :: RdrName -> RnM (Maybe GlobalRdrElt)
lookupGreRn_maybe rdr_name
= lookupGreRn_help rdr_name (lookupGRE_RdrName rdr_name)
lookupGreRn :: RdrName -> RnM GlobalRdrElt
lookupGreRn rdr_name
= do { mb_gre <- lookupGreRn_maybe rdr_name
; case mb_gre of {
Just gre -> return gre ;
Nothing -> do
{ traceRn (text "lookupGreRn" <+> ppr rdr_name)
; name <- unboundName WL_Global rdr_name
; return (GRE { gre_name = name, gre_par = NoParent,
gre_prov = LocalDef }) }}}
lookupGreLocalRn_maybe :: RdrName -> RnM (Maybe GlobalRdrElt)
lookupGreLocalRn_maybe rdr_name
= lookupGreRn_help rdr_name lookup_fn
where
lookup_fn env = filter isLocalGRE (lookupGRE_RdrName rdr_name env)
lookupGreRn_help :: RdrName
-> (GlobalRdrEnv -> [GlobalRdrElt])
-> RnM (Maybe GlobalRdrElt)
lookupGreRn_help rdr_name lookup
= do { env <- getGlobalRdrEnv
; case lookup env of
[] -> return Nothing
[gre] -> do { addUsedRdrName True gre rdr_name
; return (Just gre) }
gres -> do { addNameClashErrRn rdr_name gres
; return (Just (head gres)) } }
\end{code}
%*********************************************************
%* *
Deprecations
%* *
%*********************************************************
Note [Handling of deprecations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* We report deprecations at each *occurrence* of the deprecated thing
(see Trac #5867)
* We do not report deprectations for locally-definded names. For a
start, we may be exporting a deprecated thing. Also we may use a
deprecated thing in the defn of another deprecated things. We may
even use a deprecated thing in the defn of a non-deprecated thing,
when changing a module's interface.
* addUsedRdrNames: we do not report deprecations for sub-binders:
- the ".." completion for records
- the ".." in an export item 'T(..)'
- the things exported by a module export 'module M'
\begin{code}
addUsedRdrName :: Bool -> GlobalRdrElt -> RdrName -> RnM ()
addUsedRdrName warnIfDeprec gre rdr
| isLocalGRE gre = return ()
| otherwise = do { env <- getGblEnv
; when warnIfDeprec $ warnIfDeprecated gre
; updMutVar (tcg_used_rdrnames env)
(\s -> Set.insert rdr s) }
addUsedRdrNames :: [RdrName] -> RnM ()
addUsedRdrNames rdrs
= do { env <- getGblEnv
; updMutVar (tcg_used_rdrnames env)
(\s -> foldr Set.insert s rdrs) }
warnIfDeprecated :: GlobalRdrElt -> RnM ()
warnIfDeprecated gre@(GRE { gre_name = name, gre_prov = Imported (imp_spec : _) })
= do { dflags <- getDynFlags
; when (wopt Opt_WarnWarningsDeprecations dflags) $
do { iface <- loadInterfaceForName doc name
; case lookupImpDeprec iface gre of
Just txt -> addWarn (mk_msg txt)
Nothing -> return () } }
where
mk_msg txt = sep [ sep [ ptext (sLit "In the use of")
<+> pprNonVarNameSpace (occNameSpace (nameOccName name))
<+> quotes (ppr name)
, parens imp_msg <> colon ]
, ppr txt ]
name_mod = ASSERT2( isExternalName name, ppr name ) nameModule name
imp_mod = importSpecModule imp_spec
imp_msg = ptext (sLit "imported from") <+> ppr imp_mod <> extra
extra | imp_mod == moduleName name_mod = empty
| otherwise = ptext (sLit ", but defined in") <+> ppr name_mod
doc = ptext (sLit "The name") <+> quotes (ppr name) <+> ptext (sLit "is mentioned explicitly")
warnIfDeprecated _ = return ()
lookupImpDeprec :: ModIface -> GlobalRdrElt -> Maybe WarningTxt
lookupImpDeprec iface gre
= mi_warn_fn iface (gre_name gre) `mplus`
case gre_par gre of
ParentIs p -> mi_warn_fn iface p
NoParent -> Nothing
\end{code}
Note [Used names with interface not loaded]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's (just) possible to find a used
Name whose interface hasn't been loaded:
a) It might be a WiredInName; in that case we may not load
its interface (although we could).
b) It might be GHC.Real.fromRational, or GHC.Num.fromInteger
These are seen as "used" by the renamer (if -XRebindableSyntax)
is on), but the typechecker may discard their uses
if in fact the in-scope fromRational is GHC.Read.fromRational,
(see tcPat.tcOverloadedLit), and the typechecker sees that the type
is fixed, say, to GHC.Base.Float (see Inst.lookupSimpleInst).
In that obscure case it won't force the interface in.
In both cases we simply don't permit deprecations;
this is, after all, wired-in stuff.
%*********************************************************
%* *
GHCi support
%* *
%*********************************************************
A qualified name on the command line can refer to any module at
all: we try to load the interface if we don't already have it, just
as if there was an "import qualified M" declaration for every
module.
If we fail we just return Nothing, rather than bleating
about "attempting to use module ‛D’ (./D.hs) which is not loaded"
which is what loadSrcInterface does.
Note [Safe Haskell and GHCi]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We DONT do this Safe Haskell as we need to check imports. We can
and should instead check the qualified import but at the moment
this requires some refactoring so leave as a TODO
\begin{code}
lookupQualifiedNameGHCi :: DynFlags -> Bool -> RdrName -> RnM (Maybe Name)
lookupQualifiedNameGHCi dflags is_ghci rdr_name
| Just (mod,occ) <- isQual_maybe rdr_name
, is_ghci
, gopt Opt_ImplicitImportQualified dflags
, not (safeDirectImpsReq dflags)
=
do { res <- loadSrcInterface_maybe doc mod False Nothing
; case res of
Succeeded iface
| (n:ns) <- [ name
| avail <- mi_exports iface
, name <- availNames avail
, nameOccName name == occ ]
-> ASSERT(null ns) return (Just n)
_ ->
do { traceRn (text "lookupQualifiedNameGHCi" <+> ppr rdr_name)
; return Nothing } }
| otherwise
= return Nothing
where
doc = ptext (sLit "Need to find") <+> ppr rdr_name
\end{code}
Note [Looking up signature names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lookupSigOccRn is used for type signatures and pragmas
Is this valid?
module A
import M( f )
f :: Int -> Int
f x = x
It's clear that the 'f' in the signature must refer to A.f
The Haskell98 report does not stipulate this, but it will!
So we must treat the 'f' in the signature in the same way
as the binding occurrence of 'f', using lookupBndrRn
However, consider this case:
import M( f )
f :: Int -> Int
g x = x
We don't want to say 'f' is out of scope; instead, we want to
return the imported 'f', so that later on the reanamer will
correctly report "misplaced type sig".
Note [Signatures for top level things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
data HsSigCtxt = ... | TopSigCtxt NameSet Bool | ....
* The NameSet says what is bound in this group of bindings.
We can't use isLocalGRE from the GlobalRdrEnv, because of this:
f x = x
$( ...some TH splice... )
f :: Int -> Int
When we encounter the signature for 'f', the binding for 'f'
will be in the GlobalRdrEnv, and will be a LocalDef. Yet the
signature is mis-placed
* The Bool says whether the signature is ok for a class method
or record selector. Consider
infix 3 `f` -- Yes, ok
f :: C a => a -> a -- No, not ok
class C a where
f :: a -> a
\begin{code}
data HsSigCtxt
= TopSigCtxt NameSet Bool
| LocalBindCtxt NameSet
| ClsDeclCtxt Name
| InstDeclCtxt Name
| HsBootCtxt
lookupSigOccRn :: HsSigCtxt
-> Sig RdrName
-> Located RdrName -> RnM (Located Name)
lookupSigOccRn ctxt sig
= wrapLocM $ \ rdr_name ->
do { mb_name <- lookupBindGroupOcc ctxt (hsSigDoc sig) rdr_name
; case mb_name of
Left err -> do { addErr err; return (mkUnboundName rdr_name) }
Right name -> return name }
lookupBindGroupOcc :: HsSigCtxt
-> SDoc
-> RdrName -> RnM (Either MsgDoc Name)
lookupBindGroupOcc ctxt what rdr_name
| Just n <- isExact_maybe rdr_name
= do { n' <- lookupExactOcc n
; return (Right n') }
| Just (rdr_mod, rdr_occ) <- isOrig_maybe rdr_name
= do { n' <- lookupOrig rdr_mod rdr_occ
; return (Right n') }
| otherwise
= case ctxt of
HsBootCtxt -> lookup_top (const True) True
TopSigCtxt ns meth_ok -> lookup_top (`elemNameSet` ns) meth_ok
LocalBindCtxt ns -> lookup_group ns
ClsDeclCtxt cls -> lookup_cls_op cls
InstDeclCtxt cls -> lookup_cls_op cls
where
lookup_cls_op cls
= do { env <- getGlobalRdrEnv
; let gres = lookupSubBndrGREs env (ParentIs cls) rdr_name
; case gres of
[] -> return (Left (unknownSubordinateErr doc rdr_name))
(gre:_) -> return (Right (gre_name gre)) }
where
doc = ptext (sLit "method of class") <+> quotes (ppr cls)
lookup_top keep_me meth_ok
= do { env <- getGlobalRdrEnv
; let all_gres = lookupGlobalRdrEnv env (rdrNameOcc rdr_name)
; case filter (keep_me . gre_name) all_gres of
[] | null all_gres -> bale_out_with empty
| otherwise -> bale_out_with local_msg
(gre:_)
| ParentIs {} <- gre_par gre
, not meth_ok
-> bale_out_with sub_msg
| otherwise
-> return (Right (gre_name gre)) }
lookup_group bound_names
= do { local_env <- getLocalRdrEnv
; case lookupLocalRdrEnv local_env rdr_name of
Just n
| n `elemNameSet` bound_names -> return (Right n)
| otherwise -> bale_out_with local_msg
Nothing -> bale_out_with empty }
bale_out_with msg
= return (Left (sep [ ptext (sLit "The") <+> what
<+> ptext (sLit "for") <+> quotes (ppr rdr_name)
, nest 2 $ ptext (sLit "lacks an accompanying binding")]
$$ nest 2 msg))
local_msg = parens $ ptext (sLit "The") <+> what <+> ptext (sLit "must be given where")
<+> quotes (ppr rdr_name) <+> ptext (sLit "is declared")
sub_msg = parens $ ptext (sLit "You cannot give a") <+> what
<+> ptext (sLit "for a record selector or class method")
lookupLocalTcNames :: HsSigCtxt -> SDoc -> RdrName -> RnM [Name]
lookupLocalTcNames ctxt what rdr_name
= do { mb_gres <- mapM lookup (dataTcOccs rdr_name)
; let (errs, names) = splitEithers mb_gres
; when (null names) $ addErr (head errs)
; return names }
where
lookup = lookupBindGroupOcc ctxt what
dataTcOccs :: RdrName -> [RdrName]
dataTcOccs rdr_name
| Just n <- isExact_maybe rdr_name
, not (isBuiltInSyntax n)
= [rdr_name]
| isDataOcc occ || isVarOcc occ
= [rdr_name, rdr_name_tc]
| otherwise
= [rdr_name]
where
occ = rdrNameOcc rdr_name
rdr_name_tc = setRdrNameSpace rdr_name tcName
\end{code}
Note [dataTcOccs and Exact Names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Exact RdrNames can occur in code generated by Template Haskell, and generally
those references are, well, exact, so it's wrong to return the TyClsName too.
But there is an awkward exception for built-in syntax. Example in GHCi
:info []
This parses as the Exact RdrName for nilDataCon, but we also want
the list type constructor.
Note that setRdrNameSpace on an Exact name requires the Name to be External,
which it always is for built in syntax.
%*********************************************************
%* *
Fixities
%* *
%*********************************************************
Note [Fixity signature lookup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A fixity declaration like
infixr 2 ?
can refer to a value-level operator, e.g.:
(?) :: String -> String -> String
or a type-level operator, like:
data (?) a b = A a | B b
so we extend the lookup of the reader name '?' to the TcClsName namespace, as
well as the original namespace.
The extended lookup is also used in other places, like resolution of
deprecation declarations, and lookup of names in GHCi.
\begin{code}
type FastStringEnv a = UniqFM a
emptyFsEnv :: FastStringEnv a
lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a
extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a
mkFsEnv :: [(FastString,a)] -> FastStringEnv a
emptyFsEnv = emptyUFM
lookupFsEnv = lookupUFM
extendFsEnv = addToUFM
mkFsEnv = listToUFM
type MiniFixityEnv = FastStringEnv (Located Fixity)
addLocalFixities :: MiniFixityEnv -> [Name] -> RnM a -> RnM a
addLocalFixities mini_fix_env names thing_inside
= extendFixityEnv (mapCatMaybes find_fixity names) thing_inside
where
find_fixity name
= case lookupFsEnv mini_fix_env (occNameFS occ) of
Just (L _ fix) -> Just (name, FixItem occ fix)
Nothing -> Nothing
where
occ = nameOccName name
\end{code}
--------------------------------
lookupFixity is a bit strange.
* Nested local fixity decls are put in the local fixity env, which we
find with getFixtyEnv
* Imported fixities are found in the HIT or PIT
* Top-level fixity decls in this module may be for Names that are
either Global (constructors, class operations)
or Local/Exported (everything else)
(See notes with RnNames.getLocalDeclBinders for why we have this split.)
We put them all in the local fixity environment
\begin{code}
lookupFixityRn :: Name -> RnM Fixity
lookupFixityRn name
| isUnboundName name
= return (Fixity minPrecedence InfixL)
| otherwise
= do { local_fix_env <- getFixityEnv
; case lookupNameEnv local_fix_env name of {
Just (FixItem _ fix) -> return fix ;
Nothing ->
do { this_mod <- getModule
; if nameIsLocalOrFrom this_mod name || isInteractiveModule (nameModule name)
then return defaultFixity
else lookup_imported } } }
where
lookup_imported
= do { iface <- loadInterfaceForName doc name
; traceRn (text "lookupFixityRn: looking up name in iface cache and found:" <+>
vcat [ppr name, ppr $ mi_fix_fn iface (nameOccName name)])
; return (mi_fix_fn iface (nameOccName name)) }
doc = ptext (sLit "Checking fixity for") <+> ppr name
lookupTyFixityRn :: Located Name -> RnM Fixity
lookupTyFixityRn (L _ n) = lookupFixityRn n
\end{code}
%************************************************************************
%* *
Rebindable names
Dealing with rebindable syntax is driven by the
Opt_RebindableSyntax dynamic flag.
In "deriving" code we don't want to use rebindable syntax
so we switch off the flag locally
%* *
%************************************************************************
Haskell 98 says that when you say "3" you get the "fromInteger" from the
Standard Prelude, regardless of what is in scope. However, to experiment
with having a language that is less coupled to the standard prelude, we're
trying a non-standard extension that instead gives you whatever "Prelude.fromInteger"
happens to be in scope. Then you can
import Prelude ()
import MyPrelude as Prelude
to get the desired effect.
At the moment this just happens for
* fromInteger, fromRational on literals (in expressions and patterns)
* negate (in expressions)
* minus (arising from n+k patterns)
* "do" notation
We store the relevant Name in the HsSyn tree, in
* HsIntegral/HsFractional/HsIsString
* NegApp
* NPlusKPat
* HsDo
respectively. Initially, we just store the "standard" name (PrelNames.fromIntegralName,
fromRationalName etc), but the renamer changes this to the appropriate user
name if Opt_NoImplicitPrelude is on. That is what lookupSyntaxName does.
We treat the orignal (standard) names as free-vars too, because the type checker
checks the type of the user thing against the type of the standard thing.
\begin{code}
lookupIfThenElse :: RnM (Maybe (SyntaxExpr Name), FreeVars)
lookupIfThenElse
= do { rebind <- xoptM Opt_RebindableSyntax
; if not rebind
then return (Nothing, emptyFVs)
else do { ite <- lookupOccRn (mkVarUnqual (fsLit "ifThenElse"))
; return (Just (HsVar ite), unitFV ite) } }
lookupSyntaxName :: Name
-> RnM (SyntaxExpr Name, FreeVars)
lookupSyntaxName std_name
= do { rebindable_on <- xoptM Opt_RebindableSyntax
; if not rebindable_on then
return (HsVar std_name, emptyFVs)
else
do { usr_name <- lookupOccRn (mkRdrUnqual (nameOccName std_name))
; return (HsVar usr_name, unitFV usr_name) } }
lookupSyntaxNames :: [Name]
-> RnM ([HsExpr Name], FreeVars)
lookupSyntaxNames std_names
= do { rebindable_on <- xoptM Opt_RebindableSyntax
; if not rebindable_on then
return (map HsVar std_names, emptyFVs)
else
do { usr_names <- mapM (lookupOccRn . mkRdrUnqual . nameOccName) std_names
; return (map HsVar usr_names, mkFVs usr_names) } }
\end{code}
%*********************************************************
%* *
\subsection{Binding}
%* *
%*********************************************************
\begin{code}
newLocalBndrRn :: Located RdrName -> RnM Name
newLocalBndrRn (L loc rdr_name)
| Just name <- isExact_maybe rdr_name
= return name
| otherwise
= do { unless (isUnqual rdr_name)
(addErrAt loc (badQualBndrErr rdr_name))
; uniq <- newUnique
; return (mkInternalName uniq (rdrNameOcc rdr_name) loc) }
newLocalBndrsRn :: [Located RdrName] -> RnM [Name]
newLocalBndrsRn = mapM newLocalBndrRn
bindLocatedLocalsRn :: [Located RdrName]
-> ([Name] -> RnM a)
-> RnM a
bindLocatedLocalsRn rdr_names_w_loc enclosed_scope
= do { checkDupRdrNames rdr_names_w_loc
; checkShadowedRdrNames rdr_names_w_loc
; names <- newLocalBndrsRn rdr_names_w_loc
; bindLocalNames names (enclosed_scope names) }
bindLocalNames :: [Name] -> RnM a -> RnM a
bindLocalNames names enclosed_scope
= do { lcl_env <- getLclEnv
; let th_level = thLevel (tcl_th_ctxt lcl_env)
th_bndrs' = extendNameEnvList (tcl_th_bndrs lcl_env)
[ (n, (NotTopLevel, th_level)) | n <- names ]
rdr_env' = extendLocalRdrEnvList (tcl_rdr lcl_env) names
; setLclEnv (lcl_env { tcl_th_bndrs = th_bndrs'
, tcl_rdr = rdr_env' })
enclosed_scope }
bindLocalNamesFV :: [Name] -> RnM (a, FreeVars) -> RnM (a, FreeVars)
bindLocalNamesFV names enclosed_scope
= do { (result, fvs) <- bindLocalNames names enclosed_scope
; return (result, delFVs names fvs) }
bindLocatedLocalsFV :: [Located RdrName]
-> ([Name] -> RnM (a,FreeVars)) -> RnM (a, FreeVars)
bindLocatedLocalsFV rdr_names enclosed_scope
= bindLocatedLocalsRn rdr_names $ \ names ->
do (thing, fvs) <- enclosed_scope names
return (thing, delFVs names fvs)
extendTyVarEnvFVRn :: [Name] -> RnM (a, FreeVars) -> RnM (a, FreeVars)
extendTyVarEnvFVRn tyvars thing_inside = bindLocalNamesFV tyvars thing_inside
checkDupRdrNames :: [Located RdrName] -> RnM ()
checkDupRdrNames rdr_names_w_loc
= mapM_ (dupNamesErr getLoc) dups
where
(_, dups) = removeDups (\n1 n2 -> unLoc n1 `compare` unLoc n2) rdr_names_w_loc
checkDupNames :: [Name] -> RnM ()
checkDupNames names = check_dup_names (filterOut isSystemName names)
check_dup_names :: [Name] -> RnM ()
check_dup_names names
= mapM_ (dupNamesErr nameSrcSpan) dups
where
(_, dups) = removeDups (\n1 n2 -> nameOccName n1 `compare` nameOccName n2) names
checkShadowedRdrNames :: [Located RdrName] -> RnM ()
checkShadowedRdrNames loc_rdr_names
= do { envs <- getRdrEnvs
; checkShadowedOccs envs get_loc_occ filtered_rdrs }
where
filtered_rdrs = filterOut (isExact . unLoc) loc_rdr_names
get_loc_occ (L loc rdr) = (loc,rdrNameOcc rdr)
checkDupAndShadowedNames :: (GlobalRdrEnv, LocalRdrEnv) -> [Name] -> RnM ()
checkDupAndShadowedNames envs names
= do { check_dup_names filtered_names
; checkShadowedOccs envs get_loc_occ filtered_names }
where
filtered_names = filterOut isSystemName names
get_loc_occ name = (nameSrcSpan name, nameOccName name)
checkShadowedOccs :: (GlobalRdrEnv, LocalRdrEnv)
-> (a -> (SrcSpan, OccName))
-> [a] -> RnM ()
checkShadowedOccs (global_env,local_env) get_loc_occ ns
= whenWOptM Opt_WarnNameShadowing $
do { traceRn (text "shadow" <+> ppr (map get_loc_occ ns))
; mapM_ check_shadow ns }
where
check_shadow n
| startsWithUnderscore occ = return ()
| Just n <- mb_local = complain [ptext (sLit "bound at") <+> ppr (nameSrcLoc n)]
| otherwise = do { gres' <- filterM is_shadowed_gre gres
; complain (map pprNameProvenance gres') }
where
(loc,occ) = get_loc_occ n
mb_local = lookupLocalRdrOcc local_env occ
gres = lookupGRE_RdrName (mkRdrUnqual occ) global_env
complain [] = return ()
complain pp_locs = addWarnAt loc (shadowedNameWarn occ pp_locs)
is_shadowed_gre :: GlobalRdrElt -> RnM Bool
is_shadowed_gre gre@(GRE { gre_par = ParentIs _ })
= do { dflags <- getDynFlags
; if (xopt Opt_RecordPuns dflags || xopt Opt_RecordWildCards dflags)
then do { is_fld <- is_rec_fld gre; return (not is_fld) }
else return True }
is_shadowed_gre _other = return True
is_rec_fld gre
| isLocalGRE gre = do { RecFields _ fld_set <- getRecFieldEnv
; return (gre_name gre `elemNameSet` fld_set) }
| otherwise = do { sel_id <- tcLookupField (gre_name gre)
; return (isRecordSelector sel_id) }
\end{code}
%************************************************************************
%* *
What to do when a lookup fails
%* *
%************************************************************************
\begin{code}
data WhereLooking = WL_Any
| WL_Global
| WL_LocalTop
reportUnboundName :: RdrName -> RnM Name
reportUnboundName rdr = unboundName WL_Any rdr
unboundName :: WhereLooking -> RdrName -> RnM Name
unboundName wl rdr = unboundNameX wl rdr empty
unboundNameX :: WhereLooking -> RdrName -> SDoc -> RnM Name
unboundNameX where_look rdr_name extra
= do { show_helpful_errors <- goptM Opt_HelpfulErrors
; let what = pprNonVarNameSpace (occNameSpace (rdrNameOcc rdr_name))
err = unknownNameErr what rdr_name $$ extra
; if not show_helpful_errors
then addErr err
else do { suggestions <- unknownNameSuggestErr where_look rdr_name
; addErr (err $$ suggestions) }
; return (mkUnboundName rdr_name) }
unknownNameErr :: SDoc -> RdrName -> SDoc
unknownNameErr what rdr_name
= vcat [ hang (ptext (sLit "Not in scope:"))
2 (what <+> quotes (ppr rdr_name))
, extra ]
where
extra | rdr_name == forall_tv_RDR = perhapsForallMsg
| otherwise = empty
type HowInScope = Either SrcSpan ImpDeclSpec
unknownNameSuggestErr :: WhereLooking -> RdrName -> RnM SDoc
unknownNameSuggestErr where_look tried_rdr_name
= do { local_env <- getLocalRdrEnv
; global_env <- getGlobalRdrEnv
; dflags <- getDynFlags
; let all_possibilities :: [(String, (RdrName, HowInScope))]
all_possibilities
= [ (showPpr dflags r, (r, Left loc))
| (r,loc) <- local_possibilities local_env ]
++ [ (showPpr dflags r, rp) | (r,rp) <- global_possibilities global_env ]
suggest = fuzzyLookup (showPpr dflags tried_rdr_name) all_possibilities
perhaps = ptext (sLit "Perhaps you meant")
extra_err = case suggest of
[] -> empty
[p] -> perhaps <+> pp_item p
ps -> sep [ perhaps <+> ptext (sLit "one of these:")
, nest 2 (pprWithCommas pp_item ps) ]
; return extra_err }
where
pp_item :: (RdrName, HowInScope) -> SDoc
pp_item (rdr, Left loc) = quotes (ppr rdr) <+> loc'
where loc' = case loc of
UnhelpfulSpan l -> parens (ppr l)
RealSrcSpan l -> parens (ptext (sLit "line") <+> int (srcSpanStartLine l))
pp_item (rdr, Right is) = quotes (ppr rdr) <+>
parens (ptext (sLit "imported from") <+> ppr (is_mod is))
tried_occ = rdrNameOcc tried_rdr_name
tried_is_sym = isSymOcc tried_occ
tried_ns = occNameSpace tried_occ
tried_is_qual = isQual tried_rdr_name
correct_name_space occ = occNameSpace occ == tried_ns
&& isSymOcc occ == tried_is_sym
local_ok = case where_look of { WL_Any -> True; _ -> False }
local_possibilities :: LocalRdrEnv -> [(RdrName, SrcSpan)]
local_possibilities env
| tried_is_qual = []
| not local_ok = []
| otherwise = [ (mkRdrUnqual occ, nameSrcSpan name)
| name <- localRdrEnvElts env
, let occ = nameOccName name
, correct_name_space occ]
gre_ok :: GlobalRdrElt -> Bool
gre_ok = case where_look of
WL_LocalTop -> isLocalGRE
_ -> \_ -> True
global_possibilities :: GlobalRdrEnv -> [(RdrName, (RdrName, HowInScope))]
global_possibilities global_env
| tried_is_qual = [ (rdr_qual, (rdr_qual, how))
| gre <- globalRdrEnvElts global_env
, gre_ok gre
, let name = gre_name gre
occ = nameOccName name
, correct_name_space occ
, (mod, how) <- quals_in_scope name (gre_prov gre)
, let rdr_qual = mkRdrQual mod occ ]
| otherwise = [ (rdr_unqual, pair)
| gre <- globalRdrEnvElts global_env
, gre_ok gre
, let name = gre_name gre
prov = gre_prov gre
occ = nameOccName name
rdr_unqual = mkRdrUnqual occ
, correct_name_space occ
, pair <- case (unquals_in_scope name prov, quals_only occ prov) of
(how:_, _) -> [ (rdr_unqual, how) ]
([], pr:_) -> [ pr ]
([], []) -> [] ]
unquals_in_scope :: Name -> Provenance -> [HowInScope]
unquals_in_scope n LocalDef = [ Left (nameSrcSpan n) ]
unquals_in_scope _ (Imported is) = [ Right ispec
| i <- is, let ispec = is_decl i
, not (is_qual ispec) ]
quals_in_scope :: Name -> Provenance -> [(ModuleName, HowInScope)]
quals_in_scope n LocalDef = case nameModule_maybe n of
Nothing -> []
Just m -> [(moduleName m, Left (nameSrcSpan n))]
quals_in_scope _ (Imported is) = [ (is_as ispec, Right ispec)
| i <- is, let ispec = is_decl i ]
quals_only :: OccName -> Provenance -> [(RdrName, HowInScope)]
quals_only _ LocalDef = []
quals_only occ (Imported is) = [ (mkRdrQual (is_as ispec) occ, Right ispec)
| i <- is, let ispec = is_decl i, is_qual ispec ]
\end{code}
%************************************************************************
%* *
\subsection{Free variable manipulation}
%* *
%************************************************************************
\begin{code}
addFvRn :: FreeVars -> RnM (thing, FreeVars) -> RnM (thing, FreeVars)
addFvRn fvs1 thing_inside = do { (res, fvs2) <- thing_inside
; return (res, fvs1 `plusFV` fvs2) }
mapFvRn :: (a -> RnM (b, FreeVars)) -> [a] -> RnM ([b], FreeVars)
mapFvRn f xs = do stuff <- mapM f xs
case unzip stuff of
(ys, fvs_s) -> return (ys, plusFVs fvs_s)
mapMaybeFvRn :: (a -> RnM (b, FreeVars)) -> Maybe a -> RnM (Maybe b, FreeVars)
mapMaybeFvRn _ Nothing = return (Nothing, emptyFVs)
mapMaybeFvRn f (Just x) = do { (y, fvs) <- f x; return (Just y, fvs) }
mapFvRnCPS :: (a -> (b -> RnM c) -> RnM c)
-> [a] -> ([b] -> RnM c) -> RnM c
mapFvRnCPS _ [] cont = cont []
mapFvRnCPS f (x:xs) cont = f x $ \ x' ->
mapFvRnCPS f xs $ \ xs' ->
cont (x':xs')
\end{code}
%************************************************************************
%* *
\subsection{Envt utility functions}
%* *
%************************************************************************
\begin{code}
warnUnusedTopBinds :: [GlobalRdrElt] -> RnM ()
warnUnusedTopBinds gres
= whenWOptM Opt_WarnUnusedBinds
$ do isBoot <- tcIsHsBoot
let noParent gre = case gre_par gre of
NoParent -> True
ParentIs _ -> False
gres' = if isBoot then filter noParent gres
else gres
warnUnusedGREs gres'
warnUnusedLocalBinds, warnUnusedMatches :: [Name] -> FreeVars -> RnM ()
warnUnusedLocalBinds = check_unused Opt_WarnUnusedBinds
warnUnusedMatches = check_unused Opt_WarnUnusedMatches
check_unused :: WarningFlag -> [Name] -> FreeVars -> RnM ()
check_unused flag bound_names used_names
= whenWOptM flag (warnUnusedLocals (filterOut (`elemNameSet` used_names) bound_names))
warnUnusedGREs :: [GlobalRdrElt] -> RnM ()
warnUnusedGREs gres
= warnUnusedBinds [(n,p) | GRE {gre_name = n, gre_prov = p} <- gres]
warnUnusedLocals :: [Name] -> RnM ()
warnUnusedLocals names
= warnUnusedBinds [(n,LocalDef) | n<-names]
warnUnusedBinds :: [(Name,Provenance)] -> RnM ()
warnUnusedBinds names = mapM_ warnUnusedName (filter reportable names)
where reportable (name,_)
| isWiredInName name = False
| otherwise = not (startsWithUnderscore (nameOccName name))
warnUnusedName :: (Name, Provenance) -> RnM ()
warnUnusedName (name, LocalDef)
= addUnusedWarning name (nameSrcSpan name)
(ptext (sLit "Defined but not used"))
warnUnusedName (name, Imported is)
= mapM_ warn is
where
warn spec = addUnusedWarning name span msg
where
span = importSpecLoc spec
pp_mod = quotes (ppr (importSpecModule spec))
msg = ptext (sLit "Imported from") <+> pp_mod <+> ptext (sLit "but not used")
addUnusedWarning :: Name -> SrcSpan -> SDoc -> RnM ()
addUnusedWarning name span msg
= addWarnAt span $
sep [msg <> colon,
nest 2 $ pprNonVarNameSpace (occNameSpace (nameOccName name))
<+> quotes (ppr name)]
\end{code}
\begin{code}
addNameClashErrRn :: RdrName -> [GlobalRdrElt] -> RnM ()
addNameClashErrRn rdr_name gres
| all isLocalGRE gres
= return ()
| otherwise
= addErr (vcat [ptext (sLit "Ambiguous occurrence") <+> quotes (ppr rdr_name),
ptext (sLit "It could refer to") <+> vcat (msg1 : msgs)])
where
(np1:nps) = gres
msg1 = ptext (sLit "either") <+> mk_ref np1
msgs = [ptext (sLit " or") <+> mk_ref np | np <- nps]
mk_ref gre = sep [quotes (ppr (gre_name gre)) <> comma, pprNameProvenance gre]
shadowedNameWarn :: OccName -> [SDoc] -> SDoc
shadowedNameWarn occ shadowed_locs
= sep [ptext (sLit "This binding for") <+> quotes (ppr occ)
<+> ptext (sLit "shadows the existing binding") <> plural shadowed_locs,
nest 2 (vcat shadowed_locs)]
perhapsForallMsg :: SDoc
perhapsForallMsg
= vcat [ ptext (sLit "Perhaps you intended to use ExplicitForAll or similar flag")
, ptext (sLit "to enable explicit-forall syntax: forall <tvs>. <type>")]
unknownSubordinateErr :: SDoc -> RdrName -> SDoc
unknownSubordinateErr doc op
= quotes (ppr op) <+> ptext (sLit "is not a (visible)") <+> doc
badOrigBinding :: RdrName -> SDoc
badOrigBinding name
= ptext (sLit "Illegal binding of built-in syntax:") <+> ppr (rdrNameOcc name)
dupNamesErr :: Outputable n => (n -> SrcSpan) -> [n] -> RnM ()
dupNamesErr get_loc names
= addErrAt big_loc $
vcat [ptext (sLit "Conflicting definitions for") <+> quotes (ppr (head names)),
locations]
where
locs = map get_loc names
big_loc = foldr1 combineSrcSpans locs
locations = ptext (sLit "Bound at:") <+> vcat (map ppr (sort locs))
kindSigErr :: Outputable a => a -> SDoc
kindSigErr thing
= hang (ptext (sLit "Illegal kind signature for") <+> quotes (ppr thing))
2 (ptext (sLit "Perhaps you intended to use KindSignatures"))
badQualBndrErr :: RdrName -> SDoc
badQualBndrErr rdr_name
= ptext (sLit "Qualified name in binding position:") <+> ppr rdr_name
opDeclErr :: RdrName -> SDoc
opDeclErr n
= hang (ptext (sLit "Illegal declaration of a type or class operator") <+> quotes (ppr n))
2 (ptext (sLit "Use TypeOperators to declare operators in type and declarations"))
checkTupSize :: Int -> RnM ()
checkTupSize tup_size
| tup_size <= mAX_TUPLE_SIZE
= return ()
| otherwise
= addErr (sep [ptext (sLit "A") <+> int tup_size <> ptext (sLit "-tuple is too large for GHC"),
nest 2 (parens (ptext (sLit "max size is") <+> int mAX_TUPLE_SIZE)),
nest 2 (ptext (sLit "Workaround: use nested tuples or define a data type"))])
\end{code}
%************************************************************************
%* *
\subsection{Contexts for renaming errors}
%* *
%************************************************************************
\begin{code}
data HsDocContext
= TypeSigCtx SDoc
| PatCtx
| SpecInstSigCtx
| DefaultDeclCtx
| ForeignDeclCtx (Located RdrName)
| DerivDeclCtx
| RuleCtx FastString
| TyDataCtx (Located RdrName)
| TySynCtx (Located RdrName)
| TyFamilyCtx (Located RdrName)
| ConDeclCtx (Located RdrName)
| ClassDeclCtx (Located RdrName)
| ExprWithTySigCtx
| TypBrCtx
| HsTypeCtx
| GHCiCtx
| SpliceTypeCtx (LHsType RdrName)
| ClassInstanceCtx
| VectDeclCtx (Located RdrName)
| GenericCtx SDoc
docOfHsDocContext :: HsDocContext -> SDoc
docOfHsDocContext (GenericCtx doc) = doc
docOfHsDocContext (TypeSigCtx doc) = text "In the type signature for" <+> doc
docOfHsDocContext PatCtx = text "In a pattern type-signature"
docOfHsDocContext SpecInstSigCtx = text "In a SPECIALISE instance pragma"
docOfHsDocContext DefaultDeclCtx = text "In a `default' declaration"
docOfHsDocContext (ForeignDeclCtx name) = ptext (sLit "In the foreign declaration for") <+> ppr name
docOfHsDocContext DerivDeclCtx = text "In a deriving declaration"
docOfHsDocContext (RuleCtx name) = text "In the transformation rule" <+> ftext name
docOfHsDocContext (TyDataCtx tycon) = text "In the data type declaration for" <+> quotes (ppr tycon)
docOfHsDocContext (TySynCtx name) = text "In the declaration for type synonym" <+> quotes (ppr name)
docOfHsDocContext (TyFamilyCtx name) = text "In the declaration for type family" <+> quotes (ppr name)
docOfHsDocContext (ConDeclCtx name) = text "In the definition of data constructor" <+> quotes (ppr name)
docOfHsDocContext (ClassDeclCtx name) = text "In the declaration for class" <+> ppr name
docOfHsDocContext ExprWithTySigCtx = text "In an expression type signature"
docOfHsDocContext TypBrCtx = ptext (sLit "In a Template-Haskell quoted type")
docOfHsDocContext HsTypeCtx = text "In a type argument"
docOfHsDocContext GHCiCtx = ptext (sLit "In GHCi input")
docOfHsDocContext (SpliceTypeCtx hs_ty) = ptext (sLit "In the spliced type") <+> ppr hs_ty
docOfHsDocContext ClassInstanceCtx = ptext (sLit "TcSplice.reifyInstances")
docOfHsDocContext (VectDeclCtx tycon) = ptext (sLit "In the VECTORISE pragma for type constructor") <+> quotes (ppr tycon)
\end{code}