Two cases, dealt with by the LetPat case of tcPatBndr
* If we are generalising (generalisation plan is InferGen or
CheckGen), then the let_bndr_spec will be LetLclBndr. In that case
we want to bind a cloned, local version of the variable, with the
type given by the pattern context, *not* by the signature (even if
there is one; see Trac #7268). The mkExport part of the
generalisation step will do the checking and impedence matching
against the signature.
* If for some some reason we are not generalising (plan = NoGen), the
LetBndrSpec will be LetGblBndr. In that case we must bind the
global version of the Id, and do so with precisely the type given
in the signature. (Then we unify with the type from the pattern
context type.
%************************************************************************
%* *
The main worker functions
%* *
%************************************************************************
Note [Nesting]
~~~~~~~~~~~~~~
tcPat takes a "thing inside" over which the pattern scopes. This is partly
so that tcPat can extend the environment for the thing_inside, but also
so that constraints arising in the thing_inside can be discharged by the
pattern.
This does not work so well for the ErrCtxt carried by the monad: we don't
want the error-context for the pattern to scope over the RHS.
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
\begin{code}
type Checker inp out = forall r.
inp
-> PatEnv
-> TcM r
-> TcM (out, r)
tcMultiple :: Checker inp out -> Checker [inp] [out]
tcMultiple tc_pat args penv thing_inside
= do { err_ctxt <- getErrCtxt
; let loop _ []
= do { res <- thing_inside
; return ([], res) }
loop penv (arg:args)
= do { (p', (ps', res))
<- tc_pat arg penv $
setErrCtxt err_ctxt $
loop penv args
; return (p':ps', res) }
; loop penv args }
tc_lpat :: LPat Name
-> TcSigmaType
-> PatEnv
-> TcM a
-> TcM (LPat TcId, a)
tc_lpat (L span pat) pat_ty penv thing_inside
= setSrcSpan span $
do { (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
thing_inside
; return (L span pat', res) }
tc_lpats :: PatEnv
-> [LPat Name] -> [TcSigmaType]
-> TcM a
-> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside
= ASSERT2( equalLength pats tys, ppr pats $$ ppr tys )
tcMultiple (\(p,t) -> tc_lpat p t)
(zipEqual "tc_lpats" pats tys)
penv thing_inside
tc_pat :: PatEnv
-> Pat Name
-> TcSigmaType
-> TcM a
-> TcM (Pat TcId,
a)
tc_pat penv (VarPat name) pat_ty thing_inside
= do { (co, id) <- tcPatBndr penv name pat_ty
; res <- tcExtendIdEnv1 name id thing_inside
; return (mkHsWrapPatCo co (VarPat id) pat_ty, res) }
tc_pat penv (ParPat pat) pat_ty thing_inside
= do { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
; return (ParPat pat', res) }
tc_pat penv (BangPat pat) pat_ty thing_inside
= do { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
; return (BangPat pat', res) }
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
= do { (pat', (res, pat_ct))
<- tc_lpat pat pat_ty (makeLazy penv) $
captureConstraints thing_inside
; emitConstraints pat_ct
; when (any (isUnLiftedType . idType) $ collectPatBinders pat') $
lazyUnliftedPatErr lpat
; pat_ty' <- newFlexiTyVarTy liftedTypeKind
; _ <- unifyType pat_ty pat_ty'
; return (LazyPat pat', res) }
tc_pat _ p@(QuasiQuotePat _) _ _
= pprPanic "Should never see QuasiQuotePat in type checker" (ppr p)
tc_pat _ (WildPat _) pat_ty thing_inside
= do { res <- thing_inside
; return (WildPat pat_ty, res) }
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
= do { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
; (pat', res) <- tcExtendIdEnv1 name bndr_id $
tc_lpat pat (idType bndr_id) penv thing_inside
; return (mkHsWrapPatCo co (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }
tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside
= do {
; (expr',expr'_inferred) <- tcInferRho expr
; (expr_co, pat_ty) <- tcInfer $ \ pat_ty ->
unifyType expr'_inferred (mkFunTy overall_pat_ty pat_ty)
; (pat', res) <- tc_lpat pat pat_ty penv thing_inside
; return (ViewPat (mkLHsWrapCo expr_co expr') pat' overall_pat_ty, res) }
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
= do { (inner_ty, tv_binds, wrap) <- tcPatSig (patSigCtxt penv) sig_ty pat_ty
; (pat', res) <- tcExtendTyVarEnv2 tv_binds $
tc_lpat pat inner_ty penv thing_inside
; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
tc_pat penv (ListPat pats _ Nothing) pat_ty thing_inside
= do { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy pat_ty
; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
pats penv thing_inside
; return (mkHsWrapPat coi (ListPat pats' elt_ty Nothing) pat_ty, res)
}
tc_pat penv (ListPat pats _ (Just (_,e))) pat_ty thing_inside
= do { list_pat_ty <- newFlexiTyVarTy liftedTypeKind
; e' <- tcSyntaxOp ListOrigin e (mkFunTy pat_ty list_pat_ty)
; (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy list_pat_ty
; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
pats penv thing_inside
; return (mkHsWrapPat coi (ListPat pats' elt_ty (Just (pat_ty,e'))) list_pat_ty, res)
}
tc_pat penv (PArrPat pats _) pat_ty thing_inside
= do { (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTy pat_ty
; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
pats penv thing_inside
; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
}
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
= do { let tc = tupleTyCon (boxityNormalTupleSort boxity) (length pats)
; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc) pat_ty
; (pats', res) <- tc_lpats penv pats arg_tys thing_inside
; dflags <- getDynFlags
; let pat_ty' = mkTyConApp tc arg_tys
unmangled_result = TuplePat pats' boxity pat_ty'
possibly_mangled_result
| gopt Opt_IrrefutableTuples dflags &&
isBoxed boxity = LazyPat (noLoc unmangled_result)
| otherwise = unmangled_result
; ASSERT( length arg_tys == length pats )
return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
}
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
= tcConPat penv con pat_ty arg_pats thing_inside
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
= do { let lit_ty = hsLitType simple_lit
; co <- unifyPatType lit_ty pat_ty
; res <- thing_inside
; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty
, res) }
tc_pat _ (NPat over_lit mb_neg eq) pat_ty thing_inside
= do { let orig = LiteralOrigin over_lit
; lit' <- newOverloadedLit orig over_lit pat_ty
; eq' <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
; mb_neg' <- case mb_neg of
Nothing -> return Nothing
Just neg ->
do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
; return (Just neg') }
; res <- thing_inside
; return (NPat lit' mb_neg' eq', res) }
tc_pat penv (NPlusKPat (L nm_loc name) lit ge minus) pat_ty thing_inside
= do { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
; let pat_ty' = idType bndr_id
orig = LiteralOrigin lit
; lit' <- newOverloadedLit orig lit pat_ty'
; ge' <- tcSyntaxOp orig ge (mkFunTys [pat_ty', pat_ty'] boolTy)
; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
; let pat' = NPlusKPat (L nm_loc bndr_id) lit' ge' minus'
; icls <- tcLookupClass integralClassName
; instStupidTheta orig [mkClassPred icls [pat_ty']]
; res <- tcExtendIdEnv1 name bndr_id thing_inside
; return (mkHsWrapPatCo co pat' pat_ty, res) }
tc_pat _ _other_pat _ _ = panic "tc_pat"
unifyPatType :: TcType -> TcType -> TcM TcCoercion
unifyPatType actual_ty expected_ty
= do { coi <- unifyType actual_ty expected_ty
; return (mkTcSymCo coi) }
\end{code}
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern. E.g.
f ~(C x) = 3
We can't discharge the Num constraint from dictionaries bound by
the pattern C!
So we have to make the constraints from thing_inside "hop around"
the pattern. Hence the captureConstraints and emitConstraints.
The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
data T a where { T1 :: Int -> T Int; ... }
f :: T a -> Int -> a
f ~(T1 i) y = y
It's obviously not sound to refine a to Int in the right
hand side, because the arugment might not match T1 at all!
Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring
%************************************************************************
%* *
Most of the work for constructors is here
(the rest is in the ConPatIn case of tc_pat)
%* *
%************************************************************************
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:
data family Map k :: * -> *
data instance Map (a, b) v = MapPair (Map a (Pair b v))
and a case expression
case x :: Map (Int, c) w of MapPair m -> ...
As explained by [Wrappers for data instance tycons] in MkIds.lhs, the
worker/wrapper types for MapPair are
$WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
$wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v
So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error. Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}. To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon). This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
moving between representation and family type into account. To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type. This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.
Now it might appear seem as if we could have used the previous GADT type
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation. However, that would be wrong. Why? The
whole point of GADT refinement is that the refinement is local to the case
alternative. In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w]. In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
\begin{code}
tcConPat :: PatEnv -> Located Name
-> TcRhoType
-> HsConPatDetails Name -> TcM a
-> TcM (Pat TcId, a)
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
= do { con_like <- tcLookupConLike con_name
; case con_like of
RealDataCon data_con -> tcDataConPat penv con_lname data_con
pat_ty arg_pats thing_inside
PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
pat_ty arg_pats thing_inside
}
tcDataConPat :: PatEnv -> Located Name -> DataCon
-> TcRhoType
-> HsConPatDetails Name -> TcM a
-> TcM (Pat TcId, a)
tcDataConPat penv (L con_span con_name) data_con pat_ty arg_pats thing_inside
= do { let tycon = dataConTyCon data_con
(univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
= dataConFullSig data_con
header = L con_span (RealDataCon data_con)
; (wrap, ctxt_res_tys) <- matchExpectedPatTy (matchExpectedConTy tycon) pat_ty
; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
; checkExistentials ex_tvs penv
; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
(zipTopTvSubst univ_tvs ctxt_res_tys) ex_tvs
; let pat_ty' = mkTyConApp tycon ctxt_res_tys
arg_tys' = substTys tenv arg_tys
; traceTc "tcConPat" (ppr con_name $$ ppr ex_tvs' $$ ppr pat_ty' $$ ppr arg_tys')
; if null ex_tvs && null eq_spec && null theta
then do {
(arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys'
arg_pats penv thing_inside
; let res_pat = ConPatOut { pat_con = header,
pat_tvs = [], pat_dicts = [],
pat_binds = emptyTcEvBinds,
pat_args = arg_pats',
pat_ty = pat_ty',
pat_wrap = idHsWrapper }
; return (mkHsWrapPat wrap res_pat pat_ty, res) }
else do
{ let theta' = substTheta tenv (eqSpecPreds eq_spec ++ theta)
no_equalities = not (any isEqPred theta')
skol_info = case pe_ctxt penv of
LamPat mc -> PatSkol (RealDataCon data_con) mc
LetPat {} -> UnkSkol
; gadts_on <- xoptM Opt_GADTs
; families_on <- xoptM Opt_TypeFamilies
; checkTc (no_equalities || gadts_on || families_on)
(ptext (sLit "A pattern match on a GADT requires GADTs or TypeFamilies"))
; given <- newEvVars theta'
; (ev_binds, (arg_pats', res))
<- checkConstraints skol_info ex_tvs' given $
tcConArgs (RealDataCon data_con) arg_tys' arg_pats penv thing_inside
; let res_pat = ConPatOut { pat_con = header,
pat_tvs = ex_tvs',
pat_dicts = given,
pat_binds = ev_binds,
pat_args = arg_pats',
pat_ty = pat_ty',
pat_wrap = idHsWrapper }
; return (mkHsWrapPat wrap res_pat pat_ty, res)
} }
tcPatSynPat :: PatEnv -> Located Name -> PatSyn
-> TcRhoType
-> HsConPatDetails Name -> TcM a
-> TcM (Pat TcId, a)
tcPatSynPat penv (L con_span _) pat_syn pat_ty arg_pats thing_inside
= do { let (univ_tvs, ex_tvs, (prov_theta, req_theta)) = patSynSig pat_syn
arg_tys = patSynArgTys pat_syn
ty = patSynType pat_syn
; (_univ_tvs', inst_tys, subst) <- tcInstTyVars univ_tvs
; checkExistentials ex_tvs penv
; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX subst ex_tvs
; let ty' = substTy tenv ty
arg_tys' = substTys tenv arg_tys
prov_theta' = substTheta tenv prov_theta
req_theta' = substTheta tenv req_theta
; wrap <- coToHsWrapper <$> unifyType ty' pat_ty
; traceTc "tcPatSynPat" (ppr pat_syn $$
ppr pat_ty $$
ppr ty' $$
ppr ex_tvs' $$
ppr prov_theta' $$
ppr req_theta' $$
ppr arg_tys')
; prov_dicts' <- newEvVars prov_theta'
; let skol_info = case pe_ctxt penv of
LamPat mc -> PatSkol (PatSynCon pat_syn) mc
LetPat {} -> UnkSkol
; req_wrap <- instCall PatOrigin inst_tys req_theta'
; traceTc "instCall" (ppr req_wrap)
; traceTc "checkConstraints {" empty
; (ev_binds, (arg_pats', res))
<- checkConstraints skol_info ex_tvs' prov_dicts' $
tcConArgs (PatSynCon pat_syn) arg_tys' arg_pats penv thing_inside
; traceTc "checkConstraints }" (ppr ev_binds)
; let res_pat = ConPatOut { pat_con = L con_span $ PatSynCon pat_syn,
pat_tvs = ex_tvs',
pat_dicts = prov_dicts',
pat_binds = ev_binds,
pat_args = arg_pats',
pat_ty = ty',
pat_wrap = req_wrap }
; return (mkHsWrapPat wrap res_pat pat_ty, res) }
matchExpectedPatTy :: (TcRhoType -> TcM (TcCoercion, a))
-> TcRhoType -> TcM (HsWrapper, a)
matchExpectedPatTy inner_match pat_ty
| null tvs && null theta
= do { (co, res) <- inner_match pat_ty
; return (coToHsWrapper (mkTcSymCo co), res) }
| otherwise
= do { (_, tys, subst) <- tcInstTyVars tvs
; wrap1 <- instCall PatOrigin tys (substTheta subst theta)
; (wrap2, arg_tys) <- matchExpectedPatTy inner_match (TcType.substTy subst tau)
; return (wrap2 <.> wrap1 , arg_tys) }
where
(tvs, theta, tau) = tcSplitSigmaTy pat_ty
matchExpectedConTy :: TyCon
-> TcRhoType
-> TcM (TcCoercion, [TcSigmaType])
matchExpectedConTy data_tc pat_ty
| Just (fam_tc, fam_args, co_tc) <- tyConFamInstSig_maybe data_tc
= do { (_, tys, subst) <- tcInstTyVars (tyConTyVars data_tc)
; traceTc "matchExpectedConTy" (vcat [ppr data_tc,
ppr (tyConTyVars data_tc),
ppr fam_tc, ppr fam_args])
; co1 <- unifyType (mkTyConApp fam_tc (substTys subst fam_args)) pat_ty
; let co2 = mkTcUnbranchedAxInstCo Nominal co_tc tys
; return (mkTcSymCo co2 `mkTcTransCo` co1, tys) }
| otherwise
= matchExpectedTyConApp data_tc pat_ty
\end{code}
Note [Matching constructor patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose (coi, tys) = matchExpectedConType data_tc pat_ty
* In the simple case, pat_ty = tc tys
* If pat_ty is a polytype, we want to instantiate it
This is like part of a subsumption check. Eg
f :: (forall a. [a]) -> blah
f [] = blah
* In a type family case, suppose we have
data family T a
data instance T (p,q) = A p | B q
Then we'll have internally generated
data T7 p q = A p | B q
axiom coT7 p q :: T (p,q) ~ T7 p q
So if pat_ty = T (ty1,ty2), we return (coi, [ty1,ty2]) such that
coi = coi2 . coi1 : T7 t ~ pat_ty
coi1 : T (ty1,ty2) ~ pat_ty
coi2 : T7 ty1 ty2 ~ T (ty1,ty2)
For families we do all this matching here, not in the unifier,
because we never want a whisper of the data_tycon to appear in
error messages; it's a purely internal thing
\begin{code}
tcConArgs :: ConLike -> [TcSigmaType]
-> Checker (HsConPatDetails Name) (HsConPatDetails Id)
tcConArgs con_like arg_tys (PrefixCon arg_pats) penv thing_inside
= do { checkTc (con_arity == no_of_args)
(arityErr "Constructor" con_like con_arity no_of_args)
; let pats_w_tys = zipEqual "tcConArgs" arg_pats arg_tys
; (arg_pats', res) <- tcMultiple tcConArg pats_w_tys
penv thing_inside
; return (PrefixCon arg_pats', res) }
where
con_arity = conLikeArity con_like
no_of_args = length arg_pats
tcConArgs con_like arg_tys (InfixCon p1 p2) penv thing_inside
= do { checkTc (con_arity == 2)
(arityErr "Constructor" con_like con_arity 2)
; let [arg_ty1,arg_ty2] = arg_tys
; ([p1',p2'], res) <- tcMultiple tcConArg [(p1,arg_ty1),(p2,arg_ty2)]
penv thing_inside
; return (InfixCon p1' p2', res) }
where
con_arity = conLikeArity con_like
tcConArgs con_like arg_tys (RecCon (HsRecFields rpats dd)) penv thing_inside
= do { (rpats', res) <- tcMultiple tc_field rpats penv thing_inside
; return (RecCon (HsRecFields rpats' dd), res) }
where
tc_field :: Checker (HsRecField FieldLabel (LPat Name)) (HsRecField TcId (LPat TcId))
tc_field (HsRecField field_lbl pat pun) penv thing_inside
= do { (sel_id, pat_ty) <- wrapLocFstM find_field_ty field_lbl
; (pat', res) <- tcConArg (pat, pat_ty) penv thing_inside
; return (HsRecField sel_id pat' pun, res) }
find_field_ty :: FieldLabel -> TcM (Id, TcType)
find_field_ty field_lbl
= case [ty | (f,ty) <- field_tys, f == field_lbl] of
[] -> failWith (badFieldCon con_like field_lbl)
(pat_ty : extras) ->
ASSERT( null extras )
do { sel_id <- tcLookupField field_lbl
; return (sel_id, pat_ty) }
field_tys :: [(FieldLabel, TcType)]
field_tys = case con_like of
RealDataCon data_con -> zip (dataConFieldLabels data_con) arg_tys
PatSynCon{} -> []
conLikeArity :: ConLike -> Arity
conLikeArity (RealDataCon data_con) = dataConSourceArity data_con
conLikeArity (PatSynCon pat_syn) = patSynArity pat_syn
tcConArg :: Checker (LPat Name, TcSigmaType) (LPat Id)
tcConArg (arg_pat, arg_ty) penv thing_inside
= tc_lpat arg_pat arg_ty penv thing_inside
\end{code}
\begin{code}
addDataConStupidTheta :: DataCon -> [TcType] -> TcM ()
addDataConStupidTheta data_con inst_tys
| null stupid_theta = return ()
| otherwise = instStupidTheta origin inst_theta
where
origin = OccurrenceOf (dataConName data_con)
stupid_theta = dataConStupidTheta data_con
tenv = mkTopTvSubst (dataConUnivTyVars data_con `zip` inst_tys)
inst_theta = substTheta tenv stupid_theta
\end{code}
Note [Arrows and patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Oct 07) Arrow noation has the odd property that it involves
"holes in the scope". For example:
expr :: Arrow a => a () Int
expr = proc (y,z) -> do
x <- term -< y
expr' -< x
Here the 'proc (y,z)' binding scopes over the arrow tails but not the
arrow body (e.g 'term'). As things stand (bogusly) all the
constraints from the proc body are gathered together, so constraints
from 'term' will be seen by the tcPat for (y,z). But we must *not*
bind constraints from 'term' here, because the desugarer will not make
these bindings scope over 'term'.
The Right Thing is not to confuse these constraints together. But for
now the Easy Thing is to ensure that we do not have existential or
GADT constraints in a 'proc', and to short-cut the constraint
simplification for such vanilla patterns so that it binds no
constraints. Hence the 'fast path' in tcConPat; but it's also a good
plan for ordinary vanilla patterns to bypass the constraint
simplification step.
%************************************************************************
%* *
Note [Pattern coercions]
%* *
%************************************************************************
In principle, these program would be reasonable:
f :: (forall a. a->a) -> Int
f (x :: Int->Int) = x 3
g :: (forall a. [a]) -> Bool
g [] = True
In both cases, the function type signature restricts what arguments can be passed
in a call (to polymorphic ones). The pattern type signature then instantiates this
type. For example, in the first case, (forall a. a->a) <= Int -> Int, and we
generate the translated term
f = \x' :: (forall a. a->a). let x = x' Int in x 3
From a type-system point of view, this is perfectly fine, but it's *very* seldom useful.
And it requires a significant amount of code to implement, because we need to decorate
the translated pattern with coercion functions (generated from the subsumption check
by tcSub).
So for now I'm just insisting on type *equality* in patterns. No subsumption.
Old notes about desugaring, at a time when pattern coercions were handled:
A SigPat is a type coercion and must be handled one at at time. We can't
combine them unless the type of the pattern inside is identical, and we don't
bother to check for that. For example:
data T = T1 Int | T2 Bool
f :: (forall a. a -> a) -> T -> t
f (g::Int->Int) (T1 i) = T1 (g i)
f (g::Bool->Bool) (T2 b) = T2 (g b)
We desugar this as follows:
f = \ g::(forall a. a->a) t::T ->
let gi = g Int
in case t of { T1 i -> T1 (gi i)
other ->
let gb = g Bool
in case t of { T2 b -> T2 (gb b)
other -> fail }}
Note that we do not treat the first column of patterns as a
column of variables, because the coerced variables (gi, gb)
would be of different types. So we get rather grotty code.
But I don't think this is a common case, and if it was we could
doubtless improve it.
Meanwhile, the strategy is:
* treat each SigPat coercion (always non-identity coercions)
as a separate block
* deal with the stuff inside, and then wrap a binding round
the result to bind the new variable (gi, gb, etc)
%************************************************************************
%* *
\subsection{Errors and contexts}
%* *
%************************************************************************
\begin{code}
maybeWrapPatCtxt :: Pat Name -> (TcM a -> TcM b) -> TcM a -> TcM b
maybeWrapPatCtxt pat tcm thing_inside
| not (worth_wrapping pat) = tcm thing_inside
| otherwise = addErrCtxt msg $ tcm $ popErrCtxt thing_inside
where
worth_wrapping (VarPat {}) = False
worth_wrapping (ParPat {}) = False
worth_wrapping (AsPat {}) = False
worth_wrapping _ = True
msg = hang (ptext (sLit "In the pattern:")) 2 (ppr pat)
checkExistentials :: [TyVar] -> PatEnv -> TcM ()
checkExistentials [] _ = return ()
checkExistentials _ (PE { pe_ctxt = LetPat {}}) = failWithTc existentialLetPat
checkExistentials _ (PE { pe_ctxt = LamPat ProcExpr }) = failWithTc existentialProcPat
checkExistentials _ (PE { pe_lazy = True }) = failWithTc existentialLazyPat
checkExistentials _ _ = return ()
existentialLazyPat :: SDoc
existentialLazyPat
= hang (ptext (sLit "An existential or GADT data constructor cannot be used"))
2 (ptext (sLit "inside a lazy (~) pattern"))
existentialProcPat :: SDoc
existentialProcPat
= ptext (sLit "Proc patterns cannot use existential or GADT data constructors")
existentialLetPat :: SDoc
existentialLetPat
= vcat [text "My brain just exploded",
text "I can't handle pattern bindings for existential or GADT data constructors.",
text "Instead, use a case-expression, or do-notation, to unpack the constructor."]
badFieldCon :: ConLike -> Name -> SDoc
badFieldCon con field
= hsep [ptext (sLit "Constructor") <+> quotes (ppr con),
ptext (sLit "does not have field"), quotes (ppr field)]
polyPatSig :: TcType -> SDoc
polyPatSig sig_ty
= hang (ptext (sLit "Illegal polymorphic type signature in pattern:"))
2 (ppr sig_ty)
lazyUnliftedPatErr :: OutputableBndr name => Pat name -> TcM ()
lazyUnliftedPatErr pat
= failWithTc $
hang (ptext (sLit "A lazy (~) pattern cannot contain unlifted types:"))
2 (ppr pat)
\end{code}