The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 7.8.0.20140228

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

COLLABORATORS

TITLE :

The Glorious Glasgow Haskell Compilation
System User’s Guide, Version 7.8.0.20140228

ACTION NAME DATE SIGNATURE
WRITTEN BY The GHC Team March 2, 2014
REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 iii
Contents

1 Introduction to GHC 1

1.1 Obtaining GHC 1

1.2 Meta-information: Web sites, mailing lists, €tC.o 1

1.3 Reportingbugsin GHC e e 2

1.4 GHC version numbering policy e 2

1.5 Release notes for version 7.8.1 3

1.5.1 Highlights 3

1.5.2 Fulldetails 5

1.5.2.1 Language o ot e e e e e e e e e e 5

1.522 Compilero 5

1.523 GHCGi.o 6

1.5.2.4 Template Haskell e 6

1.5.25 Runtime system e 6

1.5.2.6 Buildsystem e e e 6

1.5.3 Libraries 6

L53.1 array e 6

1532 base 7

1.5.3.3 bin-package-db e 7

1.53.4 binary e e e 7

1.5.3.5 bytestring e e e 7

1.53.6 Cabal. 8

1.5.3.7 CONtainers i i e e e 8

1.5.3.8 deepseq it e e e e e e e 8

1.5.3.9 directory o e e 8

1.5.3.10 filepath oL 8

153011 ghe-prim o e e e e e e e e e 8

1.53.12 haskell98 8

1.53.13 haskell2010 8

1.53.14 hoopl L 8

15305 hpe . . oo e e e 8

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 iv

1.5.3.16 Anteger-gmpo L e e e e e e 9

1.53.17 old-locale 9

1.53.18 old-time 9

1.5.3.19 Process e 9

1.5.3.20 template-haskell L e 9

15321 tme o e e 9

15322 uniX .. o.oo o e e 9

1.5323 WIn32 9

1.54 Knownbugs e 10

2 Using GHCi 11
2.1 Introductionto GHCi e e e 11
2.2 Loadingsource files e e e e e e e 11
2.2.1 Modules vs. filenames e 12
2.2.2 Making changes and recompilation L. oL 12

2.3 Loadingcompiledcode e 13
2.4 Interactive evaluation at the prompt e e e e 14
24.1 T/Oactions atthe prompt o i e e e e e e e e 14
24.2 Using do—notation atthe prompt 15

243 Multilineinputo e 16

2.4.4 Type,class and other declarations L e e 17

2.4.5 What'sreally in scope at the prompt? 18
24.5.1 Theeffectof :loadonwhatisinscope 18

2.4.5.2 Controlling what is in scope with import oo 19

2.4.5.3 Controlling what is in scope with the :module command 19

2454 Qualifiednames e e e e e e e e e e e e e 20

2455 :moduleand :load.o 20

24.6 The :mainand :runcommandsol L e e e 20
247 Theitvariable 21
24.8 Typedefaultingin GHCi e 21

2.4.9 Using a custom interactive printing function oL oL 22

2.5 The GHCiDebugger e e e e e 23
2.5.1 Breakpoints and inspecting variables L oL 23
2.5.1.1 Setting breakpoints L. L e e e 25

2.5.1.2 Listing and deleting breakpointso oL 26

2.5.2 Single-stepping e 26

2.5.3 Nested breakpoints i e e e e e e e e 27

254 The _resultvariable e 27

2.5.5 Tracingand history L 27

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 v
2.5.6 Debugging eXCeptions i it e e e e 29

2.5.7 Example: inspecting functionso 29

2.5.8 LImitations e e e e e e e 30

2.6 Invoking GHCi e 31
2.6.1 Packages e 31

2.6.2 Extralibraries e e 31

27 GHCicommands i e e e 32
2.8 The :setand :seticommands e 37
2.8.1 GHGIOPONS o oot e e e 37

2.8.2 Setting GHC command-line options in GHCi 38

2.8.3 Setting options for interactive evaluationonlyo 0oL L 38

29 The .ghcifile e 39
2.10 Compiling to object code inside GHCi e 40
2.11 FAQ and Things To Watch Out For e e e 40
Using runghc 42
3.1 Flags . . . o o e e e e 42
Using GHC 43
4.1 Getting started: compiling programs e e e e e e e e 43
4.2 OptONS OVEIVIEW ot v v it e e e it e e e e e e e e e e 43
4.2.1 Command-line argumentsottt e e e e e 44
4.2.2 Command line options in source files L 44

423 Settingoptionsin GHCi 44

4.3 Static, Dynamic, and Mode options e e 44
4.4 Meaningful file suffixes L e e e 45
45 Modesof Operationl e e e e e e e e e e e e e e 45
45.1 Usingghe ——make. e 46
452 Expressionevaluationmode e 47

453 Batchcompilermode L e e e e e 47
4.53.1 Opverriding the default behaviour forafile 47

4.6 VerboSity OPtIONS L e e e 48
4.7 Filenames and separate compilation L e e e e e 49
477.1 Haskell sourcefiles 49
4772 Outputfiles e 49

4773 Thesearchpath o . e 50
4.7.4 Redirecting the compilation output(s) oL i e e e e e e e 50

475 Keeping Intermediate Files oo 52

4.7.6 Redirecting temporary files 52

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 vi

477 Other options related to interface files 52

4.7.8 Therecompilationchecker L 52

4.7.9 How to compile mutually recursive modules o 53
4.7.10 Usingmake L e e e e e e 55
4.7.11 Dependency eneration it i it e e e e e e 56
4.7.12 Orphan modules and instance declarations e 57

4.8 Warnings and sanity-checking 58
4.9 Packages e e e 63
4.9.1 Using Packages e 63

4.9.2 Themain package o i i e e e e e e 65

4.9.3 Consequences of packages for the Haskell language 65
4.9.4 Package Databases e e e e e e e e 65
494.1 The GHC_PACKAGE_PATH environment variable 66

4.9.5 Package IDs, dependencies, and broken packages L oL 66
4.9.6 Package management (the ghc-pkgcommand) L oL 68

4.9.7 Building a package from Haskell source e 70

49.8 InstalledPackageInfo: apackage specification 71

4.10 Optimisation (code iMProvement) v v v v v vt e e e e e e e e e e e e e e e e 73
4.10.1 —Ox: convenient “packages” of optimisation flags. L. 74
4.10.2 —f«: platform-independent flags 74

411 GHC Backends e e e 78
4.11.1 Native code Generator (—fasm) 0 i i i e e e e e e e e e e 78
4.11.2 LLVM Code Generator (—£11VIN) o v v i e e e e e e e e e e e e e e e e e e 78
4.11.3 CCode Generator (—£via—C) v v i i it e e e e e e e 79
4.11.4 Unregisterised compilation 79

4.12 Options related to a particular phase L e e e e e 79
4.12.1 Replacing the program for one or more phases 79
4.12.2 Forcing options to a particular phase e e 80
4.12.3 Options affecting the C pre-processor e 80
4.12.3.1 CPPand String Saps o v v v i e e e e e e e e e e e e e e e 81

4.12.4 Options affecting a Haskell pre-processor L oo 81
4.12.5 Options affecting code generation e e e e e e 81
4.12.6 Options affecting linking L 82

4.13 Using shared libraries e e 85
4.13.1 Building programs that use shared libraries oL 0oL 85
4.13.2 Shared libraries for Haskell packages 85
4.13.3 Shared libraries thatexportaC APT L 86
4.13.4 Finding shared libraries atruntime oL e 86

41341 Unix e 86

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 vii

4.14
4.15

4.16
4.17

4.18
4.19

4.20

4.13.42 MacOS X . . . 87
Using Concurrent Haskell o e e 87
Using SMP parallelism o 88
4.15.1 Compile-time options for SMP parallelism 88
4.15.2 RTS options for SMP parallelism 88
4.15.3 Hints for using SMP parallelism e 89
Platform-specific Flags 89
Running a compiled program L e e e e e 89
4.17.1 Setting RTS options e e 89

4.17.1.1 Setting RTS options on the command line 90

4.17.1.2 Setting RTS options at compile time 90

4.17.1.3 Setting RTS options with the GHCRTS environment variable 90

4.17.1.4 “Hooks” to change RTS behaviour 90
4.17.2 Miscellaneous RTS options o o i i e e e e 91
4.17.3 RTS options to control the garbage collector 91
4.17.4 RTS options for concurrency and parallelism, 95
4.17.5 RTSoptions for profiling 95
4.17.6 TraCing o o o o e e e e e e e 96
4.17.7 RTS options for hackers, debuggers, and over-interested souls 96
4.17.8 Getting information aboutthe RTS 97
Generating and compiling External Core Files 98
Debugging the compiler L e e e e e e e e 98
4.19.1 Dumping out compiler intermediate Structureso oo 99
4.19.2 Formatting dumps e e e e e e e e e e e 100
4.19.3 Suppressing unwanted information L Lol 100
4.19.4 Checking for CONSIStENCY v v i ot e e e e e e e e e e e e e e e e 101
4.19.5 How to read Core syntax (from some ~ddump flags) 101
Flagreference e e e e 102
4.20.1 Verbosity Options e e 102
4.20.2 Alternative modes of Operation e e e e e e e 103
4.20.3 Whichphasestorun 103
4.20.4 Redirecting OULPUL o o v v it e e e e e e e e e e e e e e e e e e 104
4.20.5 Keeping intermediate files oL 104
4.20.6 Temporary files e e e e e e e e e e e 104
4.20.7 Finding imports e e 104
4.20.8 Interface file OPLioNS L. e e e e e e e e 105
4.20.9 Recompilationchecking 105
4.20.10 Interactive-mode OPLiONS v v v it e e e e e e e e e e e e e e e e e e e 105

4.20.11Packages 106

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 viii

4.20.12Language OptionS e e e e e e e e e e e e e e e e e 106
42013 Warnings o .. e e e e e e e e e e e e e e e 110
4.20.14 Optimisation levels L e 112
4.20.15 Individual optimisationso 112
4.20.16 Profiling OptionS e e e e e e e e e e e 114
4.20.17 Program COVerage OptioNS v v v v v v it e e e e e e e e e e e e 115
4.20.18 Haskell pre-processor Options o v v vt i e e e e e e e 115
4.20.19 C pre-processor OPtIONS . . v v . v v v v v v v e e e e e e e e e e e e e e e e e e e 115
4.20.20 Code generation OPtionS o v it e e e e e e e e 115
42021 Linking Options e e e e e e e e e e e 116
4.2022Plugin options e e e e e e e 117
4.20.23 Replacing phases e e e 117
4.20.24 Forcing options to particular phases 118
4.20.25 Platform-specific Optionso e e e e e 118
4.20.26 External core file options 119
4.20.27 Compiler debugging options e e e e e e e e e e 119
4.20.28 Misc compiler Options e e e e e e 121

5 Profiling 122
5.1 Costcentres and cost-centre Stacks Lo e e e e e e 122
5.1.1 Imsertingcostcentresby hand 124

5.1.2 Rules for attributing Costs e e 125

5.2 Compiler options for profiling L e 125
5.3 Time and allocation profiling L e e 126
5.4 Profiling memory USage e e e e e e e e e e 126
5.4.1 RTSoptions for heap profiling e 127

5.4.2 Retainer Profiling L 128
5.4.2.1 Hints for using retainer profiling 129

5.4.3 Biographical Profiling e e 129

544 Actunal memory residency L L Lo e 130

5.5 hp2ps--heap profile to PostScript 130
5.5.1 Manipulatingthe hpfile e 131

5.5.2 Zoominginonregionsof yourprofile 131

5.5.3 Viewing the heap profile of a running program Lo 132

5.54 Viewingaheap profileinreal time L. 132

5.6 Profiling Parallel and Concurrent Programs 132
5.7 Observing Code COVerage o v i i v it e e e e e e e e e e e 133
5.7.1 Asmall example: Reciprocation 133

5.7.2 Options for instrumenting code for coverage Lo oo 134

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 ix
5.73 Thehpctoolkit 134
5.7.3.1 hpcreporto e e e 135

5.732 hpcmarkup e e 135

5733 hpesum e 136

5734 hpccombine 136

5735 hpemap e e e e e e 136

5.73.6 hpcoverlayandhpcdraft 137

5.7.4 Caveats and Shortcomings of Haskell Program Coverage 137

5.8 Using “ticky-ticky” profiling (for implementors) 137
6 Advice on: sooner, faster, smaller, thriftier 138
6.1 Sooner: producing a program more quickly L. Lo 138
6.2 Faster: producing a program that runs quicker 139
6.3 Smaller: producing a program thatis smaller Lo 141
6.4 Thriftier: producing a program that gobbles less heap space 141
7 GHC Language Features 142
7.1 Language optionsttt e e e e e e e e e e e e e e 142
7.2 Unboxed types and primitive Operations ot i e e e e e e e e e e e 142
7.2.1 Unboxed types o v o o i e e e e e e e e e 143

7.22 Unboxed tuples e e e e e e 144

7.3 SyntactiCc @XtenSIONS v L. e e e e e e e e e e 144
7.3.1 Unicode SYNAX v vt e e e e e e e e e e e e e e e e 144

7.3.2 Themagichash0 e 145

7.3.3 Negative literals e 145

7.3.4 Fractional looking integer literals e 145

7.3.5 Hierarchical Modules L e 146

7.3.6 Patternguards. L L e e e e e e 146

737 VIewWpatterns e e e e e e e 147

7.3.8 Pattern SynONYMS it e 149

7.3.9 ntkpatterns.o e e e e 151
7.3.10 Traditional record syntax e e e e 151
7.3.11 The recursive do-notation e e e e 152
7.3.11.1 Recursive binding groups e e e e e 152

7.3.11.2 Themdo notation i e e e 153

7.3.12 Parallel List Comprehensions e 154
7.3.13 Generalised (SQL-Like) List Comprehensions v 154
7.3.14 Monad comprehensions L. L e e 156
7.3.15 Rebindable syntax and the implicit Prelude import L oL, 158

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 X

7.4

7.5

7.6

7.3.16 Postfix Operators e e 158
7.3.17 Tuple SeCtionS o v v e e e e e e e e e e e e e e e e e e 159
7.3.18 Lambda-case e e e e e 159
7.3.19 Empty case alternatives o e e e e e e e e e e e e e e e 159
7.3.20 Multi-way if-eXpressions e e e e e 160
7.3.21 Record field disambiguation e e e e e 160
7.3.22 Record PUNS o L e e e e e e e e e e 161
7.3.23 Record wildcards L e 162
7.3.24 Local Fixity Declarations e 163
7.3.25 Package-qualified imports e e e e e 163
7.3.26 Safe imports L L e e 164
7.3.27 Explicit namespaces in import/eXport L L e e e e e e e e e e e e e 164
7.3.28 Summary of stolen SyntaX e e e e e e e 164
Extensions to data types and type SYNONYMS v v v v vt i e e e e e e e e e e e e 165
7.4.1 Datatypes with N0 CONSLIUCIOrS o vttt e e e e e e e 165
742 Datatype CONEXIS . . . v v v v v v e 165
7.4.3 Infix type constructors, classes, and type variables L. 165
744 TYPE OPEratOrS v v v v v i e 166
7.4.5 Liberalised type SYNONYMS v v v vttt e e e e e e e e e e e e 166
7.4.6 Existentially quantified data constructors oL e e e 168

7.4.6.1 Whyexistential? 168

7.4.6.2 Existentials and type classes e e 168

7.4.6.3 Record Constructors v i vt e e e e e 169

7.4.6.4 Restrictions e e e e e 170
7.4.7 Declaring data types with explicit constructor signatures e . 171
7.4.8 Generalised Algebraic Data Types (GADTS) e e 174
Extensions to the "deriving" mechanismo L 175
7.5.1 Inferred context for deriving clauses 175
7.5.2 Stand-alone deriving declarations L oL 176
7.5.3 Deriving clause for extra classes (Typeable,Data,etc) v v v v v v i v v v v oo oo 177
7.5.4 Automatically deriving Typeableinstances e 177
7.5.5 Generalised derived instances for newtypes e e 177

7.5.5.1 Generalising the deriving clause oL 178

7.5.5.2 A more precise specification L e e 179
Class and instances declarations L e e e 179
7.6.1 Classdeclarations L e e e 179

7.6.1.1 Multi-parameter type classeso o 180

7.6.1.2 The superclasses of a class declaration 180

7.6.1.3 Classmethod types 180

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 Xi

7.6.1.4 Default method signatures 181

7.6.1.5 Nullary type classes o i i e e e e e 181

7.6.2 Functional dependencies 181
7.6.2.1 Rules for functional dependencies 182

7.6.2.2 Background on functional dependencies 182
7.6.2.2.1 Anattempt to use constructorclasseso 183

7.6.2.2.2 Adding functional dependencies 183

7.6.3 Instance declarations Lo e 185
7.6.3.1 Instanceresolution L. 185

7.6.3.2 Relaxed rules for the instancehead L oL 186

7.6.3.3 Relaxed rules for instance contextsol 186

7.6.3.4 Undecidableinstances e e 187

7.6.3.5 Overlapping inStances e e e e 188

7.6.3.6 Type signatures in instance declarationso 190

7.6.4 Overloaded string literals 191
7.6.5 Overloaded lists e 192
7.6.5.1 TheIsListclass. i i e 192

7.6.5.2 Rebindable syntax e e e e e 193

7.6.53 Defaulting e 193

7.6.5.4 Speculation aboutthe future L. 194

7.7 Typefamilies e 194
7.7.1 Datafamilies L. e 194
7.7.1.1 Datafamily declarations 194

7.7.1.2 Datainstance declarationso e 195

7.7.1.3 Overlapof datainstances 196

7.7.2 Synonym families L e e e e e e e e 196
7.7.2.1 Type family declarations 196

7.7.2.2 Typeinstance declarations e e e e 196

7.7.23 Closed type families 197

7.7.2.4 Type family examples L. e e e e e e 197

7.7.2.5 Compatibility and apartness of type family equations 197

7.7.2.6 Decidability of type Ssynonym instances i e e 198

7.71.3 Associated data and type familieso oL 199
7.7.3.1 Associated inStances ool e e e e e 199

7.7.3.2 Associated type synonym defaults o000 Lo 200

7.7.3.3 Scoping of class parameterso o e e e e e 200

7.7.3.4 Instance contexts and associated type and data instances 200

7.7.4 Importand eXport e e e e e e e e e e e e e e e e 200

7741 Exampleso e e e 201

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 Xii

TTA42 INSLANCES o v ot e e e e e e e e e 202

7.7.5 Type families and instance declarations e 202

7.8 Kind polymorphism L e e e 202
7.8.1 Overview of kind polymorphism e e 203

T.8.2 OVEIVIEW o o o ot e 203

7.8.3 Polymorphic kind recursion and complete kind signatures 204

7.8.4 Kind inference in closed type families 205

7.8.5 Kind inference in class instance declarations oL oo 205

7.9 Datatype promotion e e e e e e e e e e e e e e e e 205
7.9.1 Motivation e e e e e 205

7.9.2 OVEIVIEW o o ot e 206

7.9.3 Distinguishing between types and consStructors bt e e e 207

7.9.4 Promoted lists and tuples types L 207

7.9.5 Promoted Literals 207

7.9.6 Promoting existential data CONStIUCIOIS o v v it e e 208

7.9.7 Promoting type OPErators v v v v v e 208

7.10 Equality constraints L. e e e e e e e 208
7.11 The Constraint kind L e 209
7.12 Other type system eXtenSiONS v v vt e e e e e e e e e e e e e 210
7.12.1 Explicit universal quantification (forall) L 210
7.12.2 The contextof atypesignature e 210
7.12.3 Ambiguous types and the ambiguity check L 210
7.12.4 Implicit parameters it e e e e e e e e e e e e e e e 212
7.12.4.1 Implicit-parameter type CONStraints v v v v v et e e e e e e 212

7.12.4.2 Implicit-parameter bindings Lo 213

7.12.4.3 TImplicit parameters and polymorphicrecursion 213

7.12.4.4 Implicit parameters and monomorphism oL Lo 214

7.12.5 Explicitly-kinded quantification e e 214
7.12.6 Arbitrary-rank polymorphism 0oL 215
7.12.6.1 Examples o e e e e e e e e e e e 216

7.12.6.2 Typeinference e 217

7.12.6.3 TImplicit quantification e e e e e e e 217

7.12.7 Impredicative polymorphism L. e 218
7.12.8 Lexically scoped type variables L e e e e e 218
TA2.8.1 OVEIVIEW o o o e e e e 219

7.12.8.2 Declaration type SInatures e it e e e e e e e e e 219

7.12.8.3 Expression type signatureso i i e e e 220

7.12.8.4 Pattern type SIgnaturesot e e e e e e e e e e e e 220

7.12.8.5 Class and instance declarations e 221

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 xii

7.12.9 Bindings and generalisation L. Lo 221
7.12.9.1 Switching off the dreaded Monomorphism Restriction 221

7.12.9.2 Generalised typing of mutually recursive bindings L. 221

7.12.9.3 Let-generalisation e e e e e e e e 222

7.13 Typed Holes o o e e e 222
7.14 Deferring type errors tO TUNLIME v v v v v et v e e e e e e e e e e e e e e e e e e 223
7.14.1 Enabling deferring of type errors e 224
7.14.2 Deferred type errors in GHCi e 224

7.15 Template Haskell oo o e 225
TAS.1 Syntax e e e e e e e e 225
7.15.2 Using Template Haskell e 227
7.15.3 A Template Haskell Worked Example 227
7.15.4 Using Template Haskell with Profiling 228
7.15.5 Template Haskell Quasi-quotation e 228

7.16 AITOW NOtatioN i e e e e e e e e e e e e 230
7.16.1 do-notation forcommands L 232
7.16.2 Conditional commands L. e 233
7.16.3 Defining your own control StruCtUIES v v v v vt e e e e e e e e e e e 233
7.16.4 Primitive CONStIUCES e e e e e 234
7.16.5 Differences withthe paper e e 235
7.16.6 Portability e 235

TAT7 Ban@ patteIns v v v v e 236
7.17.1 Informal description of bang patterns 236
7.17.2 Syntax and SEMANtiCS e e e e e e e e e e e e e e e e e e 237

T8 ASSEIrtiOnS L L L e e e e e e e e 238
T19 Pragmas oo e e e e e e e e e e 238
7.19.1 LANGUAGE pragma st et 238
7.19.2 OPTIONS_GHC pragma o o v i e s e e 239
7.193 INCLUDE pragma it e et e e 239
7.19.4 WARNING and DEPRECATED pragmas i i v it e i et e e e 239
7.19.5 MINIMAL pragmao e e e 240
7.19.6 INLINE and NOINLINE pragmas 0 v ittt e e e e e e e e e e e e 240
7.19.6.1 INLINE pragma e 240

7.19.6.2 INLINABLE pragma it e e et e 241

7.19.6.3 NOINLINE pragma0 e e e e e e e e e 242

7.19.6.4 CONLIKE modifier e et e 242

7.19.6.5 Phasecontrol 242

7.197 LINEpragmao it e e e e 243

7.19.8 RULES pragma o e e 243

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 Xiv

7.20

7.21
7.22
7.23

7.24

7.25

7.26

7.19.9 SPECIALIZE pragma 0 ittt e e e e e e e e e e 243
7.199.1 SPECIALIZEINLINE e e e 244
7.19.9.2 SPECIALIZE for imported functions 244
7.19.9.3 Obsolete SPECIALIZE syntax v v vt i i it e e e e e e e e e 245

7.19.10 SPECIALIZE instance pragma o oo v v v v v vt e e e e e e e 245

TA9ATUNPACK pragma o o ot i e e e e e e e e e e e e e e e e e e e 245

71912 NOUNPACK pragma o v vttt e et e e e e e e e e e e e e 246

TA913SOURCE pragma o vt ot e e e e e e e e e e e e e e e e e e e 246

Rewriterules e 246

7201 Syntax e e e e e e 246

7.20.2 Semanticso oo e e e e e 247

7.20.3 How rules interact with INLINE/NOINLINE and CONLIKE pragmas 248

7.20.4 Listfusion e 249

7.20.5 Specialisation L. e e e e e e e e e e e e e e e 250

7.20.6 Controlling what’s going oninrewriterules 250

7.20.7 COREpragma it e e e e e e e e e e e e e 251

Special built-in functions L. e 251

Generic Classes e e e 251

Generic programming v v e 251

7.23.1 Deriving representations o it e e e e e e e e e e e e e e e e e e e 252

7.23.2 Writing generic functions e e 253

7.23.3 Genericdefaults 253

7.23.4 Moreinformation L e e 254

Roles . . . o 254

7.24.1 Nominal, Representational, and Phantom L o oo 254

7.242 Roleinference e 255

7.24.3 Role annotations L. e e e e e e e 255

Concurrent and Parallel Haskell 0 256

7.25.1 Concurrent Haskell o e 257

7.25.2 Software Transactional Memory e e e e e e e 257

7.25.3 Parallel Haskell 0 e 257

7.25.4 Annotating pure code for parallelism e 257

7.25.5 DataParallel Haskell e 258

Safe Haskell o . e 258

7.26.1 Usesof Safe Haskell e 259
7.26.1.1 Strict type-safety (good style) 259
7.26.1.2 Building secure systems (restricted IO Monads) 259

7.26.2 Safelanguage e 261

7.26.3 Safelmports e 261

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 Y
7.26.4 Trust and Safe Haskell Modes e 262
7.26.4.1 Trustcheck (-fpackage—trustdisabled) 262

7.26.4.2 Trustcheck (-fpackage—trustenabled) 262

7.26.43 Example e e e e e 263

7.26.4.4 Trustworthy Requirements 263

7.26.4.5 Package Trust e 264

7.26.5 Safe Haskell Inference e 264
7.26.6 Safe Haskell Flag Summary e e 264
7.26.7 Safe Compilation L 265

8 Foreign function interface (FFI) 266
8.1 GHCextensionstothe FFI Addendum 266
8. 1.1 Unboxed typPes« o o i e e e e e e e 266

8.1.2 Newtype wrappingof the IOmonad e 266

8.1.3 Primitive imports e e e e e 267

8.1.4 Interruptible foreigncalls L 267

8.1.5 The CAPIcalling conventiono v vt i it e e e et e e e 267

8.1.6 hs_thread_done () @ 0 e s 268

8.2 Usingthe FFI with GHC e e s e 268
8.2.1 Using foreign export and foreign import ccall "wrapper" withGHC 268
8.2.1.1 Usingyour oWn main () v v v v v v v it e e e e e e e 269

8.2.1.2 Making a Haskell library that can be called from foreigncode 270

8.22 Usingheaderfiles. e e 271

8.2.3 Memory Allocation e e 271

8.2.4 Multi-threadingand the FFI 0 272
8.2.4.1 Foreign imports and multi-threading oL oo 272

8.2.4.2 The relationship between Haskell threads and OS threads 272

8.2.4.3 Foreign exports and multi-threading oo oo 272

8244 Ontheuseof hs_exit () i i i i ittt i e e e e 272

8.2.5 Floatingpointandthe FFL e 273

9 Extending and using GHC as a Library 274
0.1 Source annotationsttt e e e e e e e e e e e e e e e e e e e 274
9.1.1 Annotating values L e e e e e e 274

9.1.2 Annotating types e 275

9.1.3 Annotating modules L e 275

9.2 Using GHCasaLibrary e e 275
9.3 Compiler Plugins e e e e 276
9.3.1 Usingcompilerplugins L e 276

9.3.2 Writing compiler plugins 276
9.32.1 CoreToDoinmoredetail e 277

9.3.2.2 Manipulatingbindings L e 277

9.323 Using Annotationsl e e 278

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 xvi
10 An External Representation for the GHC Core Language (For GHC 6.10) 280
10.1 Introduction o L L e e e e e e e 280
10.2 External Grammar of Core L e 281
10.3 Informal Semantics L L e e e e 283
10.3.1 Program Organization and Modules e 283

10.3.2 NAMESPACES . .« « v v v v v v e 284

1033 Typesand Kinds o 285

103.3.1 TYPES . . . o o o e e e e e 285

10.3.3.2 COBICIONS o o o et i e e e e e e 285

10333 Kinds. . . .o oo e e e 285

10.3.3.4 Lifted and Unlifted Types o o o i i 285

10.3.3.5 Type Constructors; Base Kinds and Higher Kinds 285

10.3.3.6 Type Synonyms and Type Equivalence 286

10.3.4 Algebraicdatatypes e e e 286

10.3.5 NEWLYPES . . o v v o e e e e e e e e e e e e e 287

103.6 Expression Forms L 287

10.3.7 Expression Evaluation 289

10.4 Primitive Module L e e 290
10.4.1 Non-concurrent BackEnd L 291

10.4.2 Literals o e e 291

11 What to do when something goes wrong 292
11.1 When the compiler “does the wrong thing” e 292
11.2 When your program “does the wrong thing” L e 292

12 Other Haskell utility programs 294
12.1 “Yacc for Haskell”: happy e e e 294
12.2 Writing Haskell interfaces to C code: hse2hs 294
12.2.1 command line Syntaxo i e e e e e e e e e e e e e e 294

1222 INPUESYNEAX . . . o v v v v e 295

12.2.3 CuStom CONSIIUCES . . . v v v v v v e ettt e e e e e e e e e e e e e e e e e 296

12.2.4 Cross-compilation L 296

13 Running GHC on Win32 systems 298
13.1 Starting GHC on Windows platforms e e e 298
13.2 Running GHCion Windows L e e e 298
13.3 Interacting with the terminal L. 298
13.4 Differences in library behaviour 299
13.5 Using GHC (and other GHC-compiled executables) withcygwin 299
13.5.1 Background e 299

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 Xvii

13.52 Theproblem e 299
13.53 Thingstodo e 299
13.6 Building and using Win32 DLLs o 0 e e e e e e 300
13.6.1 CreatingaDLL 0 e 300
13.6.2 Making DLLs to be called from other languages 301
13.6.2.1 Usingfrom VBA e e 301

13.6.2.2 Usingfrom C++ L o e e e e 302

14 Known bugs and infelicities 303
14.1 Haskell standards vs. Glasgow Haskell: language non-compliance 303
14.1.1 Divergence from Haskell 98 and Haskell 2010 303
14.1.1.1 Lexical syntax 0 vt it e e e e e 303

14.1.1.2 Context-free Syntax o v v i v e e e e e e e e e e e e e e e e e 303

14.1.1.3 Expressions and patternso e 304

14.1.1.4 Declarations and bindings L 304

14.1.1.5 Module system and interface files304

14.1.1.6 Numbers, basic types, and built-inclasses 304

14.1.177 InPreludesupport it e 305

14.1.1.8 The Foreign Function Interface 305

14.1.2 GHC'’s interpretation of undefined behaviour in Haskell 98 and Haskell 2010 306

14.2 Known bugs or infelicities L e e e e e e 306
14.2.1 Bugsin GHC o 306
14.2.2 Bugs in GHCi (the interactive GHC) e 307

15 Index 308

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 xviii

The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW AND THE CON-
TRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 1/316

Chapter 1

Introduction to GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch compilation system for the Haskell 98
language.

GHC has two main components: an interactive Haskell interpreter (also known as GHC1), described in Chapter 2, and a batch
compiler, described throughout Chapter 4. In fact, GHC consists of a single program which is just run with different options to
provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an interactive session and used in the
same way as interpreted code, and in fact when using GHCi most of the library code will be pre-compiled. This means you get
the best of both worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your program being actively
developed.

GHC supports numerous language extensions, including concurrency, a foreign function interface, exceptions, type system ex-
tensions such as multi-parameter type classes, local universal and existential quantification, functional dependencies, scoped type
variables and explicit unboxed types. These are all described in Chapter 7.

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time to spare) GHC can produce
pretty fast code. Alternatively, the default option is to compile as fast as possible while not making too much effort to optimise
the generated code (although GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell program in a call-graph like
structure. See Chapter 5 for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the "download" link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to find out how to get the sources,
and build it on your system. Note that GHC itself is written in Haskell, so you will still need to install GHC in order to build it.

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:

* GHC home page

e GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appropriate.

http://www.haskell.org/
http://www.haskell.org/ghc/
http://ghc.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/
http://ghc.haskell.org/trac/ghc/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 2/316

glasgow-haskell-users: This list is for GHC users to chat among themselves. If you have a specific question about GHC, please
check the FAQ first.
list email address: glasgow-haskell-users @haskell.org
subscribe at: http://www.haskell.org/mailman/listinfo/glasgow—haskell-users.
admin email address: glasgow-haskell-users-admin@haskell.org
list archives: http://www.haskell.org/pipermail/glasgow—haskell-users/

ghc-devs: The hardcore GHC developers hang out here.

list email address: ghc-devs @haskell.org

subscribe at: http://www.haskell.org/mailman/listinfo/ghc—devs.
admin email address: ghc-devs-admin@haskell.org

list archives: http://www.haskell.org/pipermail/ghc-devs/

There are several other haskell and GHC-related mailing lists served by www.haskell.org. Goto http://www.hask
ell.org/mailman/listinfo/ for the full list.

Some Haskell-related discussion also takes place in the Usenet newsgroup comp . lang. functional.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please see this wiki page for information
on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable Releases Stable branches are numbered x . y, where y is even. Releases on the stable branch x . y are numbered x.y. z,
where z (>= 1) is the patchlevel number. Patchlevels are bug-fix releases only, and never change the programmer interface
to any system-supplied code. However, if you install a new patchlevel over an old one you will need to recompile any code
that was compiled against the old libraries.

The value of __ GLASGOW_HASKELL___ (see Section 4.12.3) for a major release x . y . z is the integer xyy (if y is a single
digit, then a leading zero is added, so for example in version 6.8.2 of GHC we would have __ GLASGOW_HASKELL__ =
=608).

Stable snapshots We may make snapshot releases of the current stable branch available for download, and the latest sources are
available from the git repositories.

Stable snapshot releases are named x . y . z. YYYYMMDD. where YyYYYMMDD is the date of the sources from which the snap-
shot was built, and x . y . z+1 is the next release to be made on that branch. For example, 6.8.1.20040225 would be a
snapshot of the 6 . 8 branch during the development of 6. 8. 2.

The value of __GLASGOW_HASKELL___ for a snapshot release is the integer xyy. You should never write any conditional
code which tests for this value, however: since interfaces change on a day-to-day basis, and we don’t have finer granularity
in the values of __ GLASGOW_HASKELL__, you should only conditionally compile using predicates which test whether
___GLASGOW_HASKELL___is equal to, later than, or earlier than a given major release.

Unstable snapshots We may make snapshot releases of the HEAD available for download, and the latest sources are available
from the git repositories.

Unstable snapshot releases are named x . y . yyYymMMDD. where vyyyMMDD is the date of the sources from which the snap-
shot was built. For example, 6.7.20040225 would be a snapshot of the HEAD before the creation of the 6 . 8 branch.

The value of __ GLASGOW_HASKELL___ for a snapshot release is the integer xyy. You should never write any conditional
code which tests for this value, however: since interfaces change on a day-to-day basis, and we don’t have finer granularity
in the values of ___GLASGOW_HASKELL__, you should only conditionally compile using predicates which test whether
__GLASGOW_HASKELL___is equal to, later than, or earlier than a given major release.

http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:glasgow-haskell-users-admin@haskell.org
http://www.haskell.org/pipermail/glasgow-haskell-users/
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
mailto:ghc-devs-admin@haskell.org
http://www.haskell.org/pipermail/ghc-devs/
http://www.haskell.org/mailman/listinfo/
http://www.haskell.org/mailman/listinfo/
http://ghc.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
http://ghc.haskell.org/trac/ghc/wiki/Repositories
http://www.haskell.org/ghc/dist/current/dist/
http://ghc.haskell.org/trac/ghc/wiki/Repositories

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 3/316

The version number of your copy of GHC can be found by invoking ghc with the ——version flag (see Section 4.6).

1.5 Release notes for version 7.8.1

The significant changes to the various parts of the compiler are listed in the following sections. There have also been numerous
bug fixes and performance improvements over the 7.6 branch.

1.5.1 Highlights

The highlights, since the 7.6 branch, are:

* OS X Mavericks with XCode 5 is now properly supported by GHC. As a result of this, GHC now uses Clang to preprocess
Haskell code by default for Mavericks builds.

Note that normally, GHC used gcc as the preprocessor for Haskell code (as it was the default everywhere,) which implements
—traditional behavior. However, Clang is not 100% compatible with GCC’s ~traditional as it is rather implemen-
tation specified and does not match any specification. Clang is also more strict.

As a result of this, when using Clang as the preprocessor, some programs which previously used ~XCPP and the preprocessor
will now fail to compile. Users who wish to retain the previous behavior are better off using cpphs as an external preprocessor
for the time being.

In the future, we hope to fix this by adopting a better preprocessor implementation independent of the C compiler (perhaps
cpphs itself,) and ship that instead.

* By default, GHC has a new warning enabled, ~fwarn-typed-holes, which causes the compiler to respond with the types
of unbound variables it encounters in the source code. (It is reminiscient of the "holes" feature in languages such as Agda.) For
more information, see Section 7.13.

* GHC can now perform simple evaluation of type-level natural numbers, when using the Dat aKinds extension. For example,
given a type-level constraint such as (x + 3) ~ 5, GHC is able to infer that x is 2. Similarly, GHC can now understand
type-level identities suchas x + 0 ~ x.

Note that the solving of these equations is only used to resolve unification variables - it does not generate new facts in the type
checker. This is similar to how functional dependencies work.

* Itis now possible to declare a "closed’ type family when using the TypeFamilies extension. A closed type family
cannot have any instances created other than the ones in its definition. For more information, see Section 7.7.2.3.

e Use of the GeneralizedNewtypeDeriving extension is now subject to role checking, to ensure type safety of the derived
instances. As this change increases the type safety of GHC, it is possible that some code that previously compiled will no longer
work. For more information, see Section 7.24.

As a result of this change, GeneralizedNewtypeDeriving can now be used with Safe Haskell.

* GHC now supports overloading list literals using the new OverloadedLists extension. For more information, see Sec-
tion 7.6.5.

* GHC now supports pattern synonyms, enabled by the ~-XPatternSynonyms extension, allowing you to name and abstract
over patterns more easily. For more information, see Section 7.3.8.
Note: For the GHC 7.8.1 version, this language feature should be regarded as a preview.

* There has been significant overhaul of the type inference engine and constraint solver, meaning it should be faster and use less
memory.

* By default, GHC will now unbox all "small" strict fields in a data type. A "small" data type is one whose size is equivalent to
or smaller than the native word size of the machine. This means you no longer have to specify UNPACK pragmas for e.g. strict
Int fields. This also applies to floating-point values.

* GHC now has a brand-new I/O manager that scales significantly better for larger workloads compared to the previous one. It
should scale linearly up to approximately 32 cores.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 4/316

e The LLVM backend now supports 128- and 256-bit SIMD operations.
Note carefully: this is only available with the LLVM backend, and should be considered experimental.

* The new code generator, after significant work by many individuals over the past several years, is now enabled by default. This
is a complete rewrite of the STG to Cmm transformation. In general, your programs may get slightly faster.

The old code generator has been removed completely.

* GHC now has substantially better support for cross compilation. In particular, GHC now has all the necessary patches to
support cross compilation to Apple iOS, using the LLVM backend.

* PrimOps for comparing unboxed values now return Int# instead of Bool. This change is backwards incompatible. See this
GHC wiki page for instructions how to update your existing code. See here for motivation and discussion of implementation
details.

* New PrimOps for atomic memory operations. The casMutVar# PrimOp was introduced in GHC 7.2 (debugged in 7.4). This
release also includes additional PrimOps for compare-and-swap (casArray# and casIntArray#) and one for fetch-and-
add (fetchAddIntArray#).

* On Linux, FreeBSD and Mac OS X, GHCi now uses the system dynamic linker by default, instead of its built in (static) object
linker. This is more robust cross-platform, and fixes many long-standing bugs (for example: constructors and destructors, weak
symbols, etc work correctly, and several edge cases in the RTS are fixed.)

As a result of this, GHCi (and Template Haskell) must now load dynamic object files, not static ones. To assist this, there is
a new compilation flag, ~dynamic—-too, which when used during compilation causes GHC to emit both static and dynamic
object files at the same time. GHC itself still defaults to static linking.

Note that Cabal will correctly handle —~dynamic—-too for you automatically, especially when —XTemplateHaskell is
needed - but you must tell Cabal you are using the TemplateHaskell extension.

Note that you must be using Cabal and Cabal-install 1.18 for it to correctly build dynamic shared libraries for you.
Currently, Dynamic GHCi and ~dynamic-too are not supported on Windows (32bit or 64bit.)
* Typeable is now poly-kinded, making Typeablel, Typeable?2, etc., obsolete, deprecated, and relegated to Data.

01dTypeable. Furthermore, user-written instances of Typealble are now disallowed: use deriving or the new extension
—-XAutoDeriveTypeable, which will create Typeable instances for every datatype declared in the module.

* GHC now has a parallel compilation driver. When compiling with ——make (which is on by default,) you may also specify —
jN in order to compile ¥ modules in parallel. (Note: this will automatically scale on multicore machines without specifying
+RTS -N to the compiler.)

* GHC now has support for a new pragma, { -#MINIMAL #-}, allowing you to explicitly declare the minimal complete defini-
tion of a class. Should an instance not provide the minimal required definitions, a warning will be emitted. See Section 7.19.5
for details.

e In GHC 7.10, Applicative will become a superclass of Monad, potentially breaking a lot of user code. To ease this
transition, GHC now generates warnings when definitions conflict with the Applicative-Monad Proposal (AMP).

A warning is emitted if a type is an instance of Monad but not of Applicative, MonadPlus butnotAlternative, and
when a local function named join, <*> or pure is defined.

The warnings are enabled by default, and can be controlled using the new flag —f [no—] warn—amp.
» Using the new InterruptibleFFI extension, it’s possible to now declare a foreign import as interruptible, as

opposed to only safe or unsafe. An interruptible foreign call is the same as a safe call, but may be interrupted by
asynchronous Haskell exceptions, such as those generated by throwTo or t imeout.

For more information (including the exact details on how the foreign thread is interrupted,) see Section 8.1.4.
* GHC’s internal compiler pipeline is now exposed through a Hooks module inside the GHC API. These hooks allow you to
control most of the internal compiler phase machinery, including compiling expressions, phase control, and linking.

Note: this interface will likely see continuous refinement and API changes in future releases, so it should be considered a
preview.

http://ghc.haskell.org/trac/ghc/wiki/NewPrimopsInGHC7.8
http://ghc.haskell.org/trac/ghc/wiki/NewPrimopsInGHC7.8
http://ghc.haskell.org/trac/ghc/wiki/PrimBool

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 5/316

e The LLVM code generator has been fixed to support dynamic linking. This enables runtime-linking (e.g. GHCi) support for
architectures without support in GHC’s own runtime linker (e.g. ARM).

Note: Tables-next-to-code is disabled when building on ARM with binutil’s 1d due to a bug in 1d.

* GHC now uses Unicode left/right single quotation marks (i.e. U+2018 and U+2019) in compiler messages if the current locale
supports Unicode characters.

1.5.2 Full details

1.5.2.1 Language
» There is a new extension, NullaryTypeClasses, which allows you to declare a type class without any parameters.

* There is a new extension, NumDecimals, which allows you to specify an integer using compact "floating literal" syntax. This
lets you say things like 1.2e6 ::Integer instead of 1200000

* There is a new extension, NegativeLiterals, which will cause GHC to interpret the expression —~123 as fromIntegr
al (-123). Haskell 98 and Haskell 2010 both specify that it should instead desugar to negate (fromIntegral 123)

* There is a new extension, Empt yCase, which allows to write a case expression with no alternatives case ...of {}.

* The IncoherentInstances extension has seen a behavioral change, and is now ’liberated’” and less conservative during
instance resolution. This allows more programs to compile than before.

Now, Incoherent Instances will always pick an arbitrary matching instance, if multiple ones exist.

* A new built-in function coerce is provided that allows to safely coerce values between types that have the same run-time-
presentation, such as newtypes, but also newtypes inside containers. See the haddock documentation of coerce and of the class
Coercible for more details.

This feature is included in this release as a technology preview, and may change its syntax and/or semantics in the next release.

e The new pragma, {-#MINIMAL #-}, allows to explicitly declare the minimal complete definition of a class. Should an
instance not provide the minimal required definitions, a warning will be emitted.

See Section 7.19.5 for more details.

1.5.2.2 Compiler

* GHC can now build both static and dynamic object files at the same time in a single compilation pass, when given the —
dynamic-too flag. This will produce both a statically-linkable . o object file, and a dynamically-linkable . dyn_o file. The
output suffix of the dynamic objects can be controlled by the flag ~dynosuf.

Note that GHC still builds statically by default.
* GHC now supports a -——show-options flag, which will dump all of the flags it supports to standard out.

* GHC now supports warning about overflow of integer literals, enabled by ~fwarn-overflowed-literals. Itis enabled
by default.

* It’s now possible to switch the system linker on Linux (between GNU gold and GNU 1d) at runtime without problem.

* The —-fwarn—-dodgy—-imports flag now warns in the case an import statement hides an entity which is not exported.
* The LLVM backend was overhauled and rewritten, and should hopefully be easier to maintain and work on in the future.

* GHC now detects annotation changes during recompilation, and correctly persists new annotations.

* There is a new set of primops for utilizing hardware-based prefetch instructions, to help guide the processor’s caching decisions.

Currently, the primops get translated into the associated hardware supported prefetch instructions only with the LLVM backend
and x86/amd64 backends. On all other backends, the prefetch primops are currently erased at code generation time.

https://sourceware.org/bugzilla/show_bug.cgi?id=16177
../libraries/base-4.7.0.0/Data-Coerce.html#v%3Acoerce
../libraries/base-4.7.0.0/Data-Coerce.html#t%3ACoercible

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 6/316

1.5.2.3 GHCi

* The monomorphism restriction is now turned off by default in GHCi.

* GHCi now supports a prompt 2 setting, which allows you to customize the continuation prompt of multi-line input. For more
information, see Section 2.7.

* The new : shows paths command shows the current working directory and the current search path for Haskell modules.
* On Linux, the static GHCi linker now supports weak symbols.

* The (static) GHCi linker (except 64-bit Windows) now runs constructors for linked libraries. This means for example that C
code using __attribute__ ((constructor)) can now properly be loaded into GHCi.

Note: destructors are not supported.

1.5.2.4 Template Haskell

» Template Haskell now supports Roles.
* Template Haskell now supports annotation pragmas.
* Typed Template Haskell expressions are now supported. See Section 7.15 for more details.

» Template Haskell declarations, types, patterns, and untyped expressions are no longer typechecked at all. This is a backwards-
compatible change since it allows strictly more programs to be typed.

1.5.2.5 Runtime system

* The RTS linker can now unload object code at runtime (when using the GHC API Ob jLink module.) Previously, GHC would
not unload the old object file, causing a gradual memory leak as more objects were loaded over time.

Note that this change in unloading behavior only affects statically linked binaries, and not dynamic ones.
* The performance of StablePtrs and StableNames has been improved.

¢ The default maximum stack size has increased. Previously, it defaulted to 8m (equivalent to passing +RTS —K8m. Now, GHC
will use up-to 80% of the physical memory available at runtime.

1.5.2.6 Build system

* GHC >= 7.4 is now required for bootstrapping.
* GHC can now be built with Clang, and use Clang as the preprocessor for Haskell code. Only Clang version 3.4 (or Apple
LLVM Clang 5.0) or beyond is reliably supported.

Note that normally, GHC uses gcc as the preprocessor for Haskell code, which implements -traditional behavior.
However, Clang is not 100% compatible with GCC’s ~traditional as it is rather implementation specified, and is more
strict.

As a result of this, when using Clang as the preprocessor, some programs which previously used —~XCPP and the preprocessor
will now fail to compile. Users who wish to retain the previous behavior are better off using cpphs.

1.5.3 Libraries
1.5.3.1 array

¢ Version number 0.5.0.0 (was 0.4.0.1)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 7/316

1.5.3.2 base

Version number 4.7.0.0 (was 4.6.0.1)

The Control.Category module now has the PolyKinds extension enabled, meaning that instances of Category no
longer need be of kind « —> * —> .

There are now Foldable and Traversable instances for Either a, Const r,and (,) a.

There is now a Monoid instance for Const.

There is now a Data instance for Data.Version.

There are now Data, Typeable, and Generic instances for the types in Data.Monoid and Control.Applicative
There are now Num instances for Data.Monoid.Product and Data.Monoid. Sum

There are now Eq, Ord, Show and Read instances for ZipList.

There are now Eq, Ord, Show and Read instances for Down.

There are now Eq, Ord, Show, Read and Generic instances for types in GHC.Generics (U1, Parl, Recl, K1, M1, (:+:
)o (ix2), (1.1)).

A zero-width unboxed poly-kinded Proxy# was added to GHC.Prim. It can be used to make it so that there is no the
operational overhead for passing around proxy arguments to model type application.

Control.Concurrent .MVar has a new implementation of readMVar, which fixes a long-standing bug where readM
Var is only atomic if there are no other threads running putMvar. readMvVar now is atomic, and is guaranteed to return the
value from the first putMvVar. There is also a new t ryReadMVar which is a non-blocking version.

There are now byte endian-swapping primitives available in Data.Word, which use optimized machine instructions when
available.

Data.Bool now exports bool ::a -> a —-> Bool -> a, analogously to maybe and either in their respective
modules.

Rewrote portions of Text .Print f, and made changes to Numeric (added Numeric.showFFloatAlt and Numeric.
showGFloatAlt) and GHC.Float (added formatRealFloatAlt) to support it. The rewritten version is extensible to
user types, adds a "generic" format specifier "$v", extends the print £ spec to support much of C’s print £ (3) functionality,
and fixes the spurious warnings about using Text .Printf.printf at (IO a) while ignoring the return value. These
changes were contributed by Bart Massey.

The minimal complete definitions for all type-classes with cyclic default implementations have been explicitly annotated with
the new {—#MINIMAL #-} pragma.

Control.Applicative.WrappedMonad, which can be used to convert a Monad to an Applicative, has now a
Monad m => Monad (WrappedMonad m) instance.

1.5.3.3 bin-package-db

This is an internal package, and should not be used.

1.5.3.4 binary

Version number 0.7.1.0 (was 0.5.1.1)

1.5.3.5 bytestring

Version number 0.10.4.0 (was 0.10.0.0)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 8/316

1.5.3.6 Cabal

¢ Version number 1.18.1.3 (was 1.16.0)

1.5.3.7 containers

¢ Version number 0.5.4.0 (was 0.5.0.0)

1.5.3.8 deepseq

e Version number 1.3.0.2 (was 1.3.0.1)

1.5.3.9 directory

¢ Version number 1.2.0.2 (was 1.2.0.1)

e The function findExecutables now correctly checks to see if the execute bit is set on Linux, rather than just looking in
SPATH.

* There are several new functions for finding files, including findFiles and findFilesWith, which allow you to search
for a file given a set of filepaths, and run a predicate over them.

1.5.3.10 filepath

¢ Version number 1.3.0.2 (was 1.3.0.1)

1.5.3.11 ghc-prim

¢ Version number 0.3.1.0 (was 0.3.0.0)
* The type-classes Eg and Ord have been annotated with the new { -#MINIMAL #-} pragma.

* There is a new type exposed by GHC . Types, called SPEC, which can be used to inform GHC to perform call-pattern special-
isation extremely aggressively. See Section 4.10 for more details concerning -fspec-constr.

1.5.3.12 haskell98

¢ Version number 2.0.0.3 (was 2.0.0.2)

1.5.3.13 haskell2010

e Version number 1.1.1.1 (was 1.1.1.0)

1.5.3.14 hoopl

¢ Version number 3.10.0.0 (was 3.9.0.0)

1.5.3.15 hpc

¢ Version number 0.6.0.1 (was 0.6.0.0)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 9/316

1.5.3.16 integer-gmp

¢ Version number 0.5.1.0 (was 0.5.0.0)

1.5.3.17 old-locale

¢ Version number 1.0.0.6 (was 1.0.0.5)

1.5.3.18 old-time

e Version number 1.1.0.2 (was 1.1.0.1)

1.5.3.19 process

¢ Version number 1.2.0.0 (was 1.1.0.2)

» Several bugs have been fixed, including deadlocks in readProcess and readProcessWithExitCode.

1.5.3.20 template-haskell

¢ Version number 2.9.0.0 (was 2.8.0.0)
* Typed Template Haskell expressions are now supported. See Section 7.15 for more details.
* There is now support for roles.

* There is now support for annotation pragmas.

1.5.3.21 time

e Version number 1.4.1 (was 1.4.1)

1.5.3.22 unix

¢ Version number 2.7.0.0 (was 2.6.0.0)

e A crash in getGroupEntryForID (and related functions like getUserEntryForID and getUserEntryForName)
in multi-threaded applications has been fixed.

* The functions getGroupEntryForID and getUserEntryForID now fail with a isDoesNotExist error when the
specified ID cannot be found.

1.5.3.23 Win32

¢ Version number 2.3.0.1 (was 2.3.0.0)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 10/ 316

1.5.4 Known bugs

* On OS X Mavericks, when using Clang as the C preprocessor, Haddock has a bug that causes it to fail to generate documenta-
tion, with an error similar to the following:
<no location info>:
module ’xhtml-3000.2.1:Main’ is defined in multiple files: dist-bindist/build/tmp <

-72252/Text/XHtml.hs
dist-bindist/build/tmp <«

-72252/Text/XHtml/ <
Frameset.hs
dist-bindist/build/tmp <«
-72252/Text/XHtml/ <
Strict.hs
dist-bindist/build/tmp <«
-72252/Text/XHtml/ <
Transitional.hs

This only affects certain packages. This is due to a bad interaction with Clang, which we hope to resolve soon.
Note that when using cabal-install, this only effects the package documentation, not installation or building.

* On OS X 10.7 and beyond, with default build settings, the runtime system currently suffers from a fairly large (approx. 30%)
performance regression in the parallel garbage collector when using ~threaded.

This is due to the fact that the OS X 10.7+ toolchain does not (by default) support register variables, or a fast __thread
implementation. Note that this can be worked around by building GHC using GCC instead on OS X platforms, but the binary

distribution then requires GCC later.

* On Windows, —dynamic-too is unsupported.

* On Windows, we currently don’t ship dynamic libraries or use a dynamic GHCi, unlike Linux, FreeBSD or OS X.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 11/316

Chapter 2

Using GHCi

GHCi' is GHC’s interactive environment, in which Haskell expressions can be interactively evaluated and programs can be inter-
preted. If you’re familiar with Hugs, then you’ll be right at home with GHCi. However, GHCi also has support for interactively
loading compiled code, as well as supporting all” the language extensions that GHC provides. . GHCi also includes an interactive
debugger (see Section 2.5).

2.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci

GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which the prompt is shown. As the banner
says, you can type : ? to see the list of commands available, and a half line description of each of them. We’ll explain most of
these commands as we go along, and there is complete documentation for all the commands in Section 2.7.

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span several lines - as soon as you press
enter, GHCi will attempt to evaluate it.

In Haskell, a 1et expression is followed by in. However, in GHCi, since the expression can also be interpreted in the IO
monad, a 1et binding with no accompanying in statement can be signalled by an empty line, as in the above example.

2.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

! The “i’ stands for “Interactive”

2 except foreign export, at the moment

http://www.haskell.org/hugs/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 12/316

main = print (fac 20)
fac 0 =1
fac n = n » fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current directory” then we will need to
change to the right directory in GHCi:

Prelude> :cd dir

where di r is the directory (or folder) in which you saved Main.hs.
To load a Haskell source file into GHC], use the : 1oad command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.

*Main>

GHCi has loaded the Ma in module, and the prompt has changed to “xMain>" to indicate that the current context for expressions
typed at the prompt is the Main module we just loaded (we’ll explain what the » means later in Section 2.4.5). So we can now
type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost” module to the : 1oad command
(hint: :1load can be abbreviated to : 1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will
discover which modules are required, directly or indirectly, by the topmost module, and load them all in dependency order.

2.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module ? Answer: it looks for the file M. hs, or M. 1hs. This
means that for most modules, the module name must match the filename. If it doesn’t, GHCi won’t be able to find it.

There is one exception to this general rule: when you load a program with : 1oad, or specify it when you invoke ghci, you can
give a filename rather than a module name. This filename is loaded if it exists, and it may contain any module you like. This is
particularly convenient if you have several Ma in modules in the same directory and you can’t call them all Main.hs.

The search path for finding source files is specified with the —1i option on the GHCi command line, like so:

or it can be set using the : set command from within GHCi (see Section 2.8.2)*

One consequence of the way that GHCi follows dependencies to find modules to load is that every module must have a source
file. The only exception to the rule is modules that come from a package, including the Prelude and standard libraries such as
I0 and Complex. If you attempt to load a module for which GHCi can’t find a source file, even if there are object and interface
files for the module, you’ll get an error message.

2.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give the : reload command. The
program will be recompiled as necessary, with GHCi doing its best to avoid actually recompiling modules if their external
dependencies haven’t changed. This is the same mechanism we use to avoid re-compiling modules in the batch compilation
setting (see Section 4.7.8).

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory of the shell from which it was started.
If you started GHCi from the “Start” menu in Windows, then the current directory is probably something like C:\Documents and Settings\user
name.

4 Note that in GHCi, and ——make mode, the —i option is used to specify the search path for source files, whereas in standard batch-compilation mode the
—1 option is used to specify the search path for interface files, see Section 4.7.3.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 13/316

2.3 Loading compiled code

When you load a Haskell source module into GHC], it is normally converted to byte-code and run using the interpreter. However,
interpreted code can also run alongside compiled code in GHCi; indeed, normally when GHCi starts, it loads up a compiled copy
of the base package, which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than interpreted code, but takes about 2x
longer to produce (perhaps longer if optimisation is on). So it pays to compile the parts of a program that aren’t changing very
often, and use the interpreter for the code being actively developed.

When loading up source modules with : 1oad, GHCi normally looks for any corresponding compiled object files, and will use
one in preference to interpreting the source if possible. For example, suppose we have a 4-module program consisting of modules
A, B, C, and D. Modules B and C both import D only, and A imports both B & C:

A
/ N\

B C
\ /
D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c D.hs

Prelude> :load A

Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

*Main>

In the messages from the compiler, we see that there is no line for D. This is because it isn’t necessary to compile D, because the
source and everything it depends on is unchanged since the last compilation.

At any time you can use the command : show modules to get a list of the modules currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source file is handy for this), the
compiler will no longer be able to use the object file, because it might be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really changed, its interface remained the same,
and the recompilation checker determined that A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs
*Main> :load A
Compiling D
Compiling B

D.hs, interpreted)
B.hs, interpreted)
Compiling C C.hs, interpreted)
Compiling A A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

P N

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 14 /316

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module may only depend on other compiled
modules, and in this case C depends on D, which doesn’t have an object file, so GHCi also rejected C’s object file. Ok, so let’s
also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by : reload, only : load:

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

The automatic loading of object files can sometimes lead to confusion, because non-exported top-level definitions of a module
are only available for use in expressions at the prompt when the module is interpreted (see Section 2.4.5). For this reason, you
might sometimes want to force GHCi to load a module using the interpreter. This can be done by prefixing a * to the module
name or filename when using : 1oad, for example

Prelude> :load %A
Compiling A (A.hs, interpreted)
*A>

When the « is used, GHCi ignores any pre-compiled object code and interprets the module. If you have already loaded a number
of modules as object code and decide that you wanted to interpret one of them, instead of re-loading the whole set you can use
:add =M to specify that you want M to be interpreted (note that this might cause other modules to be interpreted too, because
compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the —~fob ject —code option (see Section 2.10).

HINT: since GHCi will only use a compiled object file if it can be sure that the compiled version is up-to-date, a good technique
when working on a large program is to occasionally run ghc —-make to compile the whole project (say before you go for lunch
:-), then continue working in the interpreter. As you modify code, the changed modules will be interpreted, but the rest of the
project will remain compiled.

2.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 5+5

10

2.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression of type IO a for some a, then
GHCi executes it as an IO-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated to IO a. For example

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 15/316

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):

* The result type is an instance of Show.

e The result type is not ().

For example, remembering that putStrLn ::String -> IO ():

Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }
hello

llyesll

2.4.2 Using do—notation at the prompt
GHCi actually accepts statements rather than just expressions at the prompt. This means you can bind values and functions to
names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax of a statement in a Haskell do expression.
However, there’s no monad overloading here: statements typed at the prompt must be in the IO monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <-return 42 means “execute return 42 inthe I0 monad, and bind the result to x”. We can then use x
in future statements, for example to print it as we did above.

If -fprint-bind-result is set then GHCi will print the result of a statement if and only if:

* The statement is not a binding, or it is a monadic binding (p <-e) that binds exactly one variable.

* The variable’s type is not polymorphic, is not (), and is an instance of Show

Of course, you can also bind normal non-IO expressions using the 1et-statement:

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p <-e) is strict (it evaluates e),
whereas with the 1et form, the expression isn’t evaluated immediately:

Prelude> let x = error "help!"
Prelude> print x

**% Exception: help!

Prelude>

Note that 1et bindings do not automatically print the value bound, unlike monadic bindings.

Hint: you can also use 1et-statements to define functions at the prompt:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 16 /316

Prelude> let add a b = a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups of mutually recursive functions,
because the complete definition has to be given on a single line, using explicit braces and semicolons instead of layout:

Prelude> let { f opn [] = n ; £ opn (h:t) =h ‘op' £f opnt }
Prelude> £ (+) 0 [1..3]

6

Prelude>

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in : { and : } (each on a single line
of its own):

Prelude> :{

Prelude| let { g op n []

Prelude| ; gopn (h:t) =h ‘op' gop n t
Prelude| }

Prelude| :}

Prelude> g (x) 1 [1..3]

6

= n

Such multiline commands can be used with any GHCi command, and the lines between : { and :} are simply merged into
a single line for interpretation. That implies that each such group must form a single valid command when merged, and that
no layout rule is used. The main purpose of multiline commands is not to replace module loading but to make definitions in
.ghci-files (see Section 2.9) more readable and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and printed by the GHCi command line
interface (for more information on exceptions, see the module Control .Exception in the libraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that are in scope in the current module
context.

WARNING: temporary bindings introduced at the prompt only last until the next : Load or : reload command, at which time
they will be simply lost. However, they do survive a change of context with :module: the temporary bindings just move to the
new location.

HINT: To get a list of the bindings currently in scope, use the : show bindings command:

Prelude> :show bindings

x :: Int

Prelude>

HINT: if you turn on the +t option, GHCi will show the type of each variable bound by a statement. For example:

Prelude> :set +t

Prelude> let (x:xs) = [1l..]
x :: Integer
xs :: [Integer]

2.4.3 Multiline input

Apart fromthe : { ... :} syntax for multi-line input mentioned above, GHCi also has a multiline mode, enabled by : set +m,
in which GHCi detects automatically when the current statement is unfinished and allows further lines to be added. A multi-line
input is terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude]|

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 17 /316

Further bindings can be added to this 1et statement, so GHCi indicates that the next line continues the previous one by changing
the prompt. Note that layout is in effect, so to add more bindings to this 1et we have to line them up:

Prelude> :set +m
Prelude> let x = 42
Prelude] y = 3
Prelude|

Prelude>

Explicit braces and semicolons can be used instead of layout, as usual:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

Note that after the closing brace, GHCi knows that the current statement is finished, so no empty line is required.
Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| 1lift $ do
Control.Monad.State]| putStrln "Hello World!"
Control.Monad.State| print 1
Control.Monad.State]|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do

Prelude| putStrLn "Hello, World!"
Prelude| "C

Prelude>

2.4.4 Type, class and other declarations
At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type, newtype, class, insta
nce, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eg, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :i T

data T =A | B | C —— Defined at <interactive>:2:6
instance Enum T —-- Defined at <interactive>:2:45
instance Eq T —-- Defined at <interactive>:2:30

instance Ord T —-- Defined at <interactive>:2:34
instance Show T —-- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter a declaration to fix a problem with
it or extend it. But there’s a gotcha: when a new type declaration shadows an older one, there might be other declarations that
refer to the old type. The thing to remember is that the old type still exists, and these other declarations still refer to the old type.
However, while the old and the new type have the same name, GHCi will treat them as distinct. For example:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 18/316

Prelude> data T = A | B

Prelude> let f A = True; f B = False
Prelude> data T = A | B | C

Prelude> f A

<interactive>:2:3:
Couldn’t match expected type ‘main::Interactive.T’
with actual type ‘T’
In the first argument of ‘f’, namely ‘A’
In the expression: f A
In an equation for ‘it’: it = f A
Prelude>

The old, shadowed, version of T is displayed as main: : Interactive.T by GHCi in an attempt to distinguish it from the
new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances, with one exception. Since type-
family instances are not permitted to overlap, but you might want to re-define one, a type-family instance replaces any earlier
type instance with an identical left hand side. (See Section 7.7.)

2.4.5 What'’s really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi provides a flexible way to control
exactly how the context for an expression is constructed:

e The :1oad, :add, and : reload commands (Section 2.4.5.1).
e The import declaration (Section 2.4.5.2).

e The :module command (Section 2.4.5.3).

The command : show imports will show a summary of which modules contribute to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and type J<tab> then GHCi will expand
itto “Just .

2.4.5.1 The effect of : Load on what is in scope
The : 1oad, :add, and : reload commands (Section 2.2 and Section 2.3) affect the top-level scope. Let’s start with the simple
cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible identifiers are exactly those that
would be visible in a Haskell source file with no import declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is «Main, which indicates that we are typing expressions in the context of the top-level of the Main module.
Everything that is in scope at the top-level in the module Main we just loaded is also in scope at the prompt (probably including
Prelude, as long as Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of module that is contributing to the scope for
expressions typed at the prompt. Without the *, just the exports of the module are visible.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 19/316

NOTE: for technical reasons, GHCi can only support the x-form for modules that are interpreted. Compiled modules and package
modules can only contribute their exports to the current scope. To ensure that GHCi loads the interpreted version of a module,
add the = when loading the module, e.g. : load =M.

In general, after a : 1 oad command, an automatic import is added to the scope for the most recently loaded "target" module, in a
x-form if possible. For example, if you say : load foo.hs bar.hs and bar.hs contains module Bar, then the scope will
be set to xBar if Bar is interpreted, or if Bar is compiled it will be set to Prelude Bar (GHCi automatically adds Prelude
if it isn’t present and there aren’t any »-form modules). These automatically-added imports can be seen with : show imports:

Prelude> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
Ok, modules loaded: Main.

*Main> :show imports

:module +xMain —-- added automatically

*Main>

and the automatically-added import is replaced the next time you use : 1oad, :add, or : reload. It can also be removed by :
module as with normal imports.

2.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in any mixture of x and non-+ forms.
GHCi combines the scopes from all of these modules to form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt shows the modules that are currently
imported, but it omits details about hiding, as, and so on. To see the full story, use : show imports:

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude —-- implicit

import System.IO

import Data.Map as Map

Prelude System.IO Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit Prelude import, just like in a
Haskell module.

With multiple modules in scope, especially multiple »-form modules, it is likely that name clashes will occur. Haskell specifies
that name clashes are only reported when an ambiguous identifier is used, and GHCi behaves in the same way for expressions
typed at the prompt.

2.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module command, whose syntax is this:

:module [+|-] [*]lmodl ... [*]modn

Using the + form of the module commands adds modules to the current scope, and — removes them. Without either + or —,
the current scope is replaced by the set of modules specified. Note that if you use this form and leave out Prelude, an implicit
Prelude import will be added automatically.

The :module command provides a way to do two things that cannot be done with ordinary import declarations:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 20/316

e :module supports the ~ modifier on modules, which opens the full top-level scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M.The import syntax is cumulative (as in a Haskell
module), so this is the only way to subtract from the scope.

2.4.5.4 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import qualified declaration for every
module in every package, and every module currently loaded into GHCi. This behaviour can be disabled with the flag —fno-
implicit-import-qualified.

2455 :moduleand :load

It might seem that :module/import and : load/:add/: reload do similar things: you can use both to bring a module into
scope. However, there is a very important difference. GHCi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : 1oad, :add and : reload, and can be shown with :
show modules.

* The set of modules that are currently in scope at the prompt. This set is modified by import and :module, and it is also
modified automatically after : 1oad, :add, and : reload, as described above. The set of modules in scope can be shown
with : show imports.

You can add a module to the scope (via :module or import) only if either (a) it is loaded, or (b) it is a module from a package
that GHCi knows about. Using :module or import to try bring into scope a non-loaded module may result in the message
“module M is not loaded”.

2.4.6 The :main and : run commands

When a program is compiled and executed, it can use the get Args function to access the command-line arguments. However,
we cannot simply pass the arguments to the main function while we are testing in ghci, as the main function doesn’t take its
directly.

Instead, we can use the :main command. This runs whatever main is in scope, with any arguments being treated the same as
command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[llfooll, llbarllj

We can also quote arguments which contains characters like spaces, and they are treated like Haskell strings, or we can just use
Haskell list syntax:

Prelude> :main foo "bar baz"
["foo", "bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo", "bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run command:

Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo", "bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo", "bar baz"]

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 21/316

2.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt, GHCi implicitly binds its value to the
variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an IO type, then it transforms it as follows:
an expression e turns into

let it = e;
print it
which is then run as an IO-action.
Hence, the original expression must have a type which is an instance of the Show class, or GHCi will complain:
Prelude> id
<interactive>:1:0:

No instance for (Show (a —> a))

arising from use of ‘print’ at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))

In the expression: print it
In a "do’ expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type IO a for some a, then it will be bound to the result of the IO computation, which is of
type a. eg.:

Prelude> Time.getClockTime
Wed Mar 14 12:23:13 GMT 2001
Prelude> print it

Wed Mar 14 12:23:13 GMT 2001

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the old value of it is lost.

2.4.8 Type defaulting in GHCi

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse []) (which is what GHCi computes
here) has type Show a => String and how that displays depends on the type a. For example:

ghci> reverse ([] :: String)
nn

ghci> reverse ([] :: [Int])

[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s type-defaulting rules (Section 4.3.4
of the Haskell 2010 Report) as follows. The standard rules take each group of constraints (C1 a, C2 a, ..., Cn a) for
each type variable a, and defaults the type variable if

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 22/316

1. The type variable a appears in no other constraints
2. All the classes C1i are standard.

3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ~-XExtendedDefaultRules flag is given, the following additional differences
apply:

* Rule 2 above is relaxed thus: All of the classes C1i are single-parameter type classes.
¢ Rule 3 above is relaxed this: At least one of the classes Ci is numeric, or is Show, Eq, or Ord.

* The unit type () is added to the start of the standard list of types which are tried when doing type defaulting.

The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than O as the type is defaulted to () rather than Integer.

The motivation for the change is that it means IO a actions default to IO (), which in turn means that ghci won’t try to print
a result when running them. This is particularly important for print £, which has an instance that returns I0 a. However, it
is only able to return undefined (the reason for the instance having this type is so that printf doesn’t require extensions to the
class system), so if the type defaults to Integer then ghci gives an error when running a printf.

See also Section 2.4.1 for how the monad of a computational expression defaults to TO if possible.

2.4.9 Using a custom interactive printing function

[New in version 7.6.1] By default, GHCi prints the result of expressions typed at the prompt using the function System. IO.
print. Its type signature is Show a => a —-> IO (), and it works by converting the value to St ring using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-ascii characters.

The —-interactive-print flag allows to specify any function of type C a => a -> IO (), for some constraint C, as
the function for printing evaluated expressions. The function can reside in any loaded module or any registered package.

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi with the command:

ghci -interactive-print=SpecPrinter.sprinter SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 23/316

A custom pretty printing function can be used, for example, to format tree-like and nested structures in a more readable way.
The -interactive-print flag can also be used when running GHC in —e mode:

% ghc -e "[1,2,3]" -interactive-print=SpecPrinter.sprint SpecPrinter
[

2.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computation in order to examine the values
of variables. The debugger is integrated into GHCi, and is turned on by default: no flags are required to enable the debugging
facilities. There is one major restriction: breakpoints and single-stepping are only available in interpreted modules; compiled
code is invisible to the debugger”.

The debugger provides the following:
* The ability to set a breakpoint on a function definition or expression in the program. When the function is called, or the

expression evaluated, GHCi suspends execution and returns to the prompt, where you can inspect the values of local variables
before continuing with the execution.

» Execution can be single-stepped: the evaluator will suspend execution approximately after every reduction, allowing local
variables to be inspected. This is equivalent to setting a breakpoint at every point in the program.

» Execution can take place in fracing mode, in which the evaluator remembers each evaluation step as it happens, but doesn’t
suspend execution until an actual breakpoint is reached. When this happens, the history of evaluation steps can be inspected.

» Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to help locate the source of an exception
in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features provide a useful second-best, which
will often be enough to establish the context of an error. For instance, it is possible to break automatically when an exception is
thrown, even if it is thrown from within compiled code (see Section 2.5.6).

2.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [] = []
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at gsort.hs:2:15-46
*Main>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading that directly.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 24 /316

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in this case gsort . hs. Specifically,
it picks the leftmost complete subexpression on that line on which to set the breakpoint, which in this case is the expression
(gsort left ++ [a] ++ gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [a]
right :: [a]

[gsort.hs:2:15-46] +Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are currently stopped at a breakpoint, and
the location: [gsort.hs:2:15-46]. To further clarify the location, we can use the : 1ist command:

gsort.hs:2:15-46] *Main> :1list

[

1 gsort [] = []

2 gsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :1ist command lists the source code around the current breakpoint. If your output device supports it, then GHCi will
highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the breakpoint was placed (a, left, right),
and additionally a binding for the result of the expression (_result). These variables are just like other variables that you
might define in GHCi; you can use them in expressions that you type at the prompt, you can ask for their types with : type, and
so on. There is one important difference though: these variables may only have partial types. For example, if we try to display
the value of left:

[gsort.hs:2:15-46] xMain> left

<interactive>:1:0:
Ambiguous type variable ‘a’ in the constraint:
‘Show a’ arising from a use of ‘print’ at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

\

This is because gsort is a polymorphic function, and because GHCi does not carry type information at runtime, it cannot
determine the runtime types of free variables that involve type variables. Hence, when you ask to display left at the prompt,
GHCi can’t figure out which instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print, which can inspect the actual runtime value of a variable
and attempt to reconstruct its type. If we try it on left:

[gsort.hs:2:15-46] xMain> :set —-fprint-evld-with-show
[gsort.hs:2:15-46] xMain> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that 1eft is bound to an unevaluated computation (a suspension, or
thunk), and :print does not force any evaluation. The idea is that :print can be used to inspect values at a breakpoint
without any unfortunate side effects. It won’t force any evaluation, which could cause the program to give a different answer
than it would normally, and hence it won’t cause any exceptions to be raised, infinite loops, or further breakpoints to be triggered
(see Section 2.5.3). Rather than forcing thunks, : print binds each thunk to a fresh variable beginning with an underscore, in
this case _t 1.

The flag -fprint—-evld-with—-show instructs :print to reuse available Show instances when possible. This happens
only when the contents of the variable being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force instead of :print. The : force
command behaves exactly like : print, except that it forces the evaluation of any thunks it encounters:

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression, but found that this affected performance
considerably, hence the current restriction to just the free variables.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 25/316

[gsort.hs:2:15-46] +Main> :force left
left = [4,0,3,1]

Now, since : force has inspected the runtime value of 1eft, it has reconstructed its type. We can see the results of this type
reconstruction:

[gsort.hs:2:15-46] xMain> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_tl :: [Integer]

Not only do we now know the type of 1eft, but all the other partial types have also been resolved. So we can ask for the value
of a, for example:

[gsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than evaluating the whole expression
with : force. For example:

[gsort.hs:2:15-46] xMain> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *Main> seq _tl ()

()
[gsort.hs:2:15-46] xMain> :print right
right = 23 : (_t2::[Integer])

We evaluated only the _t1 thunk, revealing the head of the list, and the tail is another thunk now bound to _t2. The seqg
function is a little inconvenient to use here, so you might want to use : de f to make a nicer interface (left as an exercise for the
reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] xMain> :continue
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [a]
right :: [a]

[gsort.hs:2:15-46] xMain>

The execution continued at the point it previously stopped, and has now stopped at the breakpoint for a second time.

2.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to name a top-level function:

:break identifier

Where identifier names any top-level function in an interpreted module currently loaded into GHCi (qualified names may be
used). The breakpoint will be set on the body of the function, when it is fully applied but before any pattern matching has taken
place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 26/316

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subexpression that begins and ends on that
line. If two complete subexpressions start at the same column, the longest one is picked. If there is no complete subexpression
on the line, then the leftmost expression starting on the line is picked, and failing that the rightmost expression that partially or
completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpression that encloses that location on
which to set the breakpoint. Note: GHC considers the TAB character to have a width of 1, wherever it occurs; in other words
it counts characters, rather than columns. This matches what some editors do, and doesn’t match others. The best advice is to
avoid tab characters in your source code altogether (see —fwarn—tabs in Section 4.8).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not considered to be breakpoint locations
(unless the variable is the right-hand-side of a function definition, lambda, or case alternative). The rule of thumb is that all
redexes are breakpoint locations, together with the bodies of functions, lambdas, case alternatives and binding statements. There
is normally no breakpoint on a let expression, but there will always be a breakpoint on its body, because we are usually interested
in inspecting the values of the variables bound by the let.

2.5.1.2 Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using : show breaks:

*Main> :show breaks
[0] Main gsort.hs:1:11-12
[1] Main gsort.hs:2:15-46

To delete a breakpoint, use the : delete command with the number given in the output from : show breaks:

*Main> :delete 0
*Main> :show breaks
[1] Main gsort.hs:2:15-46

To delete all breakpoints at once, use :delete x*.

2.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a useful tool for identifying the source
of a bug. GHC:i offers two variants of stepping. Use : step to enable all the breakpoints in the program, and execute until the
next breakpoint is reached. Use : steplocal to limit the set of enabled breakpoints to those in the current top level function.
Similarly, use : stepmodule to single step only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at gsort.hs:5:7-47
_result :: IO ()

The command :step expr begins the evaluation of expr in single-stepping mode. If expr is omitted, then it single-steps
from the current breakpoint. : steplocal and : stepmodule work similarly.

The : 11ist command is particularly useful when single-stepping, to see where you currently are:

[gsort.hs:5:7-47] *Main> :1list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[

gsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it automatically do : 1ist:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 27 /316

[gsort.hs:5:7-47] *Main> :set stop :list
[gsort.hs:5:7-47] xMain> :step

Stopped at gsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *Main>

2.5.3 Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a second breakpoint, the new breakpoint
becomes the “current” one, and the old one is saved on a stack. An arbitrary number of breakpoint contexts can be built up in
this way. For example:

[gsort.hs:2:15-46] «Main> :st gsort [1, 3]
Stopped at gsort.hs: (1,0)-(3,55)
_result :: [a]

[gsort.hs: (1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with : step gsort [1,3]. This
new evaluation stopped after one step (at the definition of gsort). The prompt has changed, now prefixed with . . ., to indicate
that there are saved breakpoints beyond the current one. To see the stack of contexts, use : show context:

[gsort.hs: (1,0)-(3,55)] x*Main> :show context
-=> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs: (1,0)-(3,55)] xMain>

To abandon the current evaluation, use : abandon:

[gsort.hs: (1,0)-(3,55)] *Main> :abandon
[gsort.hs:2:15-46] *Main> :abandon
*Main>

2.5.4 The result variable

When stopped at a breakpoint or single-step, GHCi binds the variable _result to the value of the currently active expression.
The value of _result is presumably not available yet, because we stopped its evaluation, but it can be forced: if the type
is known and showable, then just entering _result at the prompt will show it. However, there’s one caveat to doing this:
evaluating _result will be likely to trigger further breakpoints, starting with the breakpoint we are currently stopped at (if we
stopped at a real breakpoint, rather than due to : step). So it will probably be necessary to issue a : cont inue immediately
when evaluating _result. Alternatively, you can use : force which ignores breakpoints.

2.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”. Traditional imperative debuggers
usually provide some kind of stack-tracing feature that lets you see the stack of active function calls (sometimes called the
“lexical call stack™), describing a path through the code to the current location. Unfortunately this is hard to provide in Haskell,
because execution proceeds on a demand-driven basis, rather than a depth-first basis as in strict languages. The “stack* in GHC’s
execution engine bears little resemblance to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack
in addition to the dynamic call stack, and in fact this is exactly what our profiling system does (Chapter 5), and what some
other Haskell debuggers do. For the time being, however, GHCi doesn’t maintain a lexical call stack (there are some technical

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 28/316

challenges to be overcome). Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: essentially
this is like single-stepping backwards, and should in many cases provide enough information to answer the “how did I get here?”
question.

To use tracing, evaluate an expression with the : trace command. For example, if we set a breakpoint on the base case of
gsort:

*Main> :1list gsort

1 gsort [] = []

2 gsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1
Breakpoint 1 activated at gsort.hs:1:11-12
*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] xMain>

We can now inspect the history of evaluation steps:

[gsort.hs:1:11-12] xMain> :hist
= : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55
-3 : gsort.hs: (1,0)-(3,55)
-4 : gsort.hs:2:15-24
-5 : gsort.hs:2:15-46
-6 : gsort.hs:3:24-38
-7 : gsort.hs:3:23-55
-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back:

[gsort.hs:1:11-12] xMain> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] xMain>

Note that the local variables at each step in the history have been preserved, and can be examined as usual. Also note that the
prompt has changed to indicate that we’re currently examining the first step in the history: —1. The command : forward can
be used to traverse forward in the history.

The :trace command can be used with or without an expression. When used without an expression, tracing begins from the
current breakpoint, just like : step.

The history is only available when using : t race; the reason for this is we found that logging each breakpoint in the history cuts
performance by a factor of 2 or more. By default, GHCi remembers the last 50 steps in the history, but this can be changed with
the —~-fghci-hist-size=n option).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 29/316

2.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come from?”. Exceptions such as
those raised by error or head [] have no context information attached to them. Finding which particular call to head in
your program resulted in the error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see Section 5.3).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and without modifying or recompiling the
source code. One way would be to set a breakpoint on the location in the source code that throws the exception, and then use
:trace and :history to establish the context. However, head is in a library and we can’t set a breakpoint on it directly.
For this reason, GHCi provides the flags ~fbreak-on-exception which causes the evaluator to stop when an exception
is thrown, and -fbreak-on-error, which works similarly but stops only on uncaught exceptions. When stopping at an
exception, GHCi will act just as it does when a breakpoint is hit, with the deviation that it will not show you any source code
location. Due to this, these commands are only really useful in conjunction with : trace, in order to log the steps leading up to
the exception. For example:

*Main> :set —-fbreak-on-exception
*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>

_exception :: e

[<exception thrown>] xMain> :hist
-1 : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs: (1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] xMain> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] xMain> :force as
*xx Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] xMain> :print as
as = "b’ : ’'c’ : (_tl::[Char])

The exception itself is bound to a new variable, _exception.

Breaking on exceptions is particularly useful for finding out what your program was doing when it was in an infinite loop. Just
hit Control-C, and examine the history to find out what was going on.

2.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint and a function is in scope, the debugger
cannot show you the source code for it; however, it is possible to get some information by applying it to some arguments and
observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process by means of an example. To keep
things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a—>b) —-> [a] —> [b]
map £ [] = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 30/316

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs: (4,0)-(5,12)

_result :: [b]
X :: a

f ::a->b
xs :: [a]

GHCi tells us that, among other bindings, £ is in scope. However, its type is not fully known yet, and thus it is not possible to
apply it to any arguments. Nevertheless, observe that the type of its first argument is the same as the type of x, and its result type
is shared with _result.

As we demonstrated earlier (Section 2.5.1), the debugger has some intelligence built-in to update the type of £ whenever the
types of x or _result are discovered. So what we do in this scenario is force x a bit, in order to recover both its type and the
argument part of f.

*Main> seq x ()

*Main> :print x

x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type of £ has been too:

*Main> :t x

x :: Integer
*Main> :t £
f :: Integer -> Db

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = £ 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:
Ambiguous type variable ‘b’ in the constraint:
‘Show b’ arising from a use of ‘print’ at <interactive>:1:0
*Main> :p b
b = (_t2::a)
*Main> seq b ()
)
*Main> :t b
b :: a
*Main> :p b
b = Just 10
*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer —-> Maybe Integer
*Main> £ 20

Just 20

*Main> map £ [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of £, we had to do some more type reconstruction in order to recover the result type of £. But after that,
we are free to use £ normally.

2.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under evaluation, the second evaluation will hang.
The reason is that GHC knows the variable is under evaluation, so the new evaluation just waits for the result before continuing,

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 31/316

but of course this isn’t going to happen because the first evaluation is stopped at a breakpoint. Control-C can interrupt the hung
evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main), stop at a breakpoint, and ask for the
value of the CAF at the prompt again.

 Implicit parameters (see Section 7.12.4) are only available at the scope of a breakpoint if there is an explicit type signature.

2.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc —-—interactive. One or more modules or filenames can also be specified
on the command line; this instructs GHCi to load the specified modules or filenames (and all the modules they depend on), just
as if you had said : load modules at the GHCi prompt (see Section 2.7). For example, to start GHCi and load the program
whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Chapter 4) also make sense in interactive mode. The ones that don’t
make sense are mostly obvious.

2.6.1 Packages

Most packages (see Section 4.9.1) are available without needing to specify any extra flags at all: they will be automatically loaded
the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the ~package flag:

$ ghci -package readline
GHCi, version 6.8.1: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set —-package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be dumped back into the Prelude.

2.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal —11ib option. (The term library here refers to libraries
of foreign object code; for using libraries of Haskell source code, see Section 2.2.1.) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1ib1ib. so. GHCi searches the following places
for libraries, in this order:

¢ Paths specified using the —Lpath command-line option,

* the standard library search path for your system, which on some systems may be overridden by setting the LD_LIBRARY_P
ATH environment variable.

On systems with . d11-style shared libraries, the actual library loaded will be 1ib.d11. Again, GHCi will signal an error if it
can’t find the library.

GHCi can also load plain object files (. o or . obj depending on your platform) from the command-line. Just add the name the
object file to the command line.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends on (see Section 4.12.6).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 32/316

2.7 GHCi commands

GHCi commands all begin with :’ and consist of a single command name followed by zero or more parameters. The command
name may be abbreviated, with ambiguities being resolved in favour of the more commonly used commands.

:abandon Abandons the current evaluation (only available when stopped at a breakpoint).

:add [*]module .. Add module(s) to the current target set, and perform a reload. Normally pre-compiled code for the
module will be loaded if available, or otherwise the module will be compiled to byte-code. Using the » prefix forces the
module to be loaded as byte-code.

:back Travel back one step in the history. See Section 2.5.5. See also: :trace, :history, : forward.

:break [identifier | [module] line [column]] Set a breakpoint on the specified function or line and column.
See Section 2.5.1.1.

:browse[!] [[*]module] ... Displays the identifiers exported by the module module, which must be either loaded into GHCi
or be a member of a package. If module is omitted, the most recently-loaded module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope (Section 2.4.5).

There are two variants of the browse command:

* If the « symbol is placed before the module name, then all the identifiers in scope in module (rather that just its exports)
are shown.
The *-form is only available for modules which are interpreted; for compiled modules (including modules from pack-
ages) only the non-x form of :browse is available.

 Data constructors and class methods are usually displayed in the context of their data type or class declaration. However,
if the ! symbol is appended to the command, thus :browse!, they are listed individually. The !-form also annotates
the listing with comments giving possible imports for each group of entries. Here is an example:

Prelude> :browse! Data.Maybe
—-— not currently imported

Data.Maybe.catMaybes :: [Maybe a] —-> [a]
Data.Maybe.fromdust :: Maybe a -> a
Data.Maybe.fromMaybe :: a —> Maybe a —-> a
Data.Maybe.isJust :: Maybe a —-> Bool
Data.Maybe.isNothing :: Maybe a —-> Bool
Data.Maybe.listToMaybe :: [a] —-> Maybe a
Data.Maybe.mapMaybe :: (a —> Maybe b) -> [a] —-> [b]
Data.Maybe.maybeToList :: Maybe a —-> [a]
—— imported via Prelude

Just :: a —> Maybe a

data Maybe a = Nothing | Just a

Nothing :: Maybe a

maybe :: b -> (a -> b) -> Maybe a -> Db

This output shows that, in the context of the current session (ie in the scope of Prelude), the first group of items
from Data.Maybe are not in scope (althought they are available in fully qualified form in the GHCi session - see Sec-
tion 2.4.5), whereas the second group of items are in scope (via Prelude) and are therefore available either unqualified,
or with a Prelude. qualifier.

:ed dir Changes the current working directory to dir. A ‘~’ symbol at the beginning of dir will be replaced by the contents
of the environment variable HOME. See also the : show paths command for showing the current working directory.
NOTE: changing directories causes all currently loaded modules to be unloaded. This is because the search path is usually

expressed using relative directories, and changing the search path in the middle of a session is not supported.

:cmd expr Executes expr as a computation of type IO String, and then executes the resulting string as a list of GHCi
commands. Multiple commands are separated by newlines. The : cmd command is useful with : def and : set stop.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 33/316

:complete type [n-][m] string-literal This command allows to request command completions from GHCi even when
interacting over a pipe instead of a proper terminal and is designed for integrating GHCi’s completion with text editors and
IDEs.

When called, : complete prints the n' to m™ completion candidates for the partial input string-literal for the
completion domain denoted by type. Currently, only the repl domain is supported which denotes the kind of completion
that would be provided interactively by GHCi at the input prompt.

If omitted, n and m default to the first or last available completion candidate respectively. If there are less candidates than
requested via the range argument, n and m are implicitly capped to the number of available completition candidates.

The output of : complete begins with a header line containing three space-delimited fields:

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* astring literal denoting a common prefix to be added to the returned completion candidates.

The header line is followed by 1 lines each containing one completion candidate encoded as (quoted) string literal. Here
are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"

"Foreign.Storable"

Prelude> :complete repl "map"

33"

" map "

"mapM"

"mapM_"

Prelude> :complete repl 5-10 "map"

o3 ""

:continue Continue the current evaluation, when stopped at a breakpoint.

:ctags [filename] :etags [filename] Generates a “tags” file for Vi-style editors (: ctags) or Emacs-style editors (:
etags). If no filename is specified, the default tags or TAGS is used, respectively. Tags for all the functions, constructors
and types in the currently loaded modules are created. All modules must be interpreted for these commands to work.

:def[!] [name expr] :def is used to define new commands, or macros, in GHCi. The command :def name expr
defines a new GHCi command : name, implemented by the Haskell expression expr, which must have type String ->
I0 String. When : name argsis typed at the prompt, GHCi will run the expression (name args), take the resulting
String, and feed it back into GHCi as a new sequence of commands. Separate commands in the result must be separated
by ‘\n’.
That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi command which doesn’t take any
arguments or produce any results, it just outputs the current date & time:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 34 /316

Prelude> let date _ = Time.getClockTime >>= print >> return ""
Prelude> :def date date

Prelude> :date

Fri Mar 23 15:16:40 GMT 2001

Here’s an example of a command that takes an argument. It’s a re-implementation of : cd:

Prelude> let mycd d = Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd

Or I could define a simple way to invoke “ghc —--make Main” in the current directory:

Prelude> :def make (_ -> return ":! ghc —--make Main")

We can define a command that reads GHCi input from a file. This might be useful for creating a set of bindings that we
want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the ‘.’ Unix shell command that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an existing command name results in
an error unless the : def! form is used, in which case the old command with that name is silently overwritten.

:delete * | num ... Delete one or more breakpoints by number (use : show breaks to see the number of each
breakpoint). The » form deletes all the breakpoints.

:edit [file] Opens an editor to edit the file £ile, or the most recently loaded module if £ile is omitted. The editor to
invoke is taken from the EDITOR environment variable, or a default editor on your system if EDITOR is not set. You can
change the editor using : set editor.

:etags See :ctags.

:force identifier ... Prints the value of identifier in the same way as :print. Unlike :print, :force
evaluates each thunk that it encounters while traversing the value. This may cause exceptions or infinite loops, or further
breakpoints (which are ignored, but displayed).

:forward Move forward in the history. See Section 2.5.5. See also: :trace, :history, :back.
:help, : ? Displays a list of the available commands.
Repeat the previous command.

:history [num] Display the history of evaluation steps. With a number, displays that many steps (default: 20). For use
with :trace; see Section 2.5.5. To set the number of history entries stored by GHCi, use ~-fghci-hist-size=n.

:info[!]name ... Displays information about the given name(s). For example, if name is a class, then the class methods and
their types will be printed; if name is a type constructor, then its definition will be printed; if name is a function, then its
type will be printed. If name has been loaded from a source file, then GHCi will also display the location of its definition
in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid showing irrelevant information, an
instance is shown only if (a) its head mentions name, and (b) all the other things mentioned in the instance are in scope
(either qualified or otherwise) as a result of a : Load or :module commands.

The command :info! works in a similar fashion but it removes restriction (b), showing all instances that are in scope
and mention name in their head.

:issafe[module] Displays Safe Haskell information about the given module (or the current module if omitted). This in-
cludes the trust type of the module and its containing package.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 35/316

:kind[!] type Infers and prints the kind of type. The latter can be an arbitrary type expression, including a partial applica-
tion of a type constructor, such as Either Int. Infact, : kind even allows you to write a partial application of a type
synonym (usually disallowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: =«

ghci> :k T

T t: *« —=> % —> %

ghci> :k T Int

T Int :: x —> «

If you specify the optional "!", GHC will in addition normalise the type by expanding out type synonyms and evaluating
type-function applications, and display the normalised result.

:1list identifier Lists the source code around the definition of identifier or the current breakpoint if not given. This
requires that the identifier be defined in an interpreted module. If your output device supports it, then GHCi will highlight
the active subexpression in bold.

:list [module] 1ine Lists the source code around the given line number of module. This requires that the module be
interpreted. If your output device supports it, then GHCi will highlight the active subexpression in bold.

:load [*]module ... Recursively loads the specified modules, and all the modules they depend on. Here, each module must
be a module name or filename, but may not be the name of a module in a package.

All previously loaded modules, except package modules, are forgotten. The new set of modules is known as the target set.
Note that : 1oad can be used without any arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the module will be compiled to byte-
code. Using the » prefix forces a module to be loaded as byte-code.

After a : 1oad command, the current context is set to:

* module, if it was loaded successfully, or
* the most recently successfully loaded module, if any other modules were loaded as a result of the current : 1oad, or

e Prelude otherwise.

:main arg; ...arg, Whenaprogram is compiled and executed, it can use the get Args function to access the command-
line arguments. However, we cannot simply pass the arguments to the main function while we are testing in ghci, as the
main function doesn’t take its arguments directly.

Instead, we can use the :main command. This runs whatever main is in scope, with any arguments being treated the
same as command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[Ilfoo", "bar'l]

We can also quote arguments which contains characters like spaces, and they are treated like Haskell strings, or we can
just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo", "bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo", "bar baz"]

Finally, other functions can be called, either with the -main-1is flag or the : run command:

Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo", "bar baz"]

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 36/316

Prelude> :run bar ["foo", "bar baz"]
bar
["foo", "bar baz"]

:module [+|-] [*]lmod; ...[*]mod,,import mod Setsor modifies the current context for statements typed at the
prompt. The form import mod is equivalent to :module +mod. See Section 2.4.5 for more details.

:print names .. Prints a value without forcing its evaluation. : print may be used on values whose types are unknown or
partially known, which might be the case for local variables with polymorphic types at a breakpoint. While inspecting the
runtime value, : print attempts to reconstruct the type of the value, and will elaborate the type in GHCi’s environment
if possible. If any unevaluated components (thunks) are encountered, then : print binds a fresh variable with a name
beginning with _t to each thunk. See Section 2.5.1 for more information. See also the : sprint command, which works
like : print but does not bind new variables.

:quit Quits GHCi. You can also quit by typing control-D at the prompt.

:reload Attempts to reload the current target set (see : Load) if any of the modules in the set, or any dependent module, has
changed. Note that this may entail loading new modules, or dropping modules which are no longer indirectly required by
the target.

:run See :main.

:script [n] £ilename Executes the lines of a file as a series of GHCi commands. This command is compatible with
multiline statements as set by : set +m

:set [option...] Sets various options. See Section 2.8 for a list of available options and Section 4.20.10 for a list of GHCi-
specific flags. The : set command by itself shows which options are currently set. It also lists the current dynamic flag
settings, with GHCi-specific flags listed separately.

:set args arg ... Sets the list of arguments which are returned when the program calls System.getArgs.
:set editor emd Sets the command used by :edit to cmd.
:set prog prog Sets the string to be returned when the program calls System.getProgName.

:set prompt prompt Sets the string to be used as the prompt in GHCi. Inside prompt, the sequence %s is replaced by the
names of the modules currently in scope, %1 is replaced by the line number (as referenced in compiler messages) of the
current prompt, and %% is replaced by %. If prompt starts with " then it is parsed as a Haskell String; otherwise it is treated
as a literal string.

:set prompt2 prompt Sets the string to be used as the continuation prompt (used when using the : { command) in GHCi.
:set stop [num] emd Set a command to be executed when a breakpoint is hit, or a new item in the history is selected. The
most common use of : set stop is to display the source code at the current location, e.g. : set stop :list.

If a number is given before the command, then the commands are run when the specified breakpoint (only) is hit. This can
be quite useful: for example, : set stop 1 :continue effectively disables breakpoint 1, by running : continue
whenever it is hit (although GHCi will still emit a message to say the breakpoint was hit). What’s more, with cunning use
of :def and : cmd you can use : set stop to implement conditional breakpoints:

*Main> :def cond \expr —-> return (":cmd if (" ++ expr ++ ") then return \"\" else <+
return \":continue\"")
+*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar techniques.

:seti [option...] Like :set, but options set with : seti affect only expressions and commands typed at the prompt, and
not modules loaded with : 1oad (in contrast, options set with : set apply everywhere). See Section 2.8.3.
Without any arguments, displays the current set of options that are applied to expressions and commands typed at the
prompt.

:show bindings Show the bindings made at the prompt and their types.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 37/316

:show breaks List the active breakpoints.

:show context List the active evaluations that are stopped at breakpoints.

:show imports Show the imports that are currently in force, as created by import and :module commands.
:show modules Show the list of modules currently loaded.

:show packages Show the currently active package flags, as well as the list of packages currently loaded.

:show paths Show the current working directory (as set via : cd command), as well as the list of directories searched for
source files (as set by the —1 option).

:show language Show the currently active language flags for source files.
:showi language Show the currently active language flags for expressions typed at the prompt (see also : seti).
:show [args|prog|prompt |editor|stop] Displays the specified setting (see : set).

:sprint Prints a value without forcing its evaluation. : sprint is similar to : print, with the difference that unevaluated
subterms are not bound to new variables, they are simply denoted by “_’.

:step [expr] Enable all breakpoints and begin evaluating an expression in single-stepping mode. In this mode evaluation
will be stopped after every reduction, allowing local variables to be inspected. If expr is not given, evaluation will resume
at the last breakpoint. See Section 2.5.2.

:steplocal Enable only breakpoints in the current top-level binding and resume evaluation at the last breakpoint.
:stepmodule Enable only breakpoints in the current module and resume evaluation at the last breakpoint.

:trace [expr] Evaluates the given expression (or from the last breakpoint if no expression is given), and additionally logs
the evaluation steps for later inspection using :history. See Section 2.5.5.

:type expression Infers and prints the type of expression, including explicit forall quantifiers for polymorphic types.
The monomorphism restriction is not applied to the expression during type inference.

:undef name Undefines the user-defined command name (see : def above).
:unset option... Unsets certain options. See Section 2.8 for a list of available options.

: ! command... Executes the shell command command.

2.8 The :set and : seti commands

The : set command sets two types of options: GHCi options, which begin with ‘+’, and “command-line” options, which begin
with ‘-’

NOTE: at the moment, the : set command doesn’t support any kind of quoting in its arguments: quotes will not be removed
and cannot be used to group words together. For example, : set -DFOO=’BAR BAZ’ will not do what you expect.

2.8.1 GHCi options

GHCi options may be set using : set and unset using :unset.

The available GHCi options are:

+m Enable parsing of multiline commands. A multiline command is prompted for when the current input line contains open
layout contexts (see Section 2.4.3).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 38/316

+r Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant Applicative Forms) in loaded
modules is retained between evaluations. Turning on +r causes all evaluation of top-level expressions to be discarded after
each evaluation (they are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts of space, or if you need repeatable
performance measurements.

+s Display some stats after evaluating each expression, including the elapsed time and number of bytes allocated. NOTE: the
allocation figure is only accurate to the size of the storage manager’s allocation area, because it is calculated at every GC.
Hence, you might see values of zero if no GC has occurred.

+t Display the type of each variable bound after a statement is entered at the prompt. If the statement is a single expression,
then the only variable binding will be for the variable ‘it’.

2.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using : set. For example, to turn on ~-fwarn-missing-signatures,
you would say:

Prelude> :set —-fwarn-missing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Section 4.20), may be set using : set. To unset
an option, you can set the reverse option:

Prelude> :set —-fno-warn-incomplete-patterns —-XNoMultiParamTypeClasses

Section 4.20 lists the reverse for each option where applicable.

Certain static options (-package, —I, —1i, and —1 in particular) will also work, but some may not take effect until the next
reload.

2.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options: one set that applies when loading modules, and another set that applies for expres-
sions and commands typed at the prompt. The : set command modifies both, but there is also a : seti command (for "set
interactive") that affects only the second set.

The two sets of options can be inspected using the : set and : seti commands respectively, with no arguments. For example,
in a clean GHCi session we might see something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
—XNoMonomorphismRestriction
—-XNoDatatypeContexts
—XNondecreasingIndentation
—XExtendedDefaultRules

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
—fimplicit-import-qualified

warning settings:

Note that the option —~-XExtendedDefaultRules is on, because we apply special defaulting rules to expressions typed at the
prompt (see Section 2.4.8).

Furthermore, the Monomorphism Restriction is disabled by default in GHCi (see Section 7.12.9.1).

It is often useful to change the language options for expressions typed at the prompt only, without having that option apply to
loaded modules too. For example

:seti —-XMonoLocalBinds

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 39/316

It would be undesirable if —-XMonoLocalBinds were to apply to loaded modules too: that might cause a compilation error,
but more commonly it will cause extra recompilation, because GHC will think that it needs to recompile the module because the
flags have changed.

It is therefore good practice if you are setting language options in your . ghci file, to use : seti rather than : set unless you
really do want them to apply to all modules you load in GHCi.

2.9 The .ghci file

When it starts, unless the ~ignore—-dot—ghci flag is given, GHCi reads and executes commands from the following files, in
this order, if they exist:

1. ./.ghci

2. appdata/ghc/ghci.conf, where appdata depends on your system, but is usually something like C: /Documents
and Settings/user/Application Data

3. On Unix: $HOME/ .ghc/ghci.conf
4. SHOME/ .ghci
The ghci. conf file is most useful for turning on favourite options (eg. : set +s), and defining useful macros. Note: when

setting language options in this file it is usually desirable to use : set i rather than : set (see Section 2.8.3).

Placing a . ghci file in a directory with a Haskell project is a useful way to set certain project-wide options so you don’t have to
type them every time you start GHCi: eg. if your project uses multi-parameter type classes, scoped type variables, and CPP, and
has source files in three subdirectories A, B and C, you might put the following lines in . ghci:

:set —XMultiParamTypeClasses —-XScopedTypeVariables -cpp

:set -iA:B:C

(Note that strictly speaking the —i flag is a static one, but in fact it works to set it using : set like this. The changes won’t take
effect until the next : Load, though.)

Once you have a library of GHCi macros, you may want to source them from separate files, or you may want to source your .
ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your . ghci file, you can use : source file toread GHCi commands from £ile. You can find
(and contribute!-) other suggestions for . ghci files on this Haskell wiki page: GHC/GHCi

Additionally, any files specified with ~-ghci-script flags will be read after the standard files, allowing the use of custom .ghci
files.

Two command-line options control whether the startup files files are read:

—-ignore-dot—-ghci Don’tread either . /.ghci or the other startup files when starting up.

—ghci-script Read a specific file after the usual startup files. Maybe be specified repeatedly for multiple inputs.

When defining GHCi macros, there is some important behavior you should be aware of when names may conflict with built-in
commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 - what should happen? The current
algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.

2. Look for the exact match on the name in the built-in command list.

http://haskell.org/haskellwiki/GHC/GHCi

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 40/316

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but a macro is defined with the same
name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.

5. Do a prefix lookup on the list of defined macros.
Here are some examples:

1. You have a macro :time and enter :t 3

You get :type 3

2. You have a macro :type andenter :t 3

You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter : t 3

You get : type 3 with your defined macro.

2.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the runtime system. GHCi can also compile
Haskell code to object code: to turn on this feature, use the —fobject-code flag either on the command line or with : set
(the option —fbyte-code restores byte-code compilation again). Compiling to object code takes longer, but typically the code
will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled application, because the : reload
command typically runs much faster than restarting GHC with ——make from the command-line, because all the interface files
are already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code modules, for example. Only the
exports of an object-code module will be visible in GHCi, rather than all top-level bindings as in interpreted modules.

2.11 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately not. We haven’t implemented it yet.
Please compile any offending modules by hand before loading them into GHCi.

-0 doesn’t work with GHCi! For technical reasons, the bytecode compiler doesn’t interact well with one of the optimisation
passes, so we have disabled optimisation when using the interpreter. This isn’t a great loss: you’ll get a much bigger win
by compiling the bits of your code that need to go fast, rather than interpreting them with optimisation turned on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile a module that uses unboxed tuples and load it
into GHCi, however. (Incidentally the previous point, namely that —O is incompatible with GHCIi, is because the bytecode
compiler can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCi is waiting for input. This should work, as long as your GHCi was
built with the ~threaded switch, which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin again until I do : load or : reload. This is the defined behaviour of get
Contents: it puts the stdin Handle in a state known as semi-closed, wherein any further I/O operations on it are forbidden.
Because 1/O state is retained between computations, the semi-closed state persists until the next : load or : reload
command.

You can make stdin reset itself after every evaluation by giving GHCi the command :set +r. This works because
stdin is just a top-level expression that can be reverted to its unevaluated state in the same way as any other top-level
expression (CAF).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 41/316

I can’t use Control-C to interrupt computations in GHCi on Windows. See Section 13.2.

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is line-buffered by default. However, in
GHCi we turn off the buffering on stdout, because this is normally what you want in an interpreter: output appears as it is
generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 42/316

Chapter 3

Using runghc

runghc allows you to run Haskell programs without first having to compile them.

3.1 Flags

The runghc commandline looks like:

runghc [runghc flags] [GHC flags] module [program args]

The runghc flags are -f /path/to/ghc, which tells runghc which GHC to use to run the program, and ——help, which
prints usage information. If it is not given then runghc will search for GHC in the directories in the system search path.

runghc will try to work out where the boundaries between [runghc flags] and [GHC flags],and [program args]
and module are, but you can use a —— flag if it doesn’t get it right. For example, runghc ---fwarn-unused-bindings
Foo means runghc won’t try to use warn-unused-bindings as the path to GHC, but instead will pass the flag to GHC. If
a GHC flag doesn’t start with a dash then you need to prefix it with ——ghc-arg= or runghc will think that it is the program to
run, e.g. runghc —-package—-db —--ghc-arg=foo.conf Main.hs.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 43/316

Chapter 4

Using GHC

4.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including all 400+ flags. It’s a large and
complex system, and there are lots of details, so it can be quite hard to figure out how to get started. With that in mind, this
introductory section provides a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs containing the Haskell code:

main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

S ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello. hs, producing an object file hello. o
and an interface file hello.hi, and then it will link the object file to the libraries that come with GHC to produce an executable
called hello on Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If you want to see in more detail what’s
going on behind the scenes, add —v to the command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the source file containing the Main
module, and GHC will examine the import declarations to find the other modules that make up the program and find their
source files. This means that, with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module Data . Person would be in the file
Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on Windows.

4.2 Options overview

GHC’s behaviour is controlled by options, which for historical reasons are also sometimes referred to as command-line flags or
arguments. Options can be specified in three ways:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 44 /316

4.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with —. They may not be grouped: -vO is different from —v -0O. Options need not precede
filenames: e.g., ghc *.o0 —o foo. All options are processed and then applied to all files; you cannot, for example, invoke
ghc -c -01 Foo.hs -02 Bar.hs to apply different optimisation levels to the files Foo.hs and Bar.hs.

4.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line options it requires quite tight. For
instance, if a Haskell source file deliberately uses name shadowing, it should be compiled with the ~fno-warn-name—shad
owing option. Rather than maintaining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS_GHC pragma :

{—# OPTIONS_GHC -fno-warn—-name-shadowing #-}
module X where

OPTIONS_GHC is a file-header pragma (see Section 7.19).
Only dynamic flags can be used in an OPTIONS_GHC pragma (see Section 4.3).

Note that your command shell does not get to the source file options, they are just included literally in the array of command-line
arguments the compiler maintains internally, so you’ll be desperately disappointed if you try to glob etc. inside OPTIONS_GHC.

NOTE: the contents of OPTIONS_GHC are appended to the command-line options, so options given in the source file override
those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some circumstances, the OPTION
S__GHC pragma is the Right Thing. (If you use ~keep—hc—-file and have OPTION flags in your module, the OPTIONS_GHC
will get put into the generated .hc file).

4.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the : set command. See Section 2.8 for more details.

4.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:
Mode flags For example, ——make or —E. There may only be a single mode flag on the command line. The available modes are
listed in Section 4.5.

Dynamic Flags Most non-mode flags fall into this category. A dynamic flag may be used on the command line, in a OPTIONS
__GHC pragma in a source file, or set using : set in GHCi.

Static Flags A few flags are "static", which means they can only be used on the command-line, and remain in force over the
entire GHC/GHCi run.
The flag reference tables (Section 4.20) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi’s : set command; these are listed as “static/:
set” in the table.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 45/316

4.4

Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . Lhs or . o) cause the “right thing” to happen to those files.

.hs A Haskell module.

.1lhs A “literate Haskell” module.

.hi A Haskell interface file, probably compiler-generated.

.hec Intermediate C file produced by the Haskell compiler.

.c A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.

.be An llvm-intermediate-language bitcode file, usually produced by the compiler.

.s An assembly-language source file, usually produced by the compiler.

.o An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

4.5

Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given, but it does not necessarily need to
be the first option on the command-line.

If no mode flag is present, then GHC will enter make mode (Section 4.5.1) if there are any Haskell source files given on the
command line, or else it will link the objects named on the command line to produce an executable.

The available mode flags are:

ghc

ghc

ghc

ghc

ghc

ghc
ghc

ghc

——interactive Interactive mode, which is also available as ghei. Interactive mode is described in more detail in
Chapter 2.

—-make In this mode, GHC will build a multi-module Haskell program automatically, figuring out dependencies for
itself. If you have a straightforward Haskell program, this is likely to be much easier, and faster, than using make. Make
mode is described in Section 4.5.1.

This mode is the default if there are any Haskell source files mentioned on the command line, and in this case the ——make
option can be omitted.

—e expr Expression-evaluation mode. This is very similar to interactive mode, except that there is a single expression
to evaluate (expr) which is given on the command line. See Section 4.5.2 for more details.

-E ghc -cghc -Sghc —-c This is the traditional batch-compiler mode, in which GHC can compile source files
one at a time, or link objects together into an executable. This mode also applies if there is no other mode flag specified on
the command line, in which case it means that the specified files should be compiled and then linked to form a program.
See Section 4.5.3.

-M Dependency-generation mode. In this mode, GHC can be used to generate dependency information suitable for use
inaMakefile. See Section 4.7.11.

—-mk-dl1l DLL-creation mode (Windows only). See Section 13.6.1.
—-help ghc -? Cause GHC to spew a long usage message to standard output and then exit.

——-show-iface file Read the interface in file and dump it as text to stdout. For example ghc —-show-
iface M.hi.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 46 /316

ghc —-—-supported-extensions ghc —--supported-languages Printthe supported language extensions.
ghc —-show-options Print the supported command line options. This flag can be used for autocompletion in a shell.
ghc —-info Print information about the compiler.

ghc —--versionghc -V Print a one-line string including GHC’s version number.

ghc —-numeric-version Print GHC’s numeric version number only.

ghc —-print-libdir Print the path to GHC’s library directory. This is the top of the directory tree containing GHC’s
libraries, interfaces, and include files (usually something like /usr/local/lib/ghc-5.04 on Unix). This is the
value of $1ibdir in the package configuration file (see Section 4.9).

4.5.1 Using ghc ——make

In this mode, GHC will build a multi-module Haskell program by following dependencies from one or more root modules
(usually just Main). For example, if your Main module is in a file called Main.hs, you could compile and link the program
like this:

ghc --make Main.hs

In fact, GHC enters make mode automatically if there are any Haskell source files on the command line and no other mode is
specified, so in this case we could just type

ghc Main.hs

Any number of source file names or module names may be specified; GHC will figure out all the modules in the program by
following the imports from these initial modules. It will then attempt to compile each module which is out of date, and finally, if
there is a Main module, the program will also be linked into an executable.

The main advantages to using ghc —-make over traditional Makefiles are:

GHC doesn’t have to be restarted for each compilation, which means it can cache information between compilations. Com-
piling a multi-module program with ghc --make can be up to twice as fast as running ghc individually on each source
file.

* You don’t have to write a Makefile.
* GHC re-calculates the dependencies each time it is invoked, so the dependencies never get out of sync with the source.

» Using the - j flag, you can compile modules in parallel. Specify —jN to compile N jobs in parallel.

Any of the command-line options described in the rest of this chapter can be used with ——make, but note that any options you
give on the command line will apply to all the source files compiled, so if you want any options to apply to a single source file
only, you’ll need to use an OPTIONS_GHC pragma (see Section 4.2.2).

If the program needs to be linked with additional objects (say, some auxiliary C code), then the object files can be given on the
command line and GHC will include them when linking the executable.

Note that GHC can only follow dependencies if it has the source file available, so if your program includes a module for which
there is no source file, even if you have an object and an interface file for the module, then GHC will complain. The exception to
this rule is for package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the —1i option can be used to add directories to the
search path (see Section 4.7.3).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 47 /316

4.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to evaluate which is specified on the
command line as an argument to the —e option:

ghc —-e expr

Haskell source files may be named on the command line, and they will be loaded exactly as in interactive mode. The expression
is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Ma in, we might say

ghc —-e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc —-e "interact (unlines.map reverse.lines)"
hello
olleh

4.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined by a flag. If no relevant flag is
present, then go all the way through to linking. This table summarises:

g;‘:len()f the compilation Suffix saying ‘“‘start here” | Flag saying “stop after” (suffix of) output file
literate pre-processor .lhs - .hs

C pre-processor (opt.) .hs (with —cpp) -E .hspp

Haskell compiler .hs -C,-S .he, .s

C compiler (opt.) .hcor.c -S .s

assembler .s -c .

linker other - a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo . hs to an object file Foo. o.

Note: What the Haskell compiler proper produces depends on what backend code generator is used. See Section 4.11 for more
details.

Note: C pre-processing is optional, the —cpp flag turns it on. See Section 4.12.3 for more details.

Note: The option —E runs just the pre-processing passes of the compiler, dumping the result in a file.

4.5.3.1 Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This behaviour can be overridden using
the —x option:

—-x suffix Causes all files following this option on the command line to be processed as if they had the suffix surfix. For
example, to compile a Haskell module in the file M. my-hs, use ghc -c¢ -x hs M.my-hs.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 48/316

4.6

Verbosity options

See also the ——help, ——version, ——numeric-version, and ——print-1ibdir modes in Section 4.5.

—v The —v option makes GHC verbose: it reports its version number and shows (on stderr) exactly how it invokes each phase

-vn

of the compilation system. Moreover, it passes the —v flag to most phases; each reports its version number (and possibly
some other information).

Please, oh please, use the —v option when reporting bugs! Knowing that you ran the right bits in the right order is always
the first thing we want to verify.

To provide more control over the compiler’s verbosity, the —v flag takes an optional numeric argument. Specifying —v on
its own is equivalent to —v 3, and the other levels have the following meanings:

—vO0 Disable all non-essential messages (this is the default).

—v1 Minimal verbosity: print one line per compilation (this is the default when ——make or ——interactive is on).
—v2 Print the name of each compilation phase as it is executed. (equivalent to ~dshow-passes).

—v3 The same as —v2, except that in addition the full command line (if appropriate) for each compilation phase is also
printed.

—v4 The same as —v3 except that the intermediate program representation after each compilation phase is also printed
(excluding preprocessed and C/assembly files).

——fprint-explicit-foralls, —-fprint-explicit-kinds These two flags control the way in which GHC dis-

plays types, in error messages and in GHCi. Using ~fprint-explicit-foralls makes GHC print explicit forall
quantification at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let £ x = x

ghci> :t £

f :: a > a

ghci> :set —-fprint-explicit-foralls
ghci> :t £

f :: forall a. a —> a

Using -fprint-explicit-kinds makes GHC print kind-foralls and kind applications in types, which are normally
suppressed. This can be important when you are using kind polymorphism. For example:

ghci> :set —-XPolyKinds

ghci> data T a = MkT

ghci> :t MkT

MkKT :: T b

ghci> :set —-fprint-explicit-foralls
ghci> :t MKT

MkT :: forall (b::k). T b

ghci> :set —-fprint-explicit-kinds
ghci> :t MKT

MkT :: forall (k::BOX) (b:k). T b

—ferror—spans Causes GHC to emit the full source span of the syntactic entity relating to an error message. Normally,

GHC emits the source location of the start of the syntactic entity only.

For example:

test.hs:3:6: parse error on input ‘where’

becomes:

test296.hs:3:6-10: parse error on input ‘where’

And multi-line spans are possible too:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 49/316

test.hs:(5,4)-(6,7):
Conflicting definitions for ‘a’
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This choice was made to follow existing
convention (i.e. this is how Emacs does it).

—Hsize Setthe minimum size of the heap to size. This option is equivalent to +RTS —Hsize, see Section 4.17.3.

—-Rghc—-timing Prints a one-line summary of timing statistics for the GHC run. This option is equivalent to +RTS —tstd
err, see Section 4.17.3.

4.7 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files are stored, and what options affect
this behaviour.

Note that this section is written with hierarchical modules in mind (see Section 7.3.5); hierarchical modules are an extension to
Haskell 98 which extends the lexical syntax of module names to include a dot *.’. Non-hierarchical modules are thus a special
case in which none of the module names contain dots.

Pathname conventions vary from system to system. In particular, the directory separator is ‘/° on Unix systems and ‘\’ on
Windows systems. In the sections that follow, we shall consistently use ‘/’ as the directory separator; substitute this for the
appropriate character for your system.

4.7.1 Haskell source files

Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name by directory separators. For example,
on a Unix system, the module A . B. C should be placed in the file A/B/C.hs, relative to some base directory. If the module is
not going to be imported by another module (Ma in, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encodings are not recognised. However, invalid UTF-8 sequences
will be ignored in comments, so it is possible to use other encodings such as Latin-1, as long as the non-comment source code is
ASCII only.

4.7.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an interface file.
The object file, which normally ends in a . o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC needs in order to compile further
modules that depend on this module. It contains things like the types of exported functions, definitions of data types, and so on.
It is stored in a binary format, so don’t try to read one; use the ——show—1iface option instead (see Section 4.7.7).

You should think of the object file and the interface file as a pair, since the interface file is in a sense a compiler-readable
description of the contents of the object file. If the interface file and object file get out of sync for any reason, then the compiler
may end up making assumptions about the object file that aren’t true; trouble will almost certainly follow. For this reason, we
recommend keeping object files and interface files in the same place (GHC does this by default, but it is possible to override the
defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules, where osuf is the object-file suffix
(this can be changed with the —osuf option).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 50/316

o If there is no —odir option (the default), then the object filename is derived from the source filename (ignoring the module
name) by replacing the suffix with osuf.

* If —odir dir hasbeen specified, then the object filename is di r/mod.osuf, where mod is the module name with dots replaced
by slashes. GHC will silently create the necessary directory structure underneath di r, if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is hisuf (.hi by default) instead of osuf,
and the relevant options are ~hidir and ~hisuf instead of ~odir and —osuf respectively.

For example, if GHC compiles the module A.B. C in the file src/A/B/C.hs, withno —odir or ~hidir flags, the interface
file will be putin src/A/B/C.hi and the object file in src/A/B/C. 0.

For any module that is imported, GHC requires that the name of the module in the import statement exactly matches the name
of the module in the interface file (or source file) found using the strategy specified in Section 4.7.3. This means that for most
modules, the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this only works because GHC never
needs to search for the interface for module Main (because it is never imported). It is therefore possible to have several Main
modules in separate source files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the —o option, and the name of the interface
file can be specified directly using the —ohi option.

4.7.3 The search path

In your program, you import a module Foo by saying import Foo. In ——make mode or GHCi, GHC will look for a source
file for Foo and arrange to compile it first. Without ——make, GHC will look for the interface file for Foo, which should have
been created by an earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each of these directories, it tries appending
basename. extension to the directory, and checks whether the file exists. The value of basename is the module name with
dots replaced by the directory separator (’/ or ’\’, depending on the system), and extension is a source extension (hs, 1hs) if
we are in ——make mode or GHCI, or hisuf otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in ——make mode looking for the source
file for a module A .B.C. GHC will lookin d1/A/B/C.hs,d1/A/B/C.1lhs,d2/A/B/C.hs, and so on.

3L

The search path by default contains a single directory: “.” (i.e. the current directory). The following options can be used to add
to or change the contents of the search path:

—idirs This flag appends a colon-separated list of dirs to the search path.
—1i resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as packages. See the section on
packages (Section 4.9) for details.

4.7.4 Redirecting the compilation output(s)

—o file GHC’s compiled output normally goes into a . hc, .o, etc., file, depending on the last-run compilation phase. The
option —o file re-directs the output of that last-run phase to £ile.

Note: this “feature” can be counterintuitive: ghe -C -0 foo.0 foo.hs will put the intermediate C code in the file foo. o,
name notwithstanding!

This option is most often used when creating an executable file, to set the filename of the executable. For example:

ghc -o prog --make Main

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 51/316

will compile the program starting with module Main and put the executable in the file prog.

Note: on Windows, if the result is an executable file, the extension ".exe" is added if the specified filename does not
already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main. hs, and put the resulting executable in foo . exe (not £00).

If you use ghe --make and you don’t use the —o, the name GHC will choose for the executable will be based on the name
of the file containing the module Main. Note that with GHC the Main module doesn’t have to be put in file Main.hs.
Thus both

ghc —-—-make Prog

and

ghc ——make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

—odir dir Redirects object files to directory dir. For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs —-odir ‘uname -m‘

The object files, Foo. o, Bar.o, and Bumble .o would be put into a subdirectory named after the architecture of the
executing machine (x86, mips, etc).

Note that the —~odir option does not affect where the interface files are put; use the ~hidir option for that. In the above
example, they would still be put in parse/Foo.hi, parse/Bar.hi, and gurgle/Bumble.hi.

—-ohi file The interface output may be directed to another file bar2/Wurble.iface with the option —ohi bar2/
Wurble.iface (not recommended).

WARNING: if you redirect the interface file somewhere that GHC can’t find it, then the recompilation checker may get
confused (at the least, you won’t get any recompilation avoidance). We recommend using a combination of ~hidir and
—hisuf options instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface into the bit bucket: ~ohi /dev/
null, for example.

-hidir dir Redirects all generated interface files into dir, instead of the default.

—stubdir dir Redirects all generated FFI stub files into dir. Stub files are generated when the Haskell source contains
a foreign export or foreign import "&wrapper" declaration (see Section 8.2.1). The —stubdir option
behaves in exactly the same way as —~odir and —~hidir with respect to hierarchical modules.

—dumpdir dir Redirects all dump files into dir. Dump files are generated when —ddump-to—-£file is used with other -
ddump—~ flags.

—outputdir dir The —outputdir option is shorthand for the combination of ~odir, ~hidir, —~stubdir and —dum
pdir.

—osuf suffix ,-hisuf suffix,-hcsuf suffix The -osuf suffix will change the . o file suffix for object files to
whatever you specify. We use this when compiling libraries, so that objects for the profiling versions of the libraries don’t
clobber the normal ones.

Similarly, the ~hisuf suffix will change the . h1i file suffix for non-system interface files (see Section 4.7.7).
Finally, the option ~hcsuf suffix will change the . hc file suffix for compiler-generated intermediate C files.

The —~hisuf/-osuf game is particularly useful if you want to compile a program both with and without profiling, in the
same directory. You can say:

ghc

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 52/316

4.7.5 Keeping Intermediate Files

The following options are useful for keeping certain intermediate files around, when normally GHC would throw these away
after compilation:

-keep-hc-file, ~keep—-hc—-files Keep intermediate . hc files when doing . hs-to-. o compilations via C (NOTE: .
hc files are only generated by unregisterised compilers).

-keep-llvm-file, ~keep-llvm—-files Keep intermediate .11 files when doing . hs-to-. o compilations via LLVM
(NOTE: .11 files aren’t generated when using the native code generator, you may need to use —£11vm to force them to
be produced).

-keep—-s—file, -keep-s—files Keep intermediate . s files.

—keep—-tmp—-files Instructs the GHC driver not to delete any of its temporary files, which it normally keeps in /tmp (or
possibly elsewhere; see Section 4.7.6). Running GHC with —v will show you what temporary files were generated along
the way.

4.7.6 Redirecting temporary files

—tmpdir If you have trouble because of running out of space in /tmp (or wherever your installation thinks temporary files
should go), you may use the —tmpdir <dir> option to specify an alternate directory. For example, ~tmpdir . says
to put temporary files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory where temporary files should be
put. GCC and other programs will honour the TMPDIR variable as well.

Even better idea: Set the DEFAULT_TMPDIR make variable when building GHC, and never worry about TMPDIR again.
(see the build documentation).

4.7.7 Other options related to interface files

—ddump-hi Dumps the new interface to standard output.

—ddump-hi-diffs The compiler does not overwrite an existing .hi interface file if the new one is the same as the old
one; this is friendly to make. When an interface does change, it is often enlightening to be informed. The ~ddump-hi-
diffs option will make GHC report the differences between the old and new . h1i files.

—ddump-minimal-imports Dump to the file ¥. imports (where ¥ is the name of the module being compiled) a "mini-
mal" set of import declarations. The directory where the . import s files are created can be controlled via the —dumpdir
option.

You can safely replace all the import declarations in M . hs with those found in its respective . imports file. Why would
you want to do that? Because the "minimal" imports (a) import everything explicitly, by name, and (b) import nothing that
is not required. It can be quite painful to maintain this property by hand, so this flag is intended to reduce the labour.

—--show-iface file where file is the name of an interface file, dumps the contents of that interface in a human-readable
(ish) format. See Section 4.5.

4.7.8 The recompilation checker

—fforce-recomp Turn off recompilation checking (which is on by default). Recompilation checking normally stops com-
pilation early, leaving an existing . o file in place, if it can be determined that the module does not need to be recompiled.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 53/316

In the olden days, GHC compared the newly-generated . hi file with the previous version; if they were identical, it left the old
one alone and didn’t change its modification date. In consequence, importers of a module with an unchanged output . hi file
were not recompiled.

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So changes to module A might
require module C to be recompiled, and hence when A . hi changes we should check whether C should be recompiled. However,
the dependencies of C will only list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So now...

GHC calculates a fingerprint (in fact an MDS5 hash) of each interface file, and of each declaration within the interface file. It
also keeps in every interface file a list of the fingerprints of everything it used when it last compiled the file. If the source
file’s modification date is earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled), and
the recompilation checking is on, GHC will be clever. It compares the fingerprints on the things it needs this time with the
fingerprints on the things it needed last time (gleaned from the interface file of the module being compiled); if they are all the
same it stops compiling early in the process saying “Compilation IS NOT required”. What a beautiful sight!

You can read about how all this works in the GHC commentary.

4.7.9 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs—boot file. Suppose that modules A.hs and B. hs are Haskell
source files, thus:

module A where
import B(TB(..))

newtype TA = MkKTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MkTB !Int

g :: TA —> TB
g (MkTA x) = MkKTB x

Here A imports B, but B imports A with a { -#SOURCE #-} pragma, which breaks the circular dependency. Every loop in the
module import graph must be broken by a { -#SOURCE #-} import; or, equivalently, the module import graph must be acyclic
if {—#SOURCE #-} imports are ignored.

For every module A .hs thatis {-#SOURCE #- }-imported in this way there must exist a source file A.hs-boot. This file
contains an abbreviated version of A . hs, thus:

module A where
newtype TA = MkTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot —-— Produces A.hi-boot, A.o-boot

ghc -c B.hs —— Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs —— Consumes B.hi, produces A.hi, A.o

ghc -o foo A.o B.o —-- Linking the program

There are several points to note here:

* The file A.hs-boot is a programmer-written source file. It must live in the same directory as its parent source file A. hs.
Currently, if you use a literate source file A. 1hs you must also use a literate boot file, A. 1hs-boot; and vice versa.

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 547316

* A hs-boot file is compiled by GHC, just like a hs file:

ghc —-c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When its parent module A.hs is
compiled, the two are compared, and an error is reported if the two are inconsistent.

* Just as compiling A.hs produces an interface file A.hi, and an object file A. o, so compiling A.hs-boot produces an
interface file A.hi-boot, and an pseudo-object file A . o-boot:

— The pseudo-object file A. o-boot is empty (don’t link it!), but it is very useful when using a Makefile, to record when the
A.hi-boot was last brought up to date (see Section 4.7.10).

— The hi-boot generated by compiling a hs-boot file is in the same machine-generated binary format as any other GHC-
generated interface file (e.g. B.hi). You can display its contents with ghe --show-iface. If you specify a directory for
interface files, the —ohidir flag, then that affects hi-boot files too.

* If hs-boot files are considered distinct from their parent source files, and if a { -#SOURCE #—} import is considered to refer
to the hs-boot file, then the module import graph must have no cycles. The command ghe -M will report an error if a cycle is
found.

* A module M that is { -#SOURCE #-}-imported in a program will usually also be ordinarily imported elsewhere. If not, ghc
--make automatically adds M to the set of modules it tries to compile and link, to ensure that M’s implementation is included in
the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrapping process started. For example,
it doesn’t need to contain declarations for everything that module A exports, only the things required by the module(s) that import
A recursively.

A hs-boot file is written in a subset of Haskell:

* The module header (including the export list), and import statements, are exactly as in Haskell, and so are the scoping rules.
Hence, to mention a non-Prelude type or class, you must import it.

* There must be no value declarations, but there can be type signatures for values. For example:

double :: Int -> Int

» Fixity declarations are exactly as in Haskell.
* Vanilla type synonym declarations are exactly as in Haskell.
* Open type and data family declarations are exactly as in Haskell.

* A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where

The . . is meant literally -- you should write two dots in your file. Note that the where clause is still necessary to distinguish
closed families from open ones. If you give any equations of a closed family, you must give all of them, in the same order as
they appear in the accompanying Haskell file.

* A data type declaration can either be given in full, exactly as in Haskell, or it can be given abstractly, by omitting the ’=" sign
and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension: see Section 7.4.1), but in an hi-boot file
it means "I don’t know or care what the constructors are". This is the most common form of data type declaration, because
it’s easy to get right. You can also write out the constructors but, if you do so, you must write it out precisely as in its real
definition.

If you do not write out the constructors, you may need to give a kind annotation (Section 7.12.5), to tell GHC the kind of the
type variable, if it is not "*". (In source files, this is worked out from the way the type variable is used in the constructors.) For
example:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 55/316

data R (x :: x —> %) vy

You cannot use deriving on a data type declaration; write an instance declaration instead.

* Class declarations is exactly as in Haskell, except that you may not put default method declarations. You can also omit all the
superclasses and class methods entirely; but you must either omit them all or put them all in.

* You can include instance declarations just as in Haskell; but omit the "where" part.

* The default role for class and datatype parameters is now representational. To get another role, use a role annotation. (See
Section 7.24.)

4.7.10 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name your source files the same as your
modules. Thus:

HC = ghc

HC_OPTS = -cpp $ (EXTRA_HC_OPTS)
SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o
.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm —f S$@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

Standard suffix rules

.0.hi:

Q:
lhs.o:

$(HC) -c $< $(HC_OPTS)
hs.o

$(HC) -c $< $(HC_OPTS)

.0—-boot.hi-boot:
Q:

.lhs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

(Sophisticated make variants may achieve some of the above more elegantly. Notably, gmake’s pattern rules let you write the
more comprehensible:

o\

.0 : %.lhs
$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with any make.)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 56/316

Note the cheesy . o.hi rule: It records the dependency of the interface (. hi) file on the source. The rule says a . hi file can be
made from a . o file by doing. .. nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and once for hs—-boot files (see Sec-
tion 4.7.9).

Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo. s have an earlier modification date than Baz . hi, then the out-of-date
file must be brought up to date. To bring it up to date, make looks for a rule to do so; one of the preceding suffix rules does the
job nicely. These dependencies can be generated automatically by ghe; see Section 4.7.11

4.7.11 Dependency generation

Putting inter-dependencies of the form Foo.o :Bar.hi into your Makefile by hand is rather error-prone. Don’t worry,
GHC has support for automatically generating the required dependencies. Add the following to your Makefile:

depend :
ghc -M $ (HC_OPTS) $ (SRCS)

Now, before you start compiling, and any time you change the imports in your program, do make depend before you do make
cool_pgm. The command ghe -M will append the needed dependencies to your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its imports (transitively), it adds to the
Makefile:
* A line recording the dependence of the object file on the source file.

M.o : M.hs

(or M. 1hs if that is the filename you used).

* For each import declaration import X in M, a line recording the dependence of M on X:

M.o : X.hi

* For each import declaration import {-#SOURCE #-} X in M, a line recording the dependence of M on X:

M.o : X.hi-boot
(See Section 4.7.9 for details of hi-boot style interface files.)

If M imports multiple modules, then there will be multiple lines with M. o as the target.

There is no need to list all of the source files as arguments to the ghe -M command; ghe traces the dependencies, just like ghe
--make (a new feature in GHC 6.4).

Note that ghc —M needs to find a source file for each module in the dependency graph, so that it can parse the import declarations
and follow dependencies. Any pre-compiled modules without source files must therefore belong to a package'.

By default, ghc -M generates all the dependencies, and then concatenates them onto the end of makefile (or Makefile if
makefile doesn’t exist) bracketed by the lines "#DO NOT DELETE:Beginning of Haskell dependencies" and
"#DO NOT DELETE:End of Haskell dependencies". If these lines already exist in the makefile, then the old
dependencies are deleted first.

Don’t forget to use the same —package options on the ghc —M command line as you would when compiling; this enables the
dependency generator to locate any imported modules that come from packages. The package modules won’t be included in the
dependencies generated, though (but see the ——include-pkg—-deps option below).

The dependency generation phase of GHC can take some additional options, which you may find useful. The options which
affect dependency generation are:

! This is a change in behaviour relative to 6.2 and earlier.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 57 /316

—ddump-mod—-cycles Display a list of the cycles in the module graph. This is useful when trying to eliminate such cycles.

—v2 Print a full list of the module dependencies to stdout. (This is the standard verbosity flag, so the list will also be displayed
with —v3 and -v4; Section 4.6.)

—-dep-makefile file Use file as the makefile, rather than makefile or Makefile. If file doesn’t exist, mkde-
pendHS creates it. We often use ~dep-makefile .depend to put the dependencies in . depend and then include
the file . depend into Makefile.

—-dep-suffix <suf> Make extra dependencies that declare that files with suffix .<suf>_<osuf> depend on interface
files with suffix .<suf>_hi, or (for {-#SOURCE #-} imports) on .hi-boot. Multiple ~dep-suffix flags are
permitted. For example, ~dep-suffix a —-dep-suffix b will make dependencies for .hs on .hi, .a_hson.
a_hi,and .b_hson .b_hi. (Useful in conjunction with NoFib "ways".)

——exclude-module=<file> Regard <file> as "stable";i.e., exclude it from having dependencies on it.

——include—-pkg—-deps Regard modules imported from packages as unstable, i.e., generate dependencies on any imported
package modules (including Prelude, and all other standard Haskell libraries). Dependencies are not traced recursively
into packages; dependencies are only generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system libraries.

4.7.12 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module "below" M is visible. (Module A is
"below" M if A is imported directly by M, or if A is below a module that M imports directly.) In principle, GHC must therefore
read the interface files of every module below M, just in case they contain an instance declaration that matters to M. This would
be a disaster in practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type or class mentioned in the head of the
instance declaration (the part after the “=>"; see Section 7.6.3.3), then GHC has to visit that interface file anyway. Example:

module A where
instance C a => D (T a) where
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited A’s interface file to find T’s
definition.

The only problem comes when a module contains an instance declaration and GHC has no other reason for visiting the module.
Example:

module Orphan where
instance C a => D (T a) where
class C a where

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”. GHC identifies orphan modules,
and visits the interface file of every orphan module below the module being compiled. This is usually wasted work, but there is
no avoiding it. You should therefore do your best to have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But suppose class E had a functional
dependency:

module Lib where
class E x y | vy —> x where

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 58/316

Then in some importing module M, the constraint (E a Int) should be "improved" by setting a =T, even though there is no
explicit mention of T in M. These considerations lead to the following definition of an orphan module:

* An orphan module contains at least one orphan instance or at least one orphan rule.
¢ An instance declaration in a module M is an orphan instance if

— The class of the instance declaration is not declared in M, and

— Either the class has no functional dependencies, and none of the type constructors in the instance head is declared in M;
or there is a functional dependency for which none of the type constructors mentioned in the non-determined part of the
instance head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C’s declaration to be in module A; it must be
the declaration of D or T.

* A rewrite rule in a module M is an orphan rule if none of the variables, type constructors, or classes that are free in the left
hand side of the rule are declared in M.

If you use the flag —~-fwarn-orphans, GHC will warn you if you are creating an orphan module. Like any warning, you can
switch the warning off with ~fno-warn-orphans, and ~-Werror will make the compilation fail if the warning is issued.

You can identify an orphan module by looking in its interface file, M. hi, using the --show-iface mode. If there is a [orphan
module] on the first line, GHC considers it an orphan module.

4.8 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise known as warnings, can be gener-
ated during compilation. By default, you get a standard set of warnings which are generally likely to indicate bugs in your
program. These are: —fwarn-overlapping-patterns, —fwarn-warnings-deprecations, —fwarn-amp, —
fwarn-deprecated-flags, -fwarn-unrecognised-pragmas, —-fwarn-pointless-pragmas, -fwarn-dup
licate-constraints,-fwarn-duplicate-exports,-fwarn-overflowed-literals,-fwarn-empty-enu
merations, -fwarn-missing-fields, —-fwarn-missing-methods, ~-fwarn-wrong-do-bind, ~-fwarn-uns
upported-calling-conventions, -fwarn-dodgy-foreign-imports,-fwarn-inline-rule-shadowing,
and -fwarn-unsupported-1lvm-version. The following flags are simple ways to select standard “packages” of warn-
ings:

—W: Provides the standard warnings plus ~-fwarn-incomplete-patterns, ~-fwarn-dodgy-exports, —~-fwarn-dodgy—
imports, ~-fwarn-unused-matches, -fwarn-unused-imports, and -fwarn-unused-binds.

—Wall: Turns on all warning options that indicate potentially suspicious code. The warnings that are not enabled by ~Wall are
-fwarn-tabs, -fwarn-incomplete-uni-patterns,-fwarn-incomplete-record-updates, -fwarn-—
monomorphism-restriction, -fwarn-auto-orphans,-fwarn-implicit-prelude, -fwarn-missing-
local-sigs, -fwarn-missing-import-lists.

—w: Turns off all warnings, including the standard ones and those that -Wall doesn’t enable.
-Werror: Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing batch compilation.

-Wwarn: Warnings are treated only as warnings, not as errors. This is the default, but can be useful to negate a -Werror flag.

The full set of warning options is described below. To turn off any warning, simply give the corresponding —fno-warn-. ..
option on the command line.

—-fwarn-typed-holes: When the compiler encounters an unbound local variable prefixed with _, or encounters the literal
_ on the right-hand side of an expression, the error message for the unbound term includes the type it needs to type check.
It works particularly well with deferred type errors. See Section 7.13

This warning is on by default.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 59/316

—fdefer—-type—errors: Defer as many type errors as possible until runtime. At compile time you get a warning (instead
of an error). At runtime, if you use a value that depends on a type error, you get a runtime error; but you can run any
type-correct parts of your code just fine. See Section 7.14

—fhelpful-errors: When a name or package is not found in scope, make suggestions for the name or package you might
have meant instead.
This option is on by default.

—fwarn-unrecognised—-pragmas: Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used.

As well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used by other tools, e.g. OPTIONS_
HUGS and DERIVE.

This option is on by default.

—-fwarn-pointless—-pragmas: Causes a warning to be emitted when GHC detects that a module contains a pragma that
has no effect.
This option is on by default.

—-fwarn-warnings—deprecations: Causes a warning to be emitted when a module, function or type with a WARNING
or DEPRECATED pragma is used. See Section 7.19.4 for more details on the pragmas.
This option is on by default.

—fwarn—-amp: Causes a warning to be emitted when a definition is in conflict with the AMP (Applicative-Monad proosal),

namely: 1. Instance of Monad without Applicative; 2. Instance of MonadPlus without Alternative; 3. Custom definitions
of join/pure/<*>

This option is on by default.
-fwarn-deprecated-flags: Causes a warning to be emitted when a deprecated commandline flag is used.

This option is on by default.

—-fwarn-unsupported-calling—conventions: Causes a warning to be emitted for foreign declarations that use un-
supported calling conventions. In particular, if the stdcall calling convention is used on an architecture other than i386
then it will be treated as ccall.

—fwarn-dodgy-foreign-imports: Causes a warning to be emitted for foreign imports of the following form:

foreign import "f" f :: FunPtr t

on the grounds that it probably should be

foreign import "&f" f :: FunPtr t

The first form declares that *f" is a (pure) C function that takes no arguments and returns a pointer to a C function with type
“t", whereas the second form declares that *f itself is a C function with type “t". The first declaration is usually a mistake,
and one that is hard to debug because it results in a crash, hence this warning.

—fwarn-dodgy-exports: Causes a warning to be emitted when a datatype T is exported with all constructors, i.e. T (. .),
but is it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module exports nothing.
—-fwarn-dodgy-imports: Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T (. .), but has been exported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

Causes a warning to be emitted if a literal will overflow, e.g. 300 : :Word8.

—-fwarn-overflowed-litera¥sarn-empty—-enumerations: Causes a warning to be emitted if an enumeration is
empty,e.g. [5 ..3].

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 60/316

—fwarn-lazy-unlifted-bindings: This flag is a no-op, and will be removed in GHC 7.10.

—fwarn-duplicate-constraints: Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Egq a) => a —-> a

The warning will indicate the duplicated Eq a constraint.

This option is on by default.

—fwarn-duplicate-exports: Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition after you’ve deleted (one) mention
of it in the export list.

This option is on by default.

—fwarn-hi-shadowing: Causes the compiler to emit a warning when a module or interface file in the current directory is
shadowing one with the same module name in a library or other directory.

—fwarn-identities: Causes the compiler to emit a warning when a Prelude numeric conversion converts a type T to
the same type T; such calls are probably no-ops and can be omitted. The functions checked for are: toInteger,
toRational, fromIntegral, and realToFrac.

—-fwarn-implicit-prelude: Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ...Prelude ... line, or this implicit import is disabled
(either by ~-XNoImplicitPrelude or a LANGUAGE NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if —-XNoImplicitPrelude would
change whether it refers to the Prelude. For example, no warning is given when 368 means Prelude. fromInteger
(368::Prelude.Integer) (where Prelude refers to the actual Prelude module, regardless of the imports of the
module being compiled).

This warning is off by default.
—-fwarn-incomplete-patterns, -fwarn-incomplete-uni-patterns: Theoption -fwarn-incomplete-pat

terns warns about places where a pattern-match might fail at runtime. The function g below will fail when applied to
non-empty lists, so the compiler will emit a warning about this when —~fwarn—-incomplete-patterns is enabled.

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always indicate a bug in the program.
However, it’s generally considered good practice to cover all the cases in your functions, and it is switched on by —W.

The flag ~-fwarn-incomplete-uni-patterns is similar, except that it applies only to lambda-expressions and
pattern bindings, constructs that only allow a single pattern:

h =\[] —> 2
Just k = f vy

—-fwarn-incomplete-record—updates: The function £ below will fail when applied to Bar, so the compiler will emit
a warning about this when ~fwarn-incomplete-record-updates is enabled.

data Foo = Foo { x :: Int }
| Bar
f :: Foo —> Foo

f foo = foo { x = 6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t indicate a bug in the program.

—-fwarn-missing—-fields: This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initializers for one or more fields. While not an error (the missing fields are initialised
with bottoms), it is often an indication of a programmer error.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 61/316

—-fwarn-missing-import-lists: This flag warns if you use an unqualified import declaration that does not explic-
itly list the entities brought into scope. For example

module M where
import X(£)
import Y
import qualified Z
px=1fxx

The ~-fwarn—-import-1ists flag will warn about the import of Y but not X If module Y is later changed to export (say)
£, then the reference to £ in M will become ambiguous. No warning is produced for the import of Z because extending Z’s
exports would be unlikely to produce ambiguity in M.

-fwarn-missing-methods: This option is on by default, and warns you whenever an instance declaration is missing one
or more methods, and the corresponding class declaration has no default declaration for them.

The warning is suppressed if the method name begins with an underscore. Here’s an example where this is useful:

class C a where

_simpleFn :: a —-> String
complexFn :: a —> a —-> String
complexFn x y = ... _simpleFn

The idea is that: (a) users of the class will only call complexFn; never _simpleFn; and (b) instance declarations can
define either complexFn or _simpleFn.

The MINIMAL pragma can be used to change which combination of methods will be required for instances of a particular
class. See Section 7.19.5.

-fwarn-missing-signatures: If you would like GHC to check that every top-level function/value has a type signature,
use the ~-fwarn-missing-signatures option. As part of the warning GHC also reports the inferred type. The
option is off by default.

—-fwarn-missing-local-sigs: If you use the ~-fwarn-missing-local-sigs flag GHC will warn you about any
polymorphic local bindings. As part of the warning GHC also reports the inferred type. The option is off by default.

—fwarn—-name—shadowing: This option causes a warning to be emitted whenever an inner-scope value has the same name
as an outer-scope value, i.e. the inner value shadows the outer one. This can catch typographical errors that turn into
hard-to-find bugs, e.g., in the inadvertent capture of what would be a recursive callin £ =...let f =id in ...f

The warning is suppressed for names beginning with an underscore. For example

f x = do { _ignore <- this; _ignore <- that; return (the other) }

—-fwarn-orphans, —-fwarn—-auto—orphans: These flags cause a warning to be emitted whenever the module contains
an "orphan" instance declaration or rewrite rule. An instance declaration is an orphan if it appears in a module in which
neither the class nor the type being instanced are declared in the same module. A rule is an orphan if it is a rule for a
function declared in another module. A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all orphan modules, just in case their
instances or rules play a role, whether or not the module’s interface would otherwise be of any use. See Section 4.7.12 for
details.

The flag ~fwarn—-orphans warns about user-written orphan rules or instances. The flag —~-fwarn—auto-orphans
warns about automatically-generated orphan rules, notably as a result of specialising functions, for type classes (Specia
lise) or argument values (-fspec—constr).

-fwarn-overlapping-patterns: By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

£ String -> Int
f [] =0
f (_:xs) =1
f won = 2

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 62/316

where the last pattern match in £ won’t ever be reached, as the second pattern overlaps it. More often than not, redundant
patterns is a programmer mistake/error, so this option is enabled by default.

—fwarn—tabs: Have the compiler warn if there are tabs in your source file.
This warning is off by default.

—fwarn-type—-defaults: Have the compiler warn/inform you where in your source the Haskell defaulting mechanism for
numeric types kicks in. This is useful information when converting code from a context that assumed one default into one
with another, e.g., the ‘default default’ for Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type

Int, whereas Haskell 98 and later defaults it to Integer. This may lead to differences in performance and behaviour,
hence the usefulness of being non-silent about this.

This warning is off by default.
—fwarn-monomorphism-restriction: Have the compiler warn/inform you where in your source the Haskell Monomor-

phism Restriction is applied. If applied silently the MR can give rise to unexpected behaviour, so it can be helpful to have
an explicit warning that it is being applied.

This warning is off by default.
—fwarn-unused-binds: Report any function definitions (and local bindings) which are unused. For top-level functions, the
warning is only given if the binding is not exported.

A definition is regarded as "used" if (a) it is exported, or (b) it is mentioned in the right hand side of another definition that
is used, or (c) the function it defines begins with an underscore. The last case provides a way to suppress unused-binding
warnings selectively.

Notice that a variable is reported as unused even if it appears in the right-hand side of another unused binding.
—fwarn-unused-imports: Report any modules that are explicitly imported but never used. However, the form import

M () is never reported as an unused import, because it is a useful idiom for importing instance declarations, which are
anonymous in Haskell.

—fwarn-unused-matches: Report all unused variables which arise from pattern matches, including patterns consisting of
a single variable. For instance £ x y =[] would report x and y as unused. The warning is suppressed if the variable
name begins with an underscore, thus:

f _x = True

—fwarn—-unused—-do-bind: Report expressions occurring in do and mdo blocks that appear to silently throw information
away. For instance do { mapM popInt xs ;return 10 } would report the first statement in the do block as
suspicious, as it has the type StackM [Int] and not StackM (), butthat [Int] value is not bound to anything. The
warning is suppressed by explicitly mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

—fwarn-wrong—-do-bind: Report expressions occurring in do and mdo blocks that appear to lack a binding. For instance
do { return (popInt 10) ;return 10 } would report the first statement in the do block as suspicious, as it
has the type StackM (StackM Int) (which consists of two nested applications of the same monad constructor), but
which is not then "unpacked" by binding the result. The warning is suppressed by explicitly mentioning in the source code
that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }
For almost all sensible programs this will indicate a bug, and you probably intended to write:

do { popInt 10 ; return 10 }

If you’re feeling really paranoid, the ~dcore-1int option is a good choice. It turns on heavyweight intra-pass sanity-checking
within GHC. (It checks GHC’s sanity, not yours.)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 63/316

4.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several packages: see the accompanying
library documentation. More packages to install can be obtained from HackageDB.

Using a package couldn’t be simpler: if you’re using ——make or GHCi, then most of the installed packages will be automatically
available to your program without any further options. The exceptions to this rule are covered below in Section 4.9.1.

Building your own packages is also quite straightforward: we provide the Cabal infrastructure which automates the process
of configuring, building, installing and distributing a package. All you need to do is write a simple configuration file, put a
few files in the right places, and you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

4.9.1 Using Packages

GHC only knows about packages that are installed. To see which packages are installed, use the ghc-pkg 1list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:

Cabal-1.7.4

array-0.2.0.1

base-3.0.3.0

base-4.2.0.0

bin-package-db-0.0.0.0

binary-0.5.0.1

bytestring-0.9.

containers-0.2.

directory-1.0.0.2
dph-base-0.4.0)
dph-par-0.4.0)
dph-prim-interface-0.4.0)
dph-prim-par-0.4.0)
dph-prim-seg-0.4.0)
dph-seg-0.4.0)
extensible-exceptions-0.1.1.0
ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)
ghc-prim-0.1.0.0
haskeline-0.6.2
haskell98-1.0.1.
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.
old-time-1.0.0.
pretty-1.0.1.0
process—-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4
unix-2.3.1.0
utf8-string-0.3.4

1.4
0.1

(
(
(
(
(
(

6.
0.1.0

0.1
1

An installed package is either exposed or hidden by default. Packages hidden by default are listed in parentheses (eg. (lang—
1.0)), or possibly in blue if your terminal supports colour, in the output of ghc-pkg 1list. Command-line flags, described

../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
../Cabal/index.html
../libraries/Cabal-1.18.1.3/Distribution-Simple.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 64 /316

below, allow you to expose a hidden package or hide an exposed one. Only modules from exposed packages may be imported
by your Haskell code; if you try to import a module from a hidden package, GHC will emit an error message.

Note: if you’re using Cabal, then the exposed or hidden status of a package is irrelevant: the available packages are instead
determined by the dependencies listed in your . cabal specification. The exposed/hidden status of packages is only relevant
when using ghc or ghci directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either trusted or not trusted (distrusted). By
default packages are distrusted. This property of a package only plays a role when compiling code using GHC’s Safe Haskell
feature (see Section 7.26) with the —fpackage-trust flag enabled.

To see which modules are provided by a package use the ghc—pkg command (see Section 4.9.6):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,
Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

—-package P This option causes the installed package P to be exposed. The package P can be specified in full with its version
number (e.g. network—-1.0) or the version number can be omitted if there is only one version of the package installed.
If there are multiple versions of P installed, then all other versions will become hidden.

The -package P option also causes package P to be linked into the resulting executable or shared object. Whether a
packages’ library is linked statically or dynamically is controlled by the flag pair —~static/-dynamic.

In ——make mode and ——interactive mode (see Section 4.5), the compiler normally determines which packages are
required by the current Haskell modules, and links only those. In batch mode however, the dependency information isn’t
available, and explicit ~-package options must be given when linking. The one other time you might need to use —
package to force linking a package is when the package does not contain any Haskell modules (it might contain a C
library only, for example). In that case, GHC will never discover a dependency on it, so it has to be mentioned explicitly.

For example, to link a program consisting of objects Foo .o and Main. o, where we made use of the net work package,
we need to give GHC the -package flag thus:

$ ghc -o myprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source, because GHC still reckons it’s in batch mode:

$ ghc -o myprog Foo.hs Main.hs -package network

—-package-id P Exposes a package like ~-package, but the package is named by its ID rather than by name. This is a
more robust way to name packages, and can be used to select packages that would otherwise be shadowed. Cabal passes —
package-id flags to GHC.

-hide—all-packages Ignore the exposed flag on installed packages, and hide them all by default. If you use this flag, then
any packages you require (including base) need to be explicitly exposed using ~package options.

This is a good way to insulate your program from differences in the globally exposed packages, and being explicit about
package dependencies is a Good Thing. Cabal always passes the ~—hide-all-packages flag to GHC, for exactly this
reason.

-hide-package P This option does the opposite of —~package: it causes the specified package to be hidden, which means
that none of its modules will be available for import by Haskell import directives.

Note that the package might still end up being linked into the final program, if it is a dependency (direct or indirect) of
another exposed package.

—-ignore—-package P Causes the compiler to behave as if package P, and any packages that depend on P, are not installed at
all.

Saying —ignore-package P is the same as giving —hide—-package flags for P and all the packages that depend
on P. Sometimes we don’t know ahead of time which packages will be installed that depend on P, which is when the —
ignore-package flag can be useful.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 65/316

—-no-auto-link-packages By default, GHC will automatically link in the base and rts packages. This flag disables
that behaviour.

—package—name foo Tells GHC the the module being compiled forms part of package foo. If this flag is omitted (a very
common case) then the default package main is assumed.

Note: the argument to ~package—name should be the full package name-version for the package. For example: —
package mypkg-1.2.

—trust P This option causes the install package P to be both exposed and trusted by GHC. This command functions in the
in a very similar way to the -package command but in addition sets the selected packaged to be trusted by GHC,
regardless of the contents of the package database. (see Section 7.26).

—-distrust P This option causes the install package P to be both exposed and distrusted by GHC. This command functions
in the in a very similar way to the -package command but in addition sets the selected packaged to be distrusted by
GHC, regardless of the contents of the package database. (see Section 7.26).

—distrust—-all Ignore the trusted flag on installed packages, and distrust them by default. If you use this flag and Safe
Haskell then any packages you require to be trusted (including base) need to be explicitly trusted using —trust
options. This option does not change the exposed/hidden status of a package, so it isn’t equivalent to applying -distr
ust to all packages on the system. (see Section 7.26).

4.9.2 The main package

Every complete Haskell program must define main in module Main in package main. (Omitting the ~-package—name flag
compiles code for package main.) Failure to do so leads to a somewhat obscure link-time error of the form:

/usr/bin/1ld: Undefined symbols:
_ZCMain_main_closure

4.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two modules with the same name: perhaps
you used a package P that has a hidden module M, and there is also a module M in your program. Or perhaps the dependencies
of packages that you used contain some overlapping modules. Perhaps the program even contains multiple versions of a certain
package, due to dependencies from other packages.

None of these scenarios gives rise to an error on its own?, but they may have some interesting consequences. For instance, if you
have a type M. T from version 1 of package P, then this is not the same as the type M. T from version 2 of package P, and GHC
will report an error if you try to use one where the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely identified by the pair of the module
name in which it is defined and its name. In GHC, an entity is uniquely defined by a triple: package, module, and name.

4.9.4 Package Databases

A package database is where the details about installed packages are stored. It is a directory, usually called package.conf.d,
that contains a file for each package, together with a binary cache of the package data in the file package.cache. Normally
you won’t need to look at or modify the contents of a package database directly; all management of package databases can be
done through the ghc-pkg tool (see Section 4.9.6).

GHC knows about two package databases in particular:

* The global package database, which comes with your GHC installation, e.g. /usr/1lib/ghc-6.12.1/package.conf.
d.

2 jt used to in GHC 6.4, but not since 6.6

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 66/316

* A package database private to each user. On Unix systems this will be $SHOME/ .ghc/arch—-os-version/package.
conf .d, and on Windows it will be something like C: \Documents And Settings\user\ghc\package.conf.d.
The ghc—pkg tool knows where this file should be located, and will create it if it doesn’t exist (see Section 4.9.6).

When GHC starts up, it reads the contents of these two package databases, and builds up a list of the packages it knows about.
You can see GHC’s package table by running GHC with the —v flag.

Package databases may overlap, and they are arranged in a stack structure. Packages closer to the top of the stack will override
(shadow) those below them. By default, the stack contains just the global and the user’s package databases, in that order.

You can control GHC’s package database stack using the following options:

-package—-db file Add the package database £ile on top of the current stack. Packages in additional databases read this
way will override those in the initial stack and those in previously specified databases.

—-no—global-package—db Remove the global package database from the package database stack.
-no-user-package—-db Prevent loading of the user’s local package database in the initial stack.

—clear-package—db Reset the current package database stack. This option removes every previously specified package
database (including those read from the GHC_PACKAGE_PATH environment variable) from the package database stack.

—global-package—-db Add the global package database on top of the current stack. This option can be used after —-no—
global-package—-db to specify the position in the stack where the global package database should be loaded.

—-user-package—db Add the user’s package database on top of the current stack. This option can be used after -no—user—
package—-db to specify the position in the stack where the user’s package database should be loaded.

4.9.41 The GHC_PACKAGE_PATH environment variable

The GHC_PACKAGE_PATH environment variable may be set to a : -separated (; -separated on Windows) list of files containing
package databases. This list of package databases is used by GHC and ghc-pkg, with earlier databases in the list overriding later
ones. This order was chosen to match the behaviour of the PATH environment variable; think of it as a list of package databases
that are searched left-to-right for packages.

If GHC_PACKAGE_PATH ends in a separator, then the default package database stack (i.e. the user and global package databases,
in that order) is appended. For example, to augment the usual set of packages with a database of your own, you could say (on
Unix):

$ export GHC_PACKAGE_PATH=$HOME/.my-ghc-packages.conf:

(use ; instead of : on Windows).

To check whether your GHC_PACKAGE_PATH setting is doing the right thing, ghc-pkg 1ist will list all the databases in
use, in the reverse order they are searched.

4.9.5 Package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”, or just “package ID” for short) , which distinguishes
it from all other installed packages on the system. To see the package IDs associated with each installed package, use ghc-pkg
list -wv:

$ ghc-pkg list -v

using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache

/usr/lib/ghc-6.12.1/package.conf.d
Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853af93593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9cl1£880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbbl57b%ae852096266el113b8fac4a?)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 67 /316

The string in parentheses after the package name is the package ID: it normally begins with the package name and version, and
ends in a hash string derived from the compiled package. Dependencies between packages are expressed in terms of package
IDs, rather than just packages and versions. For example, take a look at the dependencies of the haske1198 package:

$ ghc-pkg field haskell98 depends

depends: array-0.2.0.1-9cbf76a576b6ee9c1£880cf171a0928d
base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc
directory-1.0.0.2-£51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e27f2b8e9
0ld-time-1.0.0.1-1c0d8ea38056e5087efle75cb0d139d1
process—-1.0.1.1-d8fc6d3baf44678a2909d59ca0ad5780
random-1.0.0.1-423d08c90£004795fd10e60384ce6561

The purpose of the package ID is to detect problems caused by re-installing a package without also recompiling the packages
that depend on it. Recompiling dependencies is necessary, because the newly compiled package may have a different ABI
(Application Binary Interface) than the previous version, even if both packages were built from the same source code using
the same compiler. With package IDs, a recompiled package will have a different package ID from the previous version, so
packages that depended on the previous version are now orphaned - one of their dependencies is not satisfied. Packages that are
broken in this way are shown in the ghc-pkg 1list output either in red (if possible) or otherwise surrounded by braces. In
the following example, we have recompiled and reinstalled the filepath package, and this has caused various dependencies
including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run ’"ghc-pkg check’ for more details.
/usr/lib/ghc-6.12.1/package.conf.d:
{Cabal-1.7.4}
array-0.2.0.1
base-3.0.3.0
etc

Additionally, ghc—-pkg 1list reminds you that there are broken packages and suggests ghc—pkg check, which displays
more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:

dependency "filepath-1.1.0.1-87511764eb0af2bceddb05e702750e63" doesn’t exist
There are problems in package haskeline-0.6.2:

dependency "filepath-1.1.0.1-87511764eb0af2bceddb05e702750e63" doesn’t exist
There are problems in package Cabal-1.7.4:

dependency "filepath-1.1.0.1-87511764eb0af2bceddb05e702750e63" doesn’t exist
There are problems in package process-1.0.1.1:

dependency "filepath-1.1.0.1-87511764eb0af2bceddb05e702750e63" doesn’t exist
There are problems in package directory-1.0.0.2:

dependency "filepath-1.1.0.1-87511764eb0af2bceddb05e702750e63" doesn’t exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.

ghc-6.12.1

haskeline-0.6.2

Cabal-1.7.4

process—-1.0.1.1

directory-1.0.0.2

bin-package-db-0.0.0.0

hpc-0.5.0.2

haskell98-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependencies. The easiest way to do this is to
use cabal-install, or download the packages from HackageDB and build and install them as normal.

Be careful not to recompile any packages that GHC itself depends on, as this may render the ghc package itself broken, and ghc
cannot be simply recompiled. The only way to recover from this would be to re-install GHC.

http://hackage.haskell.org/packages/hackage.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 68/316

4.9.6 Package management (the ghc-pkg command)

The ghc—pkg tool is for querying and modifying package databases. To see what package databases are in use, use ghc—
pkg list. The stack of databases that ghc—pkg knows about can be modified using the GHC_PACKAGE_PATH environment
variable (see Section 4.9.4.1, and using ——package—db options on the ghc-pkg command line.

When asked to modify a database, ghc—pkg modifies the global database by default. Specifying ——user causes it to act on the
user database, or ——package—db can be used to act on another database entirely. When multiple of these options are given,
the rightmost one is used as the database to act upon.

Commands that query the package database (list, latest, describe, field, dot) operate on the list of databases specified by the flags
--user, ——global, and ——package—db. If none of these flags are given, the default is ——global —-user.

If the environment variable GHC_PACKAGE_PATH is set, and its value does not end in a separator (: on Unix, ; on Windows),
then the last database is considered to be the global database, and will be modified by default by ghc-pkg. The intention here
is that GHC_PACKAGE_PATH can be used to create a virtual package environment into which Cabal packages can be installed
without setting anything other than GHC_PACKAGE_PATH.

The ghc-pkg program may be run in the ways listed below. Where a package name is required, the package can be named in
full including the version number (e.g. network—1.0), or without the version number. Naming a package without the version
number matches all versions of the package; the specified action will be applied to all the matching packages. A package specifier
that matches all version of the package can also be written pkg—»*, to make it clearer that multiple packages are being matched.

ghc-pkg init path Creates a new, empty, package database at path, which must not already exist.

ghc-pkg register file Reads a package specification from file (which may be “~” to indicate standard input), and
adds it to the database of installed packages. The syntax of £ile is given in Section 4.9.8.
The package specification must be a package that isn’t already installed.

ghc-pkg update file Thesameas register, exceptthatif a package of the same name is already installed, it is replaced
by the new one.

ghc-pkg unregister P Remove the specified package from the database.

ghc-pkg check Check consistency of dependencies in the package database, and report packages that have missing depen-
dencies.

ghc-pkg expose P Sets the exposed flag for package P to True.
ghc-pkg hide P Sets the exposed flag for package P to False.
ghc-pkg trust P Sets the t rusted flag for package p to True.
ghc-pkg distrust P Sets the trusted flag for package p to False.

ghc-pkg list [P] [--simple-output] This option displays the currently installed packages, for each of the databases
known to ghc-pkg. That includes the global database, the user’s local database, and any further files specified using the
—£ option on the command line.

Hidden packages (those for which the exposed flag is False) are shown in parentheses in the list of packages.
If an optional package identifier P is given, then only packages matching that identifier are shown.
If the option ——simple-output is given, then the packages are listed on a single line separated by spaces, and the

database names are not included. This is intended to make it easier to parse the output of ghc—pkg 1list using a script.

ghc-pkg find-module M [—-—simple-output] This option lists registered packages exposing module M. Examples:

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:
(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:
containers-0.1

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 69/316

Otherwise, it behaves like ghc-pkg 1ist, including options.

ghc-pkg latest P Prints the latest available version of package p.

ghc-pkg describe P Emit the full description of the specified package. The description is in the form of an Installed
PackageInfo, the same as the input file format for ghc-pkg register. See Section 4.9.8 for details.
If the pattern matches multiple packages, the description for each package is emitted, separated by the string ——— on a line

by itself.

ghc-pkg field P field[, field]* Show just a single field of the installed package description for P. Multiple fields
can be selected by separating them with commas

ghc—-pkg dot Generate a graph of the package dependencies in a form suitable for input for the graphviz tools. For example,
to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc—pkg dump Emit the full description of every package, in the form of an InstalledPackageInfo. Multiple package
descriptions are separated by the string ——— on a line by itself.

This is almost the same as ghc-pkg describe ’ ', except that ghc-pkg dump is intended for use by tools that
parse the results, so for example where ghc-pkg describe ’ «’ will emit an error if it can’t find any packages that
match the pattern, ghc—pkg dump will simply emit nothing.

ghc—pkg recache Re-creates the binary cache file package . cache for the selected database. This may be necessary if
the cache has somehow become out-of-sync with the contents of the database (ghc—pkg will warn you if this might be
the case).

The other time when ghc-pkg recache is useful is for registering packages manually: it is possible to register a
package by simply putting the appropriate file in the package database directory and invoking ghc-pkg recache to
update the cache. This method of registering packages may be more convenient for automated packaging systems.

Substring matching is supported for ¥ in find-module and for Pin 1ist, describe, and field, where a ’ «’ indicates
open substring ends (prefix«, xsuffix, xinfixx). Examples (output omitted):

—-— list all regex-related packages

ghc-pkg list ’*regexx’ —--ignore-case
—-— list all string-related packages
ghc-pkg list ’*stringx’ --ignore-case

—-— list OpenGL-related packages

ghc-pkg list ’*glx’ —-—-ignore-case

—-— list packages exporting modules in the Data hierarchy
ghc-pkg find-module ’‘Data.x’

—-— list packages exporting Monad modules

ghc-pkg find-module ’ xMonadx’

—— list names and maintainers for all packages
ghc-pkg field ’+*’ name,maintainer

—— list location of haddock htmls for all packages
ghc-pkg field ’*’ haddock-html

—— dump the whole database

ghc-pkg describe 7 x'

Additionally, the following flags are accepted by ghc-pkg:

—f file,—package—db file Adds file to the stack of package databases. Additionally, £ile will also be the database
modified by a register, unregister, expose or hide command, unless it is overridden by a later ——package-
db, ——user or ——global option.

——force Causes ghc—pkg to ignore missing dependencies, directories and libraries when registering a package, and just go
ahead and add it anyway. This might be useful if your package installation system needs to add the package to GHC before
building and installing the files.

http://www.graphviz.org/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 70/316

——global Operate on the global package database (this is the default). This flag affects the register, update, unregi
ster, expose, and hide commands.

——help,-? Outputs the command-line syntax.

——user Operate on the current user’s local package database. This flag affects the register, update, unregister,
expose, and hide commands.

-v[n] , ~——verbose[=n] Control verbosity. Verbosity levels range from 0-2, where the default is 1, and —v alone selects level
2.

-V,—--version Outputthe ghc—-pkg version number.

4.9.7 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure if possible. If your package is
particularly complicated or requires a lot of configuration, then you might have to fall back to the low-level mechanisms, so a
few hints for those brave souls follow.

You need to build an "installed package info" file for passing to ghc—pkg when installing your package. The contents of this
file are described in Section 4.9.8.

The Haskell code in a package may be built into one or more archive libraries (e.g. 1ibHSfoo. a), or a single shared object
(e.g. 1ibHSfoo.d1l1l/.s0/.dylib). The restriction to a single shared object is because the package system is used to tell
the compiler when it should make an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-object calls
require an extra indirection).

* Building a static library is done by using the ar tool, like so:

ar cqgs libHSfoo-1.0.a A.o B.o C.o ...

where A . 0, B. o and so on are the compiled Haskell modules, and 1 ibHSfoo. a is the library you wish to create. The syntax
may differ slightly on your system, so check the documentation if you run into difficulties.

* To load a package foo, GHCi can load its 1 ibHSfoo. a library directly, but it can also load a package in the form of a single
HSfoo. o file that has been pre-linked. Loading the . o file is slightly quicker, but at the expense of having another copy of the
compiled package. The rule of thumb is that if the modules of the package were compiled with —split-objs then building
the HSfoo. o is worthwhile because it saves time when loading the package into GHCi. Without —split—-objs, there is
not much difference in load time between the .o and . a libraries, so it is better to save the disk space and only keep the . a
around. In a GHC distribution we provide . o files for most packages except the GHC package itself.

The HSfoo. o file is built by Cabal automatically; use ——disable—-library-for—-ghci to disable it. To build one
manually, the following GNU ld command can be used:

1ld -r ——whole-archive -o HSfoo.o libHSfoo.a

(replace ——whole—-archive with —all_load on MacOS X)

* When building the package as shared library, GHC can be used to perform the link step. This hides some of the details out the
underlying linker and provides a common interface to all shared object variants that are supported by GHC (DLLs, ELF DSOs,
and Mac OS dylibs). The shared object must be named in specific way for two reasons: (1) the name must contain the GHC
compiler version, so that two library variants don’t collide that are compiled by different versions of GHC and that therefore are
most likely incompatible with respect to calling conventions, (2) it must be different from the static name otherwise we would
not be able to control the linker as precisely as necessary to make the —static/-dynamic flags work, see Section 4.12.6.

ghc -shared 1libHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC'’s version number in the shared object name allows different library versions compiled by different GHC versions
to be installed in standard system locations, e.g. under *nix /ust/lib. To obtain the version number of GHC invoke ghc --
numeric—-version and use its output in place of GHCVersion. See also Section 4.12.5 on how object files must be prepared
for shared object linking.

../Cabal/index.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 71/316

To compile a module which is to be part of a new package, use the —-package-name option (Section 4.9.1). Failure to use
the -package—-name option when compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the package name it was expecting the
module to come from is not the same as the package name stored in the . hi file.

It is worth noting with shared objects, when each package is built as a single shared object file, since a reference to a shared
object costs an extra indirection, intra-package references are cheaper than inter-package references. Of course, this applies to
the main package as well.

49.8 InstalledPackageInfo: apackage specification

A package specification is a Haskell record; in particular, it is the record InstalledPackagelInfo in the module Distribution.InstalledPackag
which is part of the Cabal package distributed with GHC.

An InstalledPackageInfo has a human readable/writable syntax. The functions parseInstalledPackageInfo
and showInstalledPackageInfo read and write this syntax respectively. Here’s an example of the InstalledPackag
eInfo for the unix package:

$ ghc-pkg describe unix

name: unix

version: 2.3.1.0

id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240

license: BSD3

copyright:

maintainer: libraries@haskell.org

stability:

homepage:

package-url:

description: This package gives you access to the set of operating system
services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).

The package is not supported under Windows (except under Cygwin) .

category: System

author:

exposed: True

exposed-modules: System.Posix System.Posix.DynamicLinker.Module
System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.IO System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:

trusted: False

import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0

library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0

hs-libraries: HSunix-2.3.1.0

extra-libraries: rt util dl

extra-ghci-libraries:

include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include

includes: HsUnix.h execvpe.h

depends: base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc

hugs-options:

cc-options:

ld-options:

framework-dirs:

frameworks:

../libraries/Cabal-1.18.1.3/Distribution-InstalledPackageInfo.html#%tInstalledPackageInfo

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 72/316

haddock—-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock
haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:

A package description consists of a number of field/value pairs. A field starts with the field name in the left-hand column followed

[T3RE 1)

by a “:”, and the value continues until the next line that begins in the left-hand column, or the end of file.

The syntax of the value depends on the field. The various field types are:

freeform Any arbitrary string, no interpretation or parsing is done.
string A sequence of non-space characters, or a sequence of arbitrary characters surrounded by quotes ". ... ".

string list A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, dependencies).

The allowed fields, with their types, are:

name The package’s name (without the version).

id The package ID. It is up to you to choose a suitable one.

version The package’s version, usually in the form A . B (any number of components are allowed).

license (string) The type of license under which this package is distributed. This field is a value of the License type.
license—file (optional string) The name of a file giving detailed license information for this package.

copyright (optional freeform) The copyright string.

maintainer (optional freeform) The email address of the package’s maintainer.

stability (optional freeform) A string describing the stability of the package (eg. stable, provisional or experimental).
homepage (optional freeform) URL of the package’s home page.

package-url (optional freeform) URL of a downloadable distribution for this package. The distribution should be a Cabal
package.

description (optional freeform) Description of the package.

category (optional freeform) Which category the package belongs to. This field is for use in conjunction with a future
centralised package distribution framework, tentatively titled Hackage.

author (optional freeform) Author of the package.
exposed (bool) Whether the package is exposed or not.
exposed—-modules (string list) modules exposed by this package.

hidden-modules (string list) modules provided by this package, but not exposed to the programmer. These modules cannot
be imported, but they are still subject to the overlapping constraint: no other package in the same program may provide a
module of the same name.

trusted (bool) Whether the package is trusted or not.

import-dirs (string list) A list of directories containing interface files (. hi files) for this package.

If the package contains profiling libraries, then the interface files for those library modules should have the suffix .
p_hi. So the package can contain both normal and profiling versions of the same library without conflict (see also
library_dirs below).

library-dirs (string list) A list of directories containing libraries for this package.

../libraries/Cabal-1.18.1.3/Distribution-License.html#t:License

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 73/316

hs-libraries (string list) A list of libraries containing Haskell code for this package, with the .a or .d11 suffix omitted.
When packages are built as libraries, the 1ib prefix is also omitted.

For use with GHC, each library should have an object file too. The name of the object file does not have a 1ib prefix, and
has the normal object suffix for your platform.

For example, if we specify a Haskell library as HSfoo in the package spec, then the various flavours of library that GHC
actually uses will be called:
libHSfoo.a The name of the library on Unix and Windows (mingw) systems. Note that we don’t support building
dynamic libraries of Haskell code on Unix systems.

HSfoo.dl1ll The name of the dynamic library on Windows systems (optional).
HSfoo.o0,HSfoo.obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference between hs-1libraries and
extra—-libraries is that hs-libraries normally have several versions, to support profiling, parallel and other
build options. The various versions are given different suffixes to distinguish them, for example the profiling version of the

standard prelude library is named 1ibHSbase_p. a, with the _p indicating that this is a profiling version. The suffix is
added automatically by GHC for hs-1ibraries only, no suffix is added for libraries in extra-libraries.

The libraries listed in extra—-libraries may be any libraries supported by your system’s linker, including dynamic
libraries (. so on Unix, .DLL on Windows).

Also, extra-libraries are placed on the linker command line after the hs-1ibraries for the same package. If
your package has dependencies in the other direction (i.e. extra—-libraries depends on hs-libraries), and the
libraries are static, you might need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.

includes (string list) A list of files to include for via-C compilations using this package. Typically the include file(s) will
contain function prototypes for any C functions used in the package, in case they end up being called as a result of Haskell
functions from the package being inlined.

depends (package id list) Packages on which this package depends.
hugs—-options (string list) Options to pass to Hugs for this package.

cc-options (string list) Extra arguments to be added to the gcc command line when this package is being used (only for
via-C compilations).

ld-options (string list) Extra arguments to be added to the gec command line (for linking) when this package is being used.

framework-dirs (string list) On Darwin/MacOS X, a list of directories containing frameworks for this package. This
corresponds to the —framework—path option. It is ignored on all other platforms.

frameworks (string list) On Darwin/MacOS X, a list of frameworks to link to. This corresponds to the —~framework
option. Take a look at Apple’s developer documentation to find out what frameworks actually are. This entry is ignored on
all other platforms.

haddock-interfaces (string list) A list of filenames containing Haddock interface files (. haddock files) for this pack-
age.

haddock-html (optional string) The directory containing the Haddock-generated HTML for this package.
4.10 Optimisation (code improvement)

The -0+ options specify convenient “packages” of optimisation flags; the —£* options described later on specify individual
optimisations to be turned on/off; the —m« options specify machine-specific optimisations to be turned on/off.

http://www.haskell.org/haddock/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 747316

4.10.1 -O=*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only have a general goal, something
like “Compile quickly” or “Make my program run like greased lightning.” The following “packages” of optimisations (or lack
thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed, which can have an impact on how
much of your program needs to be recompiled when you change something. This is one reason to stick to no-optimisation when
developing code.

No —-Ox-type option specified: This is taken to mean: “Please compile quickly; I’m not over-bothered about compiled-code
quality.” So, for example: ghc -c¢ Foo.hs

—00: Means “turn off all optimisation”, reverting to the same settings as if no —O options had been specified. Saying ~00 can
be useful if eg. make has inserted a —O on the command line already.

—-Oor -01: Means: “Generate good-quality code without taking too long about it.” Thus, for example: ghe -¢ -O Main.lhs

-02: Means: “Apply every non-dangerous optimisation, even if it means significantly longer compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse if you're unlucky. They are
normally turned on or off individually.

At the moment, —02 is unlikely to produce better code than —O.

We don’t use a —O« flag for day-to-day work. We use —O to get respectable speed; e.g., when we want to measure something.
When we want to go for broke, we tend to use —02 (and we go for lots of coffee breaks).

The easiest way to see what —O (etc.) “really mean” is to run with —v, then stand back in amazement.

4.10.2 -f£f=*: platform-independent flags

These flags turn on and off individual optimisations. They are normally set via the —O options described above, and as such,
you shouldn’t need to set any of them explicitly (indeed, doing so could lead to unexpected results). A flag —fwombat can be
negated by saying —fno-wombat. The flags below are off by default, except where noted below. See Section 4.20.15 for a
compact list.

—favoid-vect Partof Data Parallel Haskell (DPH).

Off by default. Enable the vectorisation avoidance optimisation. This optimisation only works when used in combination
with the —-fvectorise transformation.

While vectorisation of code using DPH is often a big win, it can also produce worse results for some kinds of code. This
optimisation modifies the vectorisation transformation to try to determine if a function would be better of unvectorised and
if so, do just that.

—-fcase-merge On by default. Merge immediately-nested case expressions that scrutinse the same variable. Example

case x of
Red —> el
-> case x of
Blue —-> e2
Green -> e3

case x of
Red —> el
Blue -> e2
Green —-> e2

—fcse On by default.. Enables the common-sub-expression elimination optimisation. Switching this off can be useful if you
have some unsafePerformIO expressions that you don’t want commoned-up.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 75/316

—fdicts—cheap A very experimental flag that makes dictionary-valued expressions seem cheap to the optimiser.
—-fdo-lambda-eta-expansion On by default. Eta-expand let-bindings to increase their arity.
—fdo-eta-reduction On by default. Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.

—feager-blackholing Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so as soon
as the thunk is entered. See Haskell on a shared-memory multiprocessor.

—-fexcess-precision When this option is given, intermediate floating point values can have a greater precision/range than
the final type. Generally this is a good thing, but some programs may rely on the exact precision/range of Float/Double
values and should not use this option for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode, so neither —fexcess—precision
nor ~fno-excess-precision has any effect. This is a known bug, see Section 14.2.1.

—fexpose—all-unfoldings An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger functions.

—-ffloat-in On by default. Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings to give
faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that this may avoid unnecessary allocation
if the branch the let is now on is never executed. It also enables other optimisation passes to work more effectively as they
have more information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to decide when to apply it). The details
get complicated but a simple example is that it is often beneficial to move let bindings outwards so that multiple let bindings
can be grouped into a larger single let binding, effectively batching their allocation and helping the garbage collector and
allocator.

—ffull-laziness On by default. Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See Let-floating: moving bindings to
give faster programs (ICFP’96). Full laziness increases sharing, which can lead to increased memory residency.

NOTE: GHC doesn’t implement complete full-laziness. When optimisation in on, and —fno-full-laziness is not
given, some transformations that increase sharing are performed, such as extracting repeated computations from a loop.
These are the same transformations that a fully lazy implementation would do, the difference is that GHC doesn’t consis-
tently apply full-laziness, so don’t rely on it.

—ffun-to-thunk Worker-wrapper removes unused arguments, but usually we do not remove them all, lest it turn a function
closure into a thunk, thereby perhaps creating a space leak and/or disrupting inlining. This flag allows worker/wrapper to
remove all value lambdas. Off by default.

—fignore-asserts Causes GHC to ignore uses of the function Exception.assert in source code (in other words,
rewriting Exception.assert p e toe (see Section 7.18). This flag is turned on by —O.

—fignore-interface-pragmas Tells GHC to ignore all inessential information when reading interface files. That is,
even if M. hi contains unfolding or strictness information for a function, GHC will ignore that information.

—flate-dmd-anal Off by default.Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations like —fspec—-constr can create
functions with unused arguments which are eliminated by late demand analysis. Improvements are modest, but so is the
cost. See notes on the Trac wiki page.

—-fliberate—case Off by default, but enabled by -O2. Turn on the liberate-case transformation. This unrolls recursive
function once in its own RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern specialiser (-
fspec-constr) but for free variables rather than arguments.

—fliberate—-case-threshold=N Set the size threshold for the liberate-case transformation.

—-fmax-relevant-bindings=N The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. The default is 6. Turning it off with —fno-max—
relevant-bindings gives an unlimited number. Syntactically top-level bindings are also usually excluded (since
they may be numerous), but —~-fno-max-relevant-bindings includes them too.

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 76/316

—fno-state-hack Turn off the "state hack" whereby any lambda with a State# token as argument is considered to be
single-entry, hence it is considered OK to inline things inside it. This can improve performance of IO and ST monad code,
but it runs the risk of reducing sharing.

—fomit-interface-pragmas Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only the types of the functions that M
exports, but not their unfoldings, strictness info, etc. Hence, for example, no function exported by M will be inlined into an
importing module. The benefit is that modules that import M will need to be recompiled less often (only when M’s exports
change their type, not when they change their implementation).

—fomit-yields On by default. Tells GHC to omit heap checks when no allocation is being performed. While this improves
binary sizes by about 5%, it also means that threads run in tight non-allocating loops will not get preempted in a timely
fashion. If it is important to always be able to interrupt such threads, you should turn this optimization off. Consider also
recompiling all libraries with this optimization turned off, if you need to guarantee interruptibility.

—-fpedantic-bottoms Make GHC be more precise about its treatment of bottom (but see also —fno-state-hack). In
particular, stop GHC eta-expanding through a case expression, which is good for performance, but bad if you are using
seq on partial applications.

—-fregs—graph Off by default, but enabled by -O2. Only applies in combination with the native code generator. Use the
graph colouring register allocator for register allocation in the native code generator. By default, GHC uses a simpler,
faster linear register allocator. The downside being that the linear register allocator usually generates worse code.

—fregs-iterative Off by default, only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator. This is the same register allocator as
the —-freg—graph one but also enables iterative coalescing during register allocation.

—fsimpl-tick-factor=n GHC’s optimiser can diverge if you write rewrite rules (Section 7.20) that don’t terminate, or
(Iess satisfactorily) if you code up recursion through data types (Section 14.2.1). To avoid making the compiler fall into an
infinite loop, the optimiser carries a "tick count” and stops inlining and applying rewrite rules when this count is exceeded.
The limit is set as a multiple of the program size, so bigger programs get more ticks. The ~-fsimpl-tick-factor flag
lets you change the multiplier. The default is 100; numbers larger than 100 give more ticks, and numbers smaller than 100
give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use —fddump-simpl-stats to
generate a much more detailed list. Usually that identifies the loop quite accurately, because some numbers are very large.

-funfolding-creation-threshold=n: (Default: 45) Governs the maximum size that GHC will allow a function
unfolding to be. (An unfolding has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining) that
unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences: (a) nothing larger than this will be inlined (unless it has an INLINE pragma); (b) nothing larger than this
will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code. The ~-funfolding-use-thre
shold is more useful.

—funfolding—use—-threshold=n (Default: 8) This is the magic cut-off figure for unfolding (aka inlining): below this
size, a function definition will be unfolded at the call-site, any bigger and it won’t. The size computed for a function
depends on two things: the actual size of the expression minus any discounts that apply (see —funfolding-con-
discount).

The difference between this and —funfolding—-creation—-threshold is that this one determines if a function
definition will be inlined at a call site. The other option determines if a function definition will be kept around at all for
potential inlining.

—fvectorise Part of Data Parallel Haskell (DPH).

Off by default. Enable the vectorisation optimisation transformation. This optimisation transforms the nested data paral-
lelism code of programs using DPH into flat data parallelism. Flat data parallel programs should have better load balancing,
enable SIMD parallelism and friendlier cache behaviour.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 771316

—fspec—constr Off by default, but enabled by -O2. Turn on call-pattern specialisation; see Call-pattern specialisation for
Haskell programs.

This optimisation specializes recursive functions according to their argument "shapes". This is best explained by example
so consider:

last :: [a] -> a
last [] = error "last"
last (x : []) = x

last (x : x8) last xs

In this code, once we pass the initial check for an empty list we know that in the recursive case this pattern match is
redundant. As such —fspec—-constr will transform the above code to:

last :: [a] —> a
last [] = error "last"
last (x : xs) = last’ x xs
where
last’ x [] = X
last’ x (y : ys) = last’ y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation. This applies when a argument is
strict in the recursive call to itself but not on the initial entry. As strict recursive branch of the function is created similar to
the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation extremely aggressively. This is
necessary for some highly optimized libraries, where we may want to specialize regardless of the number of specialisations,
or the size of the code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -—> b -> a) —-> a —-> Stream b -> a

{-# INLINE foldl #-}

foldl £ z (Stream step s _) = foldl_loop SPEC z s
where

foldl_loop !sPEC z s = case step s of
Yield x s’ -> foldl_loop sPEC (f z x) s’
Skip —-> foldl_loop sPEC z s’
Done -> z

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern specialization very aggressively
on foldl_loop due to the use of SPEC in the argument of the loop body. SPEC from GHC. Types is specifically
recognized by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy specialisation over the recursive
cases.

—-fspecialise On by default. Specialise each type-class-overloaded function defined in this module for the types at which
it is called in this module. Also specialise imported functions that have an INLINABLE pragma (Section 7.19.6.2) for the
types at which they are called in this module.

—fstatic-argument-transformation Turn on the static argument transformation, which turns a recursive function
into a non-recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

—fstrictness On by default.. Switch on the strictness analyser. There is a very old paper about GHC’s strictness analyser,
Measuring the effectiveness of a simple strictness analyser, but the current one is quite a bit different.

The strictness analyser figures out when arguments and variables in a function can be treated ’strictly’ (that is they are
always evaluated in the function at some point). This allow GHC to apply certain optimisations such as unboxing that
otherwise don’t apply as they change the semantics of the program when applied to lazy arguments.

http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/simple-strictnes-analyser.ps.gz

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 78/316

)

—funbox-strict—-fields: This option causes all constructor fields which are marked strict (i.e. “!”’) to be unpacked if
possible. It is equivalent to adding an UNPACK pragma to every strict constructor field (see Section 7.19.11).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selectively unboxing fields by using
UNPACK pragmas might be better. An alternative is to use —~funbox—-strict-fields to turn on unboxing by default
but disable it for certain constructor fields using the NOUNPACK pragma (see Section 7.19.12).

—funbox-small-strict—-fields: On by default.. This option causes all constructor fields which are marked strict (i.e.
“I”) and which representation is smaller or equal to the size of a pointer to be unpacked, if possible. It is equivalent to
adding an UNPACK pragma (see Section 7.19.11) to every strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types
data A = A !Int
data B = B !A

newtype C = C B
data D = D !C

would all be represented by a single Int# (see Section 7.2) value with —funbox-small-strict-fields enabled.

This option is less of a sledgehammer than —funbox—-strict-fields: it should rarely make things worse. If you
use ~funbox—-small-strict-fields to turn on unboxing by default you can disable it for certain constructor fields
using the NOUNPACK pragma (see Section 7.19.12).

Note that for consistency Double, Word64, and Int 64 constructor fields are unpacked on 32-bit platforms, even though
they are technically larger than a pointer on those platforms.

4.11 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible for taking the last intermediate
representation that GHC uses (a form called Cmm that is a simple, C like language) and compiling it to executable code. The
backends that GHC support are described below.

4.11.1 Native code Generator (—fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to assembly code. It is the fastest backend
and generally produces good performance code. It has the best support for compiling shared libraries. Select it with the —fasm
flag.

4.11.2 LLVM Code Generator (—£11vm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It generally produces code as with
performance as good as the native code generator but for some cases can produce much faster code. This is especially true for
numeric, array heavy code using packages like vector. The penalty is a significant increase in compilation times. Select the
LLVM backend with the —£11vm flag. Currently LLVM 2.8 and later are supported.

You must install and have LLVM available on your PATH for the LLVM code generator to work. Specifically GHC needs to be
able to call the optand llc tools. Secondly, if you are running Mac OS X with LLVM 3.0 or greater then you also need the Clang
¢ compiler compiler available on your PATH.

To install LLVM and Clang:

* Linux: Use your package management tool.

* Mac OS X: Clang is included by default on recent OS X machines when XCode is installed (from 10. 6 and later). LLVM is
not included. In order to use the LLVM based code generator, you should install the Homebrew package manager for OS X.
Alternatively you can download binaries for LLVM and Clang from here.

* Windows: You should download binaries for LLVM and clang from here.

http://llvm.org
http://clang.llvm.org
http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 79/316

4.11.3 C Code Generator (—fvia-C)

This is the oldest code generator in GHC and is generally not included any more having been deprecated around GHC 7.0. Select
it with the —fvia-C flag.

The C code generator is only supported when GHC is built in unregisterised mode, a mode where GHC produces ’portable’ C
code as output to facilitate porting GHC itself to a new platform. This mode produces much slower code though so it’s unlikely
your version of GHC was built this way. If it has then the native code generator probably won’t be available. You can check this
information by calling ghc --info.

4.11.4 Unregisterised compilation

The term "unregisterised" really means "compile via vanilla C", disabling some of the platform-specific tricks that GHC normally
uses to make programs go faster. When compiling unregisterised, GHC simply generates a C file which is compiled via gcc.

When GHC is build in unregisterised mode only the LLVM and C code generators will be available. The native code generator
won’t be. LLVM usually offers a substantial performance benefit over the C backend in unregisterised mode.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the prerequisite tools to gec,
as, and Id and nothing more, and furthermore the amount of platform-specific code that needs to be written in order to get
unregisterised compilation going is usually fairly small.

Unregisterised compilation cannot be selected at compile-time; you have to build GHC with the appropriate options set. Consult
the GHC Building Guide for details.

You can check if your GHC is unregisterised by calling ghc --info.

4.12 Options related to a particular phase

4.12.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation system, in place of whatever the ghe
has wired into it. For example, you might want to try a different assembler. The following options allow you to change the
external program used for a given compilation phase:

—pgmL ecmd Use cmd as the literate pre-processor.

—-pgmP cmd Use cmd as the C pre-processor (with —cpp only).
—-pgmc cmd Use cmd as the C compiler.

—pgmlo cmd Use cmd as the LLVM optimiser.

—pgmlc cmd Use cmd as the LLVM compiler.

—-pgms cmd Use cmd as the splitter.

—-pgma cmd Use cmd as the assembler.

—-pagml cmd Use cmd as the linker.

—-pgmdll emd Use cmd as the DLL generator.

—pgmF cmd Use cmd as the pre-processor (with —F only).

—-pgmwindres emd Use cmd as the program to use for embedding manifests on Windows. Normally this is the program
windres, which is supplied with a GHC installation. See —~fno—embed-manifest in Section 4.12.6.

—-pgmlibtool emd Use cmd as the libtool command (when using —staticlib only).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 80/316

4.12.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:

—optL option Pass option to the literate pre-processor

—optP option Pass optionto CPP (makes sense only if —cpp is also on).
—optF option Pass option tothe custom pre-processor (see Section 4.12.4).
—optc option Pass option tothe C compiler.

—optlo option Pass option tothe LLVM optimiser.

—optlc option Pass option tothe LLVM compiler.

—optm option Pass option to the mangler.

—opta option Pass option to the assembler.

—-optl option Pass option to the linker.

—optdll option Pass option tothe DLL generator.

—optwindres option Pass option to windres when embedding manifests on Windows. See —fno-embed-manif
est in Section 4.12.6.

So, for example, to force an ~Ewurble option to the assembler, you would tell the driver ~opta-Ewurble (the dash before
the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime system you can enclose them in +RTS
. ..—RTS (see Section 4.17).

4.12.3 Options affecting the C pre-processor

—cpp The C pre-processor cpp is run over your Haskell code only if the —cpp option is given. Unless you are building a large
system with significant doses of conditional compilation, you really shouldn’t need it.

—Dsymbol[=value] Define macro symbol in the usual way. NB: does not affect —D macros passed to the C compiler when
compiling via C! For those, use the —optc-Dfoo hack... (see Section 4.12.2).

—Usymbol Undefine macro symbol in the usual way.

—Idir Specify adirectory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or . 1hs files).

The symbols defined by GHC are listed below. To check which symbols are defined by your local GHC installation, the following
trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo . hs, but it isn’t actually used).

__ GLASGOW_HASKELL___ For version x.y . z of GHC, the value of __GLASGOW_HASKELL___is the integer xyy (if y is
a single digit, then a leading zero is added, so for example in version 6.2 of GHC, __ GLASGOW_HASKELL__==602).
More information in Section 1.4.

With any luck, _ GLASGOW_HASKELL___ will be undefined in all other implementations that support C-style pre-
processing.

(For reference: the comparable symbols for other systems are: ___HUGS___ for Hugs, _ NHC___ for nhc98, and __ HBC___
for hbc.)

NB. This macro is set when pre-processing both Haskell source and C source, including the C source generated from a
Haskell module (i.e. .hs, .1hs, .cand .hc files).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 81/316

__ GLASGOW_HASKELL_LLVM__ Only defined when —£11vm is specified. When GHC is using version x . y . z of LLVM,
the value of __ GLASGOW_HASKELL_LLVM__ is the integer xy.

__ PARALLEL_HASKELL___ Only defined when —parallel isinuse! This symbol is defined when pre-processing Haskell
(input) and pre-processing C (GHC output).

os_HOST_0S=1 This define allows conditional compilation based on the Operating System, whereos is the name of the
current Operating System (eg. 1 inux, mingw32 for Windows, solaris, etc.).

arch_HOST_ ARCH=1 This define allows conditional compilation based on the host architecture, wherearch is the name of
the current architecture (eg. 1386, x86_64, powerpc, sparc, etc.).

4.12.3.1 CPP and string gaps

A small word of warning: —cpp is not friendly to “string gaps”.. In other words, strings such as the following:

strmod = "\
\ p\
\ll

don’t work with —cpp; /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp and possibly other cpps) leaves the
backslash-space pairs alone and the string gap works as expected.

4.12.4 Options affecting a Haskell pre-processor

—F A custom pre-processor is run over your Haskell source file only if the —F option is given.

Running a custom pre-processor at compile-time is in some settings appropriate and useful. The —F option lets you
run a pre-processor as part of the overall GHC compilation pipeline, which has the advantage over running a Haskell
pre-processor separately in that it works in interpreted mode and you can continue to take reap the benefits of GHC’s
recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the Haskell input, but after the literate markup
has been stripped away and (possibly) the C pre-processor has washed the Haskell input.

Use —-pgmF cmd to select the program to use as the preprocessor. When invoked, the cmd pre-processor is given at least
three arguments on its command-line: the first argument is the name of the original source file, the second is the name of
the file holding the input, and the third is the name of the file where cmd should write its output to.

Additional arguments to the pre-processor can be passed in using the —opt F option. These are fed to cmd on the command
line after the three standard input and output arguments.

An example of a pre-processor is to convert your source files to the input encoding that GHC expects, i.e. create a script
convert . sh containing the lines:

#!/bin/sh
(echo "{—-# LINE 1 \"$2\" #-}" ; dconv —-f 11 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The —f 11 option tells iconv to convert your Latin-1 file, supplied in
argument $2, while the "-t utf-8" options tell iconv to return a UTF-8 encoded file. The result is redirected into argument
$3. The echo "{—-#LINE 1 \"$2\" #-}" just makes sure that your error positions are reported as in the original
source file.

4.12.5 Options affecting code generation

—fasm Use GHC’s native code generatorrather than compiling via LLVM. —fasm is the default.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 82/316

—£f1lvm Compile via LLVMinstead of using the native code generator. This will generally take slightly longer than the native
code generator to compile. Produced code is generally the same speed or faster than the other two code generators.
Compiling via LLVM requires LLVM to be on the path.

—-fno-code Omit code generation (and all later phases) altogether. Might be of some use if you just want to see dumps of the
intermediate compilation phases.

—fobject-code Generate object code. This is the default outside of GHCi, and can be used with GHCi to cause object code
to be generated in preference to bytecode.

—fbyte—code Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can currently only be used
in the interactive interpreter, not saved to disk. This option is only useful for reversing the effect of ~fobject-code.

—fPIC Generate position-independent code (code that can be put into shared libraries). This currently works on Linux x86
and x86-64. On Windows, position-independent code is never used so the flag is a no-op on that platform.

—dynamic When generating code, assume that entities imported from a different package will reside in a different shared
library or binary.

Note that using this option when linking causes GHC to link against shared libraries.

4.12.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-supplied, and system-supplied (—1m
math library, for example).

—-11ib Link in the 1ib library. On Unix systems, this will be in a file called 1iblib.a or 1iblib.so which resides
somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter. If library foo requires library bar,
then in general —1 foo should come before —1bar on the command line.

There’s one other gotcha to bear in mind when using external libraries: if the library contains a main () function, then
this will be linked in preference to GHC’s own main () function (eg. 1ibf2c and 1ibl have their own main () s). This
is because GHC’s main () comes from the HSrt s library, which is normally included after all the other libraries on the
linker’s command line. To force GHC’s main () to be used in preference to any other main () s from external libraries,
just add the option —1HSrt s before any other libraries on the command line.

—c Onmits the link step. This option can be used with ——make to avoid the automatic linking that takes place if the program
contains a Main module.

—-package name If you are using a Haskell “package” (see Section 4.9), don’t forget to add the relevant —package option
when linking the program too: it will cause the appropriate libraries to be linked in with the program. Forgetting the —
package option will likely result in several pages of link errors.

—framework name On Darwin/OS X/iOS only, link in the framework name. This option corresponds to the —framework
option for Apple’s Linker. Please note that frameworks and packages are two different things - frameworks don’t contain
any haskell code. Rather, they are Apple’s way of packaging shared libraries. To link to Apple’s “Carbon” API, for
example, you'd use ~framework Carbon.

—statieclib On Darwin/OS X/iOS only, link all passed files into a static library suitable for linking into an iOS (when using
a cross-compiler) or Mac Xcode project. To control the name, use the —o name option as usual. The default name is
liba.a. This should nearly always be passed when compiling for iOS with a cross-compiler.

-Ldir Where to find user-supplied libraries. .. Prepend the directory dir to the library directories path.

—framework-pathdir On Darwin/OS X/iOS only, prepend the directory dir to the framework directories path. This
option corresponds to the —F option for Apple’s Linker (-F already means something else for GHC).

—-split-objs Tell the linker to split the single object file that would normally be generated into multiple object files, one
per top-level Haskell function or type in the module. This only makes sense for libraries, where it means that executables
linked against the library are smaller as they only link against the object files that they need. However, assembling all the
sections separately is expensive, so this is slower than compiling normally. We use this feature for building GHC'’s libraries
(warning: don’t use it unless you know what you’re doing!).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 83/316

—static Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

—dynamic This flag tells GHC to link against shared Haskell libraries. This flag only affects the selection of dependent
libraries, not the form of the current target (see -shared). See Section 4.13 on how to create them.

Note that this option also has an effect on code generation (see above).

—-shared Instead of creating an executable, GHC produces a shared object with this linker flag. Depending on the operating
system target, this might be an ELF DSO, a Windows DLL, or a Mac OS dylib. GHC hides the operating system details
beneath this uniform flag.

The flags ~dynamic/-static control whether the resulting shared object links statically or dynamically to Haskell
package libraries given as —package option. Non-Haskell libraries are linked as gcc would regularly link it on your
system, e.g. on most ELF system the linker uses the dynamic libraries when found.

Object files linked into shared objects must be compiled with —£fPIC, see Section 4.12.5

When creating shared objects for Haskell packages, the shared object must be named properly, so that GHC recognizes the
shared object when linked against this package. See shared object name mangling.

—dynload This flag selects one of a number of modes for finding shared libraries at runtime. See Section 4.13.4 for a
description of each mode.

-main-is thing The normal rule in Haskell is that your program must supply a main function in module Main. When
testing, it is often convenient to change which function is the "main" one, and the -main-1is flag allows you to do so.
The thing can be one of:

¢ A lower-case identifier foo. GHC assumes that the main function is Main. foo.
¢ A module name A. GHC assumes that the main function is A .main.

* A qualified name A . foo. GHC assumes that the main function is A . foo.

Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the link step. The flag must be specified
when compiling the module containing the specified main function (e.g. module A in the latter two items above). It has
no effect for other modules, and hence can safely be given to ghc —--make. However, if all the modules are otherwise
up to date, you may need to force recompilation both of the module where the new "main" is, and of the module where
the "main" function used to be; ghc is not clever enough to figure out that they both need recompiling. You can force
recompilation by removing the object file, or by using the ~fforce-recomp flag.

-no-hs-main In the event you want to include ghc-compiled code as part of another (non-Haskell) program, the RTS will
not be supplying its definition of main () at link-time, you will have to. To signal that to the compiler when linking, use
-no-hs-main. See also Section 8.2.1.1.

Notice that since the command-line passed to the linker is rather involved, you probably want to use ghe to do the final
link of your “mixed-language’ application. This is not a requirement though, just try linking once with —v on to see what
options the driver passes through to the linker.

The -no-hs-main flag can also be used to persuade the compiler to do the link step in ——make mode when there is no
Haskell Ma in module present (normally the compiler will not attempt linking when there is no Main).

The flags ~rtsopts and ~-with-rtsopts have no effect when used with —no-hs-main, because they are imple-
mented by changing the definition of main that GHC generates. See Section 8.2.1.1 for how to get the effect of —~-rt sopts
and ~with-rtsopts when using your own main.

—debug Link the program with a debugging version of the runtime system. The debugging runtime turns on numerous
assertions and sanity checks, and provides extra options for producing debugging output at runtime (run the program with
+RTS -7 to see a list).

—threaded Link the program with the "threaded" version of the runtime system. The threaded runtime system is so-called
because it manages multiple OS threads, as opposed to the default runtime system which is purely single-threaded.

Note that you do not need —~threaded in order to use concurrency; the single-threaded runtime supports concurrency
between Haskell threads just fine.

The threaded runtime system provides the following benefits:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 84/316

* Itenables the —N RTS option to be used, which allows threads to run in parallel on a multiprocessor or multicore machine.
See Section 4.15.

* If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell threads in the program will
continue to run while the foreign call is in progress. Additionally, foreign exported Haskell functions may be
called from multiple OS threads simultaneously. See Section 8.2.4.

—eventlog Link the program with the "eventlog" version of the runtime system. A program linked in this way can generate
a runtime trace of events (such as thread start/stop) to a binary file program.eventlog, which can then be interpreted
later by various tools. See Section 4.17.6 for more information.

—eventlog can be used with ~threaded. It is implied by —~debug.

—-rtsopts This option affects the processing of RTS control options given either on the command line or via the GHCRTS
environment variable. There are three possibilities:

—rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the command line, then the
program will abort with an error message. If the GHCRTS environment variable is set, then the program will emit a
warning message, GHCRTS will be ignored, and the program will run as normal.

—rtsopts=some [this is the default setting] Enable only the "safe" RTS options: (Currently only -2 and ——info.)
Any other RTS options on the command line or in the GHCRTS environment variable causes the program with to
abort with an error message.

—rtsopts=all, or just —-rtsopts Enable all RTS option processing, both on the command line and through the
GHCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since RTS options can be used to write
logging data to arbitrary files under the security context of the running program, there is a potential security problem. For
this reason, GHC 7.0.1 and later default to —rt sops=some.

Note that —rt sopt s has no effect when used with —-no-hs—-main; see Section 8.2.1.1 for details.

-with-rtsopts This option allows you to set the default RTS options at link-time. For example, ~-with-rtsopts="-
H128m" sets the default heap size to 128MB. This will always be the default heap size for this program, unless the user
overrides it. (Depending on the setting of the —rt sopt s option, the user might not have the ability to change RTS options
at run-time, in which case ~-with-rtsopts would be the only way to set them.)

Note that —with-rtsopts has no effect when used with -no—hs-main; see Section 8.2.1.1 for details.

—fno-gen-manifest On Windows, GHC normally generates a manifest file when linking a binary. The manifest is placed
in the file prog.exe.manifest where prog.exe is the name of the executable. The manifest file currently serves just
one purpose: it disables the "installer detection"in Windows Vista that attempts to elevate privileges for executables with
certain names (e.g. names containing "install", "setup" or "patch"). Without the manifest file to turn off installer detection,
attempting to run an executable that Windows deems to be an installer will return a permission error code to the invoker.
Depending on the invoker, the result might be a dialog box asking the user for elevated permissions, or it might simply be
a permission denied error.

Installer detection can be also turned off globally for the system using the security control panel, but GHC by default
generates binaries that don’t depend on the user having disabled installer detection.

The -fno-gen-manifest disables generation of the manifest file. One reason to do this would be if you had a manifest
file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the location of dependent DLLs.
-fno-gen-manifest also implies ~-fno-embed-manifest, see below.

—fno-embed-manifest The manifest file that GHC generates when linking a binary on Windows is also embedded in the
executable itself, by default. This means that the binary can be distributed without having to supply the manifest file too.

The embedding is done by running windres; to see exactly what GHC does to embed the manifest, use the —v flag. A
GHC installation comes with its own copy of windres for this reason.

See also —pgmwindres (Section 4.12.1) and —optwindres (Section 4.12.2).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 85/316

—fno-shared-implib DLLs on Windows are typically linked to by linking to a corresponding . 1ibor .d11.a - the so-
called import library. GHC will typically generate such a file for every DLL you create by compiling in —~shared mode.
However, sometimes you don’t want to pay the disk-space cost of creating this import library, which can be substantial - it
might require as much space as the code itself, as Haskell DLLs tend to export lots of symbols.

As long as you are happy to only be able to link to the DLL using GetProcAddress and friends, you can supply the —
fno-shared-implib flag to disable the creation of the import library entirely.

—dylib-install-name path On Darwin/OS X, dynamic libraries are stamped at build time with an "install name",
which is the ultimate install path of the library file. Any libraries or executables that subsequently link against it will pick
up that path as their runtime search location for it. By default, ghc sets the install name to the location where the library
is built. This option allows you to override it with the specified file path. (It passes ~install_name to Apple’s linker.)
Ignored on other platforms.

4.13 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries are also sometimes known as
dynamic libraries, in particular on Windows they are referred to as dynamic link libraries (DLLs).

Shared libraries allow a single instance of some pre-compiled code to be shared between several programs. In contrast, with static
linking the code is copied into each program. Using shared libraries can thus save disk space. They also allow a single copy of
code to be shared in memory between several programs that use it. Shared libraries are often used as a way of structuring large
projects, especially where different parts are written in different programming languages. Shared libraries are also commonly
used as a plugin mechanism by various applications. This is particularly common on Windows using COM.

In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64 architectures). GHC version 7.0 adds
support on Windows (see Section 13.6), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86 and
PowerPC).

Building and using shared libraries is slightly more complicated than building and using static libraries. When using Cabal much
of the detail is hidden, just use ——enable-shared when configuring a package to build it into a shared library, or to link it
against other packages built as shared libraries. The additional complexity when building code is to distinguish whether the code
will be used in a shared library or will use shared library versions of other packages it depends on. There is additional complexity
when installing and distributing shared libraries or programs that use shared libraries, to ensure that all shared libraries that are
required at runtime are present in suitable locations.

4.13.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the base libraries use the ~dynamic flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against shared library versions of Haskell
packages (such as base). The second is when linking, to link against the shared versions of the packages’ libraries rather than the
static versions. Obviously this requires that the packages were built with shared libraries. On supported platforms GHC comes
with shared libraries for all the core packages, but if you install extra packages (e.g. with Cabal) then they would also have to be
built with shared libraries (—-—enable—-shared for Cabal).

4.13.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other Haskell programs. The easiest way is
using Cabal, simply configure the Cabal package with the -——enable-shared flag.

If you want to do the steps manually or are writing your own build system then there are certain conventions that must be
followed. Building a shared library that exports Haskell code, to be used by other Haskell code is a bit more complicated than it
is for one that exports a C API and will be used by C code. If you get it wrong you will usually end up with linker errors.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 86/316

In particular Haskell shared libraries must be made into packages. You cannot freely assign which modules go in which shared
libraries. The Haskell shared libraries must match the package boundaries. The reason for this is that GHC handles references
to symbols within the same shared library (or main executable binary) differently from references to symbols between different
shared libraries. GHC needs to know for each imported module if that module lives locally in the same shared lib or in a separate
shared lib. The way it does this is by using packages. When using ~dynamic, a module from a separate package is assumed to
come from a separate shared lib, while modules from the same package (or the default "main" package) are assumed to be within
the same shared lib (or main executable binary).

Most of the conventions GHC expects when using packages are described in Section 4.9.7. In addition note that GHC expects
the . hi files to use the extension . dyn_hi. The other requirements are the same as for C libraries and are described below, in
particular the use of the flags —~dynamic, -fPIC and -shared.

4.13.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger mixed-language project. While with
static linking it is recommended to use GHC to perform the final link step, with shared libraries a Haskell library can be treated
just like any other shared library. The linking can be done using the normal system C compiler or linker.

It is possible to load shared libraries generated by GHC in other programs not written in Haskell, so they are suitable for using as
plugins. Of course to construct a plugin you will have to use the FFI to export C functions and follow the rules about initialising
the RTS. See Section 8.2.1.2. In particular you will probably want to export a C function from your shared library to initialise
the plugin before any Haskell functions are called.

To build Haskell modules that export a C API into a shared library use the ~dynamic, -fPIC and —shared flags:

ghc -—-make -dynamic -shared -fPIC Foo.hs -o libfoo.so

As before, the —~dynami c flag specifies that this library links against the shared library versions of the rts and base package. The
—fPIC flag is required for all code that will end up in a shared library. The —shared flag specifies to make a shared library
rather than a program. To make this clearer we can break this down into separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc —-dynamic -shared Foo.o -o libfoo.so

In principle you can use —shared without —dynami c in the link step. That means to statically link the rts all the base libraries
into your new shared library. This would make a very big, but standalone shared library. On most platforms however that would
require all the static libraries to have been built with —~fPIC so that the code is suitable to include into a shared library and we
do not do that at the moment.

Warning: if your shared library exports a Haskell API then you cannot directly link it into another Haskell program and use that
Haskell API. You will get linker errors. You must instead make it into a package as described in the section above.

4.13.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs can find the libraries they need at
runtime. The details of how this works varies between platforms, in particular the three major systems: Unix ELF platforms,
Windows and Mac OS X.

4.13.4.1 Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations that the dynamic linker knows about.
For example /usr/1lib or /usr/local/lib on most systems. The other mechanism is to use a "runtime path" or "rpath"
embedded into programs and libraries themselves. These paths can either be absolute paths or on at least Linux and Solaris they
can be paths relative to the program or library itself. In principle this makes it possible to construct fully relocatable sets of
programs and libraries.

GHC has a —~dynload linking flag to select the method that is used to find shared libraries at runtime. There are currently two
modes:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 87/316

sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this embeds RPATH/RUNPATH entries
into the shared library or executable. In particular it uses absolute paths to where the shared libraries for the rts and each
package can be found. This means the program can immediately be run and it will be able to find the libraries it needs.
However it may not be suitable for deployment if the libraries are installed in a different location on another machine.

deploy This does not embed any runtime paths. It relies on the shared libraries being available in a standard location or in a
directory given by the LD_LIBRARY_PATH environment variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable ~rpath flag to the linker:

ghc -dynamic Main.hs -o main -1foo -L. —-optl-Wl,-rpath,’$SORIGIN’

This assumes that the library 1ibfoo. so is in the current directory and will be able to be found in the same directory as the
executable main once the program is deployed. Similarly it would be possible to use a subdirectory relative to the executable
e.g. —optl-Wl, -rpath,’ SORIGIN/1lib’.

This relative path technique can be used with either of the two —~dynload modes, though it makes most sense with the deploy
mode. The difference is that with the deploy mode, the above example will end up with an ELF RUNPATH of just SORIGIN
while with the sysdep mode the RUNPATH will be SORIGIN followed by all the library directories of all the packages that
the program depends on (e.g. base and rts packages etc.) which are typically absolute paths. The unix tool readelf --
dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF shared libraries and executables.

4.13.4.2 Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at build time with an "install name",
which is the full ultimate install path of the library file. Any libraries or executables that subsequently link against it (even if it
hasn’t been installed yet) will pick up that path as their runtime search location for it. When compiling with ghc directly, the
install name is set by default to the location where it is built. You can override this with the ~dylib-install-name option
(which passes —install_name to the Apple linker). Cabal does this for you. It automatically sets the install name for dynamic
libraries to the absolute path of the ultimate install location.

4.14 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries compiled in a certain way. To get
access to the support libraries for Concurrent Haskell, just import Control.Concurrent. More information on Concurrent
Haskell is provided in the documentation for that module.

Optionally, the program may be linked with the —threaded option (see Section 4.12.6. This provides two benefits:

* It enables the —N RTS option to be used, which allows threads to run in parallel on a multiprocessor or multicore machine. See
Section 4.15.

* If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell threads in the program will continue to
run while the foreign call is in progress. Additionally, foreign exported Haskell functions may be called from multiple
OS threads simultaneously. See Section 8.2.4.

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:

—Cs Sets the context switch interval to s seconds. A context switch will occur at the next heap block allocation after the timer
expires (a heap block allocation occurs every 4k of allocation). With —CO or -C, context switches will occur as often as
possible (at every heap block allocation). By default, context switches occur every 20ms.

../libraries/base-4.7.0.0/Control-Concurrent.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 88/316

4.15 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about making your program run faster by
making use of multiple processors simultaneously. Concurrency, on the other hand, is a means of abstraction: it is a convenient
way to structure a program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible to run concurrent threads in parallel,
and this is exactly what GHC’s SMP parallelism support does. But it is also possible to obtain performance improvements
with parallelism on programs that do not use concurrency. This section describes how to use GHC to compile and run parallel
programs, in Section 7.25 we describe the language features that affect parallelism.

4.15.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the —~t hreaded option (see Section 4.12.6). Addi-
tionally, the following compiler options affect parallelism:

—-feager-blackholing Blackholing is the act of marking a thunk (lazy computuation) as being under evaluation. It is
useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the NonTermination exception), secondly
it avoids certain kinds of space leak, and thirdly it avoids repeating a computation in a parallel program, because we can
tell when a computation is already in progress.

The option —feager-blackholing causes each thunk to be blackholed as soon as evaluation begins. The default is
"lazy blackholing", whereby thunks are only marked as being under evaluation when a thread is paused for some reason.
Lazy blackholing is typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed. However,
eager blackholing can avoid more repeated computation in a parallel program, and this often turns out to be important for
parallelism.

We recommend compiling any code that is intended to be run in parallel with the ~-feager-blackholing flag.

4.15.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Control.Concurrent.setNumCapabilities from
your program, or use the RTS —N option.

-N[x] Use x simultaneous threads when running the program. Normally x should be chosen to match the number of CPU
cores on the machine’. For example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting x, i.e. +RTS —N -RTS, lets the runtime choose the value of x itself based on how many processors are in your
machine.

Be careful when using all the processors in your machine: if some of your processors are in use by other programs, this
can actually harm performance rather than improve it.

Setting —N also has the effect of enabling the parallel garbage collector (see Section 4.17.3).

The current value of the —N option is available to the Haskell program via Control.Concurrent .getNumCapabi
lities, and it may be changed while the program is running by calling Control.Concurrent .setNumCapabil
ities.

The following options affect the way the runtime schedules threads on CPUs:

—ga Use the OS’s affinity facilities to try to pin OS threads to CPU cores. This is an experimental feature, and may or may not
be useful. Please let us know whether it helps for you!

—gm Disable automatic migration for load balancing. Normally the runtime will automatically try to schedule threads across the
available CPUs to make use of idle CPUs; this option disables that behaviour. Note that migration only applies to threads;
sparks created by par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule threads onto CPUs with Control.
Concurrent.forkOn.

3 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and let us know what results you find.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 89/316

4.15.3 Hints for using SMP parallelism

Add the —s RTS option when running the program to see timing stats, which will help to tell you whether your program got
faster by using more CPUs or not. If the user time is greater than the elapsed time, then the program used more than one CPU.
You should also run the program without —N for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the run of the program (see Sec-
tion 4.17.3), which will give you an idea how well your par annotations are working.

GHC’s parallelism support has improved in 6.12.1 as a result of much experimentation and tuning in the runtime system. We’d
still be interested to hear how well it works for you, and we’re also interested in collecting parallel programs to add to our
benchmarking suite.

4.16 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2: (x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement floating point operations when
using the native code generator. This gives a substantial performance improvement for floating point, but the resulting
compiled code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD Athlon 64 and later).
The LLVM backend will also use SSE2 if your processor supports it but detects this automatically so no flag is required.

SSE2 is unconditionally used on x86-64 platforms.

-msse4 . 2: (x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating point and bit operations
when using the native code generator. The resulting compiled code will only run on processors that support SSE4.2 (Intel
Core i7 and later). The LLVM backend will also use SSE4.2 if your processor supports it but detects this automatically so
no flag is required.

4.17 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with a non-trivial runtime system (RTS),
which handles storage management, thread scheduling, profiling, and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-switch interval, the default size
of the heap, and enable heap profiling. These options can be passed to the runtime system in a variety of different ways; the next
section (Section 4.17.1) describes the various methods, and the following sections describe the RTS options themselves.

4.17.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS . ..-RTS, when running the program (Section 4.17.1.1)
* at compile-time, using ——with-rtsopts (Section 4.17.1.2)
¢ with the environment variable GHCRTS (Section 4.17.1.3)

* by overriding “hooks” in the runtime system (Section 4.17.1.4)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 90/316

4.17.1.1 Setting RTS options on the command line

If you set the —rt sopts flag appropriately when linking (see Section 4.12.6), you can give RTS options on the command line
when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed between +RTS and —~RTS as its own.
For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog —-f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle ~-H32m -S for itself, and the remaining arguments -f -h foo bar will be available to your program
if/when it calls System.Environment .getArgs.

No —RTS option is required if the runtime-system options extend to the end of the command line, as in this example:

% hls —-ltr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the program (and not the RTS), use a ——
RTS.

As always, for RTS options that take sizes: If the last character of size is a K or k, multiply by 1000; if an M or m, by
1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in the counters is your fault!)

Giving a +RTS -2 option will print out the RTS options actually available in your program (which vary, depending on how you
compiled).

NOTE: since GHC is itself compiled by GHC, you can change RTS options in the compiler using the normal +RTS .. .-
RTS combination. eg. to set the maximum heap size for a compilation to 128M, you would add +RTS -M128m -RTS to the
command line.

4.17.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the —~-with-rtsopts flag (Section 4.12.6).
A common use for this is to give your program a default heap and/or stack size that is greater than the default. For example, to
set —-H128m —-K64m, link with —-with-rtsopts="-H128m -K64m".

4.17.1.3 Setting RTS options with the GHCRTS environment variable

If the —rtsopts flag is set to something other than none when linking, RTS options are also taken from the environment
variable GHCRTS. For example, to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like shell):

GHCRTS='"-M2G’
export GHCRTS

RTS options taken from the GHCRTS environment variable can be overridden by options given on the command line.

Tip: setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell programs growing beyond the
real memory in your machine, which is easy to do by accident and can cause the machine to slow to a crawl until the OS decides
to kill the process (and you hope it kills the right one).

4.17.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program, by compiling in a “hook” that is
called by the run-time system. The RTS contains stub definitions for these hooks, but by writing your own version and linking it
on the GHC command line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the program is built dynamically.

You can change the messages printed when the runtime system “blows up,” e.g., on stack overflow. The hooks for these are as
follows:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 91/316

void OutOfHeapHook (unsigned long, unsigned long) The heap-overflow message.

void StackOverflowHook (long int) The stack-overflow message.

void MallocFailHook (long int) The message printed if malloc fails.

4.17.2 Miscellaneous RTS options

—Vsecs Sets the interval that the RTS clock ticks at. The runtime uses a single timer signal to count ticks; this timer signal is

used to control the context switch timer (Section 4.14) and the heap profiling timer Section 5.4.1. Also, the time profiler
uses the RTS timer signal directly to record time profiling samples.

Normally, setting the —V option directly is not necessary: the resolution of the RTS timer is adjusted automatically if a
short interval is requested with the —C or —1 options. However, setting —V is required in order to increase the resolution of
the time profiler.

Using a value of zero disables the RTS clock completely, and has the effect of disabling timers that depend on it: the context
switch timer and the heap profiling timer. Context switches will still happen, but deterministically and at a rate much faster
than normal. Disabling the interval timer is useful for debugging, because it eliminates a source of non-determinism at
runtime.

——-install-signal-handlers=yes/no If yes (the default), the RTS installs signal handlers to catch things like ctrl-C.

This option is primarily useful for when you are using the Haskell code as a DLL, and want to set your own signal handlers.

Note that even with ——install-signal-handlers=no, the RTS interval timer signal is still enabled. The timer
signal is either SIGVTALRM or SIGALRM, depending on the RTS configuration and OS capabilities. To disable the timer
signal, use the —vV0 RTS option (see above).

—-xmaddress WARNING: this option is for working around memory allocation problems only. Do not use unless GHCi

fails with a message like “failed to mmap () memory below 2Gb”. If you need to use this option to get GHCi
working on your machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address space. Support for this across
different operating systems is patchy, and sometimes fails. This option is there to give the RTS a hint about where it should
be able to allocate memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS would hint
that the RTS should allocate starting at the 0.5Gb mark. The default is to use the OS’s built-in support for allocating
memory in the low 2Gb if available (e.g. mmap with MAP_32BIT on Linux), or otherwise —xm40000000.

4.17.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you won’t need any of these in normal
operation, but there are several things that can be tweaked for maximum performance.

—-Asize [Default: 512k] Set the allocation area size used by the garbage collector. The allocation area (actually generation O

-C

step 0) is fixed and is never resized (unless you use —H, below).

Increasing the allocation area size may or may not give better performance (a bigger allocation area means worse cache
behaviour but fewer garbage collections and less promotion).

With only 1 generation (-G1) the —A option specifies the minimum allocation area, since the actual size of the allocation
area will be resized according to the amount of data in the heap (see —F, below).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest generation is collected using a
copying algorithm; this option causes it to be compacted in-place instead. The compaction algorithm is slower than the
copying algorithm, but the savings in memory use can be considerable.

For a given heap size (using the —H option), compaction can in fact reduce the GC cost by allowing fewer GCs to be
performed. This is more likely when the ratio of live data to heap size is high, say >30%.

NOTE: compaction doesn’t currently work when a single generation is requested using the —G1 option.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 92/316

—cn [Default: 30] Automatically enable compacting collection when the live data exceeds n% of the maximum heap size (see
the —M option). Note that the maximum heap size is unlimited by default, so this option has no effect unless the maximum
heap size is set with ~Msize.

—Ffactor [Default: 2] This option controls the amount of memory reserved for the older generations (and in the case of a
two space collector the size of the allocation area) as a factor of the amount of live data. For example, if there was 2M of
live data in the oldest generation when we last collected it, then by default we’ll wait until it grows to 4M before collecting
it again.

The default seems to work well here. If you have plenty of memory, it is usually better to use —Hsi ze than to increase —
Ffactor.

The -F setting will be automatically reduced by the garbage collector when the maximum heap size (the —Msi ze setting)
is approaching.

—Ggenerations [Default: 2] Set the number of generations used by the garbage collector. The default of 2 seems to be good,
but the garbage collector can support any number of generations. Anything larger than about 4 is probably not a good idea
unless your program runs for a long time, because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS —G1 gives you a simple 2-space collector, as you would expect. In a 2-space collector,
the —A option (see above) specifies the minimum allocation area size, since the allocation area will grow with the amount
of live data in the heap. In a multi-generational collector the allocation area is a fixed size (unless you use the —H option,
see below).

—-qgg[gen] [New in GHC 6.12.1] [Default: 0] Use parallel GC in generation gen and higher. Omitting gen turns off the
parallel GC completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those using par, Strategies, or with
multiple threads). However, it is sometimes beneficial to enable the parallel GC for a single-threaded sequential program
too, especially if the program has a large amount of heap data and GC is a significant fraction of runtime. To use the
parallel GC in a sequential program, enable the parallel runtime with a suitable —N option, and additionally it might be
beneficial to restrict parallel GC to the old generation with —gg1.

—-gb[gen] [New in GHC 6.12.1] [Default: 1] Use load-balancing in the parallel GC in generation gen and higher. Omitting
gen disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good idea when the heap is large and
we need to parallelise the GC work, however it is also pessimal for the short young-generation collections in a parallel
program, because it can harm locality by moving data from the cache of the CPU where is it being used to the cache of
another CPU. Hence the default is to do load-balancing only in the old-generation. In fact, for a parallel program it is
sometimes beneficial to disable load-balancing entirely with —gb.

—H[size] [Default: 0] This option provides a “suggested heap size” for the garbage collector. Think of ~Hsize as a variable
-2 option. It says: I want to use at least size bytes, so use whatever is left over to increase the —2 value.

This option does not put a limit on the heap size: the heap may grow beyond the given size as usual.

If size is omitted, then the garbage collector will take the size of the heap at the previous GC as the size. This has the
effect of allowing for a larger —A value but without increasing the overall memory requirements of the program. It can be
useful when the default small —A value is suboptimal, as it can be in programs that create large amounts of long-lived data.

—Iseconds (default: 0.3) In the threaded and SMP versions of the RTS (see —threaded, Section 4.12.6), a major GC is
automatically performed if the runtime has been idle (no Haskell computation has been running) for a period of time. The

amount of idle time which must pass before a GC is performed is set by the —I seconds option. Specifying —I0 disables
the idle GC.

For an interactive application, it is probably a good idea to use the idle GC, because this will allow finalizers to run and
deadlocked threads to be detected in the idle time when no Haskell computation is happening. Also, it will mean that a
GC is less likely to happen when the application is busy, and so responsiveness may be improved. However, if the amount
of live data in the heap is particularly large, then the idle GC can cause a significant delay, and too small an interval could
adversely affect interactive responsiveness.

This is an experimental feature, please let us know if it causes problems and/or could benefit from further tuning.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 93/316

-kisize [Default: 1k] Set the initial stack size for new threads. (Note: this flag used to be simply -k, but was renamed to —
ki in GHC 7.2.1. The old name is still accepted for backwards compatibility, but that may be removed in a future version).

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows, new stack chunks are added as
required; if the stack shrinks again, these extra stack chunks are reclaimed by the garbage collector. The default initial
stack size is deliberately small, in order to keep the time and space overhead for thread creation to a minimum, and to make
it practical to spawn threads for even tiny pieces of work.

—kcsize [Default: 32k] Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack chunk is created
and added to the thread’s stack, until the limit set by —K is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing stack chunks if they are known
to be unmodified since the last collection, so reducing the chunk size means that the garbage collector can identify more
stack as unmodified, and the GC overhead might be reduced. On the other hand, making stack chunks too small adds some
overhead as there will be more overflow/underflow between chunks. The default setting of 32k appears to be a reasonable
compromise in most cases.

—-kbsize [Default: 1k] Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk is created, some
of the data from the previous stack chunk is moved into the new chunk, to avoid an immediate underflow and repeated
overflow/underflow at the boundary. The amount of stack moved is set by the —kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the size of a stack chunk (-kc), because
in a chain of stack chunks, each chunk will have a gap of unused space of this size.

-Ksize [Default: 80% physical memory size] Set the maximum stack size for an individual thread to size bytes. If the
thread attempts to exceed this limit, it will be sent the StackOverflow exception. The limit can be disabled entirely by
specifying a size of zero.

This option is there mainly to stop the program eating up all the available memory in the machine if it gets into an infinite
loop.

-mn Minimum % n of heap which must be available for allocation. The default is 3%.

-Msize [Default: unlimited] Set the maximum heap size to size bytes. The heap normally grows and shrinks according
to the memory requirements of the program. The only reason for having this option is to stop the heap growing without
bound and filling up all the available swap space, which at the least will result in the program being summarily killed by
the operating system.

The maximum heap size also affects other garbage collection parameters: when the amount of live data in the heap exceeds
a certain fraction of the maximum heap size, compacting collection will be automatically enabled for the oldest generation,
and the —F parameter will be reduced in order to avoid exceeding the maximum heap size.

-T,-t[file],-s[file],-S[file] , ——machine-readable These options produce runtime-system statistics, such as
the amount of time spent executing the program and in the garbage collector, the amount of memory allocated, the max-
imum size of the heap, and so on. The three variants give different levels of detail: —T collects the data but produces no
output —t produces a single line of output in the same format as GHC’s ~-Rghc-t iming option, —s produces a more
detailed summary at the end of the program, and —S additionally produces information about each and every garbage
collection.

The output is placed in £ile. If £ile is omitted, then the output is sent to stderr.
If you use the —T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples), 3M <
in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07 elapsed) : ¢
ghc>>

This tells you:

* The total number of bytes allocated by the program over the whole run.

* The total number of garbage collections performed.

../libraries/base-4.7.0.0/GHC-Stats.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 94 /316

* The average and maximum "residency", which is the amount of live data in bytes. The runtime can only determine the
amount of live data during a major GC, which is why the number of samples corresponds to the number of major GCs
(and is usually relatively small). To get a better picture of the heap profile of your program, use the —hT RTS option
(Section 4.17.5).

* The peak memory the RTS has allocated from the OS.

* The amount of CPU time and elapsed wall clock time while initialising the runtime system (INIT), running the program
itself (MUT, the mutator), and garbage collecting (GC).

You can also get this in a more future-proof, machine readable format, with -t —-—-machine-readable:

[("bytes allocated", "36169392")
("num_GCs", "69")
("average_bytes_used", "603392")
("max_bytes_used", "1065272")
, ("num_byte_usage_samples", "2")
, ("peak_megabytes_allocated", "3")

(

(

(

(

(

(

’
r

’

"init_cpu_seconds", "0.00")
"init_wall_seconds", "0.00")
"mutator_cpu_seconds", "0.02")
"mutator_wall_seconds", "0.02")
"GC_cpu_seconds", "0.07")
"GC_wall_seconds", "0.07")

4
’
’
4

]
If you use the —s flag then, when your program finishes, you will see something like this (the exact details will vary
depending on what sort of RTS you have, e.g. you will only see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))
54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s (0.00s elapsed)

MUT time 0.01s (0.02s elapsed)

GC time 0.07s (0.07s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 0.08s (0.09s elapsed)

$GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

» The "bytes allocated in the heap" is the total bytes allocated by the program over the whole run.

* GHC uses a copying garbage collector by default. "bytes copied during GC" tells you how many bytes it had to copy
during garbage collection.

* The maximum space actually used by your program is the "bytes maximum residency" figure. This is only checked
during major garbage collections, so it is only an approximation; the number of samples tells you how many times it is
checked.

* The "bytes maximum slop" tells you the most space that is ever wasted due to the way GHC allocates memory in blocks.
Slop is memory at the end of a block that was wasted. There’s no way to control this; we just like to see how much
memory is being lost this way.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 95/316

* The "total memory in use" tells you the peak memory the RTS has allocated from the OS.

» Next there is information about the garbage collections done. For each generation it says how many garbage collections
were done, how many of those collections were done in parallel, the total CPU time used for garbage collecting that
generation, and the total wall clock time elapsed while garbage collecting that generation.

* The SPARKS statistic refers to the use of Control.Parallel.par and related functionality in the program. Each
spark represents a call to par; a spark is "converted" when it is executed in parallel; and a spark is "pruned" when it
is found to be already evaluated and is discarded from the pool by the garbage collector. Any remaining sparks are
discarded at the end of execution, so "converted" plus "pruned" does not necessarily add up to the total.

* Next there is the CPU time and wall clock time elapsed broken down by what the runtime system was doing at the time.
INIT is the runtime system initialisation. MUT is the mutator time, i.e. the time spent actually running your code. GC
is the time spent doing garbage collection. RP is the time spent doing retainer profiling. PROF is the time spent doing
other profiling. EXIT is the runtime system shutdown time. And finally, Total is, of course, the total.

%GC time tells you what percentage GC is of Total. "Alloc rate" tells you the "bytes allocated in the heap" divided by
the MUT CPU time. "Productivity" tells you what percentage of the Total CPU and wall clock elapsed times are spent
in the mutator (MUT).

The -S flag, as well as giving the same output as the —s flag, prints information about each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)
[oool

524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:

* How many bytes we allocated this garbage collection.

* How many bytes we copied this garbage collection.

* How many bytes are currently live.

* How long this garbage collection took (CPU time and elapsed wall clock time).

* How long the program has been running (CPU time and elapsed wall clock time).
* How many page faults occurred this garbage collection.

* How many page faults occurred since the end of the last garbage collection.

* Which generation is being garbage collected.

4.17.4 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Section 4.14, and those for parallelism in Section 4.15.2.

4.17.5 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling (see Section 5.2, and Section 5.4.1
for the runtime options). However, there is one profiling option that is available for ordinary non-profiled executables:

—hT (can be shortened to —h.) Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph, use
hp2ps (see Section 5.5). The basic heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed profile, use the full profiling support
(Chapter 5).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 96/316

4.17.6 Tracing

When the program is linked with the —event 1og option (Section 4.12.6), runtime events can be logged in two ways:

¢ In binary format to a file for later analysis by a variety of tools. One such tool is ThreadScope, which interprets the event log
to produce a visual parallel execution profile of the program.

* As text to standard output, for debugging purposes.

-1[flags] Log events in binary format to the file program.eventlog. Without any flags specified, this logs a default
set of events, suitable for use with tools like ThreadScope.

For some special use cases you may want more control over which events are included. The f1ags is a sequence of zero or
more characters indicating which classes of events to log. Currently these the classes of events that can be enabled/disabled:

s — scheduler events, including Haskell thread creation and start/stop events. Enabled by default.

g — GC events, including GC start/stop. Enabled by default.

p — parallel sparks (sampled). Enabled by default.

f — parallel sparks (fully accurate). Disabled by default.

u — user events. These are events emitted from Haskell code using functions such as Debug.Trace.traceEvent. Enable

You can disable specific classes, or enable/disable all classes at once:

a — enable all event classes listed above
—-x — disable the given class of events, for any event class listed above or —a for all classes
For example, —1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various events in the life cycle of each spark,
usually just creating and running, but there are some more exceptional possibilities. In the sampled mode the number of
occurrences of each kind of spark event is sampled at frequent intervals. In the fully accurate mode every spark event is
logged individually. The latter has a higher runtime overhead and is not enabled by default.

The format of the log file is described by the header EventLogFormat . h that comes with GHC, and it can be parsed
in Haskell using the ghc-events library. To dump the contents of a . eventlog file as text, use the tool ghc-events
show that comes with the ghc-events package.

-v[flags] Log events as text to standard output, instead of to the .eventlog file. The f1lags are the same as for -1, with
the additional option t which indicates that the each event printed should be preceded by a timestamp value (in the binary
.eventlog file, all events are automatically associated with a timestamp).

The debugging options —Dx also generate events which are logged using the tracing framework. By default those events are
dumped as text to stdout (-Dx implies —v), but they may instead be stored in the binary eventlog file by using the —1 option.

4.17.7 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”, or (c) because you feel like it.
Not recommended for everyday use!

-B Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul Callaghan, writes: “Some people
here use it for a variety of purposes—honestly!—e.g., confirmation that the code/machine is doing something, infinite loop
detection, gauging cost of recently added code. Certain people can even tell what stage [the program] is in by the beep
pattern. But the major use is for annoying others in the same office...”

-Dx An RTS debugging flag; only available if the program was linked with the —~debug option. Various values of x are
provided to enable debug messages and additional runtime sanity checks in different subsystems in the RTS, for exam-
ple +RTS -Ds -RTS enables debug messages from the scheduler. Use +RTS -7 to find out which debug flags are
supported.

Debug messages will be sent to the binary event log file instead of stdout if the —1 option is added. This might be useful
for reducing the overhead of debug tracing.

http://www.haskell.org/haskellwiki/ThreadScope
http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 97/316

-rfile Produce “ticky-ticky” statistics at the end of the program run (only available if the program was linked with —~debug).

The £ile business works just like on the —S RTS option, above.

For more information on ticky-ticky profiling, see Section 5.8.

—xc (Only available when the program is compiled for profiling.) When an exception is raised in the program, this option

causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a head [] error and you haven’t got
a clue which bit of code is causing it, compiling with —-prof -fprof-auto and running with +RTS -xc -RTS will
tell you exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program might raise and catch several excep-
tions during its execution), where each report looks something like this:

*xx Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
——> evaluated by: Main.polynomial.table_search,
called from Main.polynomial.theta_index,
called from Main.polynomial,
called from Main.zonal_pressure,
called from Main.make_pressure.p,
called from Main.make_pressure,
called from Main.compute_initial_state.p,
called from Main.compute_initial_state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List . CAF; this is an artifact of GHC’s op-
timiser, which lifts out exceptions to the top-level where the profiling system assigns them to the cost centre "CAF".
However, +RTS —xc doesn’t just print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example above, the next stack (after ——
> evaluated by) contains plenty of information about what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you enough clues to track down the
bug.

See also the function t raceStack in the module Debug. Trace for another way to view call stacks.

—Z Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly good reason to turn it off, except to

ensure the accuracy of certain data collected regarding thunk entry counts.)

4.17.8 Getting information about the RTS

It is possible to ask the RTS to give some information about itself. To do this, use the ——info flag, e.g.

$

[

’

’

’
14
’

’

’

’

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

/a.out +RTS —--info

"GHC RTS", "YES")

"GHC version", "6.7")

"RTS way", "rts_p")

"Host platform", "x86_64-unknown-linux")
"Host architecture", "x86_64")

"Host OS", "linux")

"Host vendor", "unknown")

"Build platform", "x86_64-unknown-linux")
"Build architecture", "x86_64")

"Build 0OS", "linux")

"Build vendor", "unknown")

"Target platform", "x86_64-unknown-linux")
"Target architecture", "x86_64")

"Target OS", "linux")

"Target vendor", "unknown")

"Word size", "64")

g

a

—

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 98/316

, ("Compiler unregisterised", "NO")
, ("Tables next to code", "YES")
]

The information is formatted such that it can be read as a of type [(String, String)]. Currently the following fields are
present:

GHC RTS Is this program linked against the GHC RTS? (always "YES").
GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts_v (vanilla), rts_thr (threaded runtime,
i.e. linked using the ~threaded option) and rts_p (profiling runtime, i.e. linked using the —prof option). Other
variants include debug (linked using ~debug), t (ticky-ticky profiling) and dyn (the RTS is linked in dynamically, i.e.
a shared library, rather than statically linked into the executable itself). These can be combined, e.g. you might have
rts_thr_debug_p.

Target platform, Target architecture, Target OS,Target vendor These are the platform the program is
compiled to run on.

Build platform,Build architecture,Build OS,Build vendor These are the platform where the program
was built on. (That is, the target platform of GHC itself.) Ordinarily this is identical to the target platform. (It could
potentially be different if cross-compiling.)

Host platform, Host architecture Host OS Host vendor These are the platform where GHC itself was com-
piled. Again, this would normally be identical to the build and target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered Was this program compiled with an “unregistered” version of GHC? (L.e., a version of GHC that
has no platform-specific optimisations compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful performance optimisation that is not
available on all platforms. This field tells you whether the program has been compiled with this optimisation. (Usually
yes, except on unusual platforms.)

4.18 Generating and compiling External Core Files

GHC can dump its optimized intermediate code (said to be in “Core” format) to a file as a side-effect of compilation. Non-
GHC back-end tools can read and process Core files; these files have the suffix .hcr. The Core format is described in An
External Representation for the GHC Core Language, and sample tools for manipulating Core files (in Haskell) are available in
the extcore package on Hackage. Note that the format of . hcr files is different from the Core output format that GHC generates
for debugging purposes (Section 4.19), though the two formats appear somewhat similar.

The Core format natively supports notes which you can add to your source code using the CORE pragma (see Section 7.19).
—fext-core Generate . hcr files.

Currently (as of version 6.8.2), GHC does not have the ability to read in External Core files as source. If you would like GHC to
have this ability, please make your wishes known to the GHC Team.

4.19 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

http://hackage.haskell.org/package/extcore
http://ghc.haskell.org/trac/ghc/wiki/MailingListsAndIRC

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 99/316

4.19.1 Dumping out compiler intermediate structures

—ddump-pass Make a debugging dump after pass <pass> (may be common enough to need a short form...). You can get
all of these at once (lots of output) by using —v5, or most of them with —v4. You can prevent them from clogging up your
standard output by passing ~ddump-to-£file. Some of the most useful ones are:

—ddump-parsed: parser output
—ddump-rn: renamer output
—ddump-tec: typechecker output

—ddump-splices: Dump Template Haskell expressions that we splice in, and what Haskell code the expression
evaluates to.

—ddump-types: Dump a type signature for each value defined at the top level of the module. The list is sorted
alphabetically. Using —~dppr-debug dumps a type signature for all the imported and system-defined things as well;
useful for debugging the compiler.

—ddump-deriv: derived instances

—ddump-ds: desugarer output

—ddump-spec: output of specialisation pass

—ddump-rules: dumps all rewrite rules specified in this module; see Section 7.20.6.
—ddump-rule-firings: dumps the names of all rules that fired in this module
—ddump-rule-rewrites: dumps detailed information about all rules that fired in this module
—ddump-vect: dumps the output of the vectoriser.

—ddump-simpl: simplifier output (Core-to-Core passes)
—ddump-inlinings: inlining info from the simplifier

—ddump-cpranal: CPR analyser output

—ddump-stranal: strictness analyser output

—ddump-strsigs: strictness signatures

—ddump-cse: CSE pass output

—ddump-worker-wrapper: worker/wrapper split output
—ddump-occur—-anal: “occurrence analysis’ output

—ddump-prep: output of core preparation pass

—ddump-stg: output of STG-to-STG passes

—ddump-flatC: flattened Abstract C

—ddump-cmm: Print the C-- code out.

—ddump-opt—cmm: Dump the results of C-- to C-- optimising passes.
—ddump-asm: assembly language from the native code generator
—ddump-11vm: LLVM code from the LLVM code generator

—ddump-bcos: byte code compiler output

—ddump-foreign: dump foreign export stubs

—ddump-simpl-phases: Show the output of each run of the simplifier. Used when even —dverbose-core2core
doesn’t cut it.

—ddump-simpl-iterations: Show the output of each iteration of the simplifier (each run of the simplifier has a maxi-
mum number of iterations, normally 4). This outputs even more information than ~ddump-simpl-phases.

—ddump-simpl-stats Dump statistics about how many of each kind of transformation too place. If you add —dppr-
debug you get more detailed information.

—ddump-if-trace Make the interface loader be *real* chatty about what it is up to.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 100/316

—ddump-tc—-trace Make the type checker be *real* chatty about what it is up to.
—-ddump-vt-trace Make the vectoriser be *real* chatty about what it is up to.
—ddump-rn—-trace Make the renamer be *real* chatty about what it is up to.
—ddump-rn-stats Print out summary of what kind of information the renamer had to bring in.

—-dverbose-core2core, -dverbose-stg2stg Show the output of the intermediate Core-to-Core and STG-to-STG
passes, respectively. (Lots of output!) So: when we’re really desperate:

o

% ghc —noC -0 —-ddump-simpl -dverbose-coreZ2core —-dcore-lint Foo.hs

—-dshow-passes Print out each pass name as it happens.
—ddump-core—stats Print a one-line summary of the size of the Core program at the end of the optimisation pipeline.
—-dfaststring-stats Show statistics for the usage of fast strings by the compiler.

—dppr—debug Debugging output is in one of several “styles.” Take the printing of types, for example. In the “user” style (the
default), the compiler’s internal ideas about types are presented in Haskell source-level syntax, insofar as possible. In the
“debug” style (which is the default for debugging output), the types are printed in with explicit foralls, and variables have
their unique-id attached (so you can check for things that look the same but aren’t). This flag makes debugging output
appear in the more verbose debug style.

4.19.2 Formatting dumps

—dppr—user-length In error messages, expressions are printed to a certain “depth”, with subexpressions beyond the depth
replaced by ellipses. This flag sets the depth. Its default value is 5.

—dppr—-colsNNN Set the width of debugging output. Use this if your code is wrapping too much. For example: —dppr—
cols200.

—dppr—-case—-as—-let Print single alternative case expressions as though they were strict let expressions. This is helpful
when your code does a lot of unboxing.

—dno-debug-output Suppress any unsolicited debugging output. When GHC has been built with the DEBUG option it
occasionally emits debug output of interest to developers. The extra output can confuse the testing framework and cause
bogus test failures, so this flag is provided to turn it off.

4.19.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all of it will be useful. Use these flags
to suppress the parts that you are not interested in.

—dsuppress—all Suppress everything that can be suppressed, except for unique ids as this often makes the printout am-
biguous. If you just want to see the overall structure of the code, then start here.

—dsuppress—uniques Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear where an
occurrence of "x’ is bound), but it makes the output of two compiler runs have many fewer gratuitous differences, so you
can realistically apply diff. Once diff has shown you where to look, you can try again without ~dsuppress—-uniques

—dsuppress—-idinfo Suppress extended information about identifiers where they are bound. This includes strictness infor-
mation and inliner templates. Using this flag can cut the size of the core dump in half, due to the lack of inliner templates

—dsuppress—-module-prefixes Suppress the printing of module qualification prefixes. This is the Data.List in
Data.List.length.

—-dsuppress—-type-signatures Suppress the printing of type signatures.
—dsuppress—type—applications Suppress the printing of type applications.

—dsuppress—coercions Suppress the printing of type coercions.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 101/316

4.19.4 Checking for consistency

—dcore-1lint Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks GHC’s sanity, not
yours.)

—-dstg-1lint: Ditto for STG level. (NOTE: currently doesn’t work).

—dcmm-1int: Ditto for C-- level.

4.19.5 How to read Core syntax (from some —ddump flags)

Let’s do this by commenting an example. It’s from doing ~ddump—ds on this code:

skip2 m = m : skip2 (m+2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are identified by their
“Uniques.” These are of the form “letter’ plus “number’ (both loosely interpreted). The “letter’ gives some idea of where the
Unique came from; e.g., _ means “built-in type variable”; t means “from the typechecker”; s means “from the simplifier”’; and
so on. The “number’ is printed fairly compactly in a “base-62 format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usually printed out when debugging, in some form or another. So here we go. ..
Desugared:

Main.skip2{-rl1L6-} :: _forall_ a$_4 =>{{Num a$_4}} —> a$_4 —> [aS$_4]

——# ‘rlL6’ is the Unique for Main.skip2;
——# ‘_4’ is the Unique for the type-variable (template) ‘a’
——# ‘{{Num a$_4}}’ is a dictionary argument

NI

——# ‘_NI_’ means "no (pragmatic) information" yet; it will later

——# evolve into the GHC_PRAGMA info that goes into interface files.

Main.skip2{-rllL6-} =
/\ _4 -> \ d.Num.td4Gt ->

let {
{— CoRec -}
+.t4Hg :: _4 -—> _4 —> _4
NT
+.t4Hg = (+{-r3JH-} _4) d.Num.t4dGt
fromInt.t4GS :: Int{-2i-} -> _4
NI
fromInt.t4GS = (fromInt{-r3JX-} _4) d.Num.t4Gt

——# The '+’ class method (Unique: r3JH) selects the addition code
——# from a ‘Num’ dictionary (now an explicit lambda’d argument) .
——# Because Core is 2nd-order lambda-calculus, type applications
——# and lambdas (/\) are explicit. So '+’ is first applied to a
——# type (‘'_4’), then to a dictionary, yielding the actual addition
—-—# function that we will use subsequently...

—-—# We play the exact same game with the (non-standard) class method
——# ‘fromInt’. Unsurprisingly, the type ‘Int’ is wired into the
——# compiler.

lit.t4Hb :: _4

NI

lit.t4Hb =
let {

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 102/316

ds.d4Qz :: Int{-2i-}
NI
ds.d4Qz = I#! 2#

} in fromInt.t4GS ds.d4Qz

——# ‘I# 2#’ 1is just the literal Int ‘2’; it reflects the fact that
——# GHC defines ‘data Int = I# Int#’, where Int# is the primitive
—-—# unboxed type. (see relevant info about unboxed types elsewhere...)

——4# The ‘!’ after ‘I#’ indicates that this is a *saturateds
——# application of the ‘I#’ data constructor (i.e., not partially
——4# applied).

skip2.t3Ja :: _4 —> [_4]
NTI
skip2.t3Ja =
\ m.rl1H4 —>
let { ds.d4QQ :: [_4]
NI
ds.d4QQ =
let {
ds.d4Qy :: _4
NI
ds.d4QY = +.t4Hg m.r1lH4 1lit.t4Hb
} in skip2.t3Ja ds.d4QY
} in
:! _4 m.r1H4 ds.d4QQ

{— end CoRec -}
} in skip2.t3Ja

(“It’s just a simple functional language” is an unregisterised trademark of Peyton Jones Enterprises, plc.)

4.20 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its static/dynamic status (see Sec-
tion 4.3), and the flag’s opposite (if available).

4.20.1 Verbosity options

More details in Section 4.6

Flag Description Static/Dynamic Reverse
verbose mode (equivalent to .
Y dynamic -
-v3)
-vn set verbosity level dynamic -
-fprint- licit- rint explicit £ 11 . . .
printrexplict print expuett tora dynamic -fno-print-explicit-foralls
foralls quantification in types
-fprint- licit- rint explicit kind foralls . . C
Sprintrexpiict p oXP . dynamic -fno-print-explicit-kinds
kinds and kind arguments in types
output full span in error .
-ferror—-spans P p dynamic -
messages
) Set the minimum heap size .
—Hsize . static -
o size
Summarise timing stats for
-Rghc-timing GHC (same as +RTS - static -
tstderr)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

103/316

4.20.2 Alternative modes of operation

More details in Section 4.5

Flag Description Static/Dynamic Reverse

--help,-? Disply help mode -
Interactive mode - normally

-—interactive used by just running ghci; mode -
see Chapter 2 for details.
Build a multi-module
Haskell program,
automatically figuring out

——make dependencies. Likely to be mode -
much easier, and faster,
than using make; see
Section 4.5.1 for details..

e expr Eval}late expr; see . mode)
Section 4.5.2 for details.

o show—iface Display the contents of an mode)
interface file.
Generate dependency
information suitable for use

-M . . mode -
inaMakefile; see
Section 4.7.11 for details.

——supported-

extensions, —— display the supported mode)

supported- language extensions

languages

——show-options display the .suppor.ted mode -
command line options

—info display 1n'f0rmat10n about mode)
the compiler

--version, -V display GHC version mode -

, , display GHC version

——numeric—-version . mode -
(numeric only)

——print-libdir d%splay GHC library mode -
directory

4.20.3 Which phases to run
Section 4.5.3

Flag Description Static/Dynamic Reverse

E Stop after preprocessing (. mode)
hspp file)
Stop after generating C (.

- he I1)ile) : : mode -
Stop after generating

S assembly (. s file) mode)

-c Do not link dynamic -

) Override default behaviour .

-X suffix static -

for source files

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

104 /316

4.20.4 Redirecting output

Section 4.7.4
Flag Description Static/Dynamic Reverse
hesuf suffi set the suffix to use for dvnamic)
suriix intermediate C files y
Chidir dir set directory for interface dynamic)
files
.) set the suffix to use for .
~hisuf suffix . dynamic -
interface files
-0 filename set output filename dynamic -
-odirdir set directory for object files | dynamic -
L set the filename in which to .
—ohi filename . dynamic
put the interface
—osuf suffix set the output file suffix dynamic -
-stubdirdir redirect FFI stub files dynamic -
—dumpdir dir redirect dump files dynamic -
—outputdir dir set output directory dynamic -
4.20.5 Keeping intermediate files
Section 4.7.5
Flag Description Static/Dynamic Reverse
-keep-hc-fileor - retain intermediate . hc dvnamic)
keep—hc—-files files y
-keep-llvm-fileor — | retain intermediate LLVM dvnamic
keep-1llvm—files .11 files ¥
“keep-s- f ileor- retain intermediate . s files | dynamic -
keep-s—files
“keep-tmp-files retain all intermediate dynamic)
temporary files
4.20.6 Temporary files
Section 4.7.6
Flag Description Static/Dynamic Reverse
. set the directory for .
—tmpdir dynamic -
temporary files
4.20.7 Finding imports
Section 4.7.3
Flag Description Static/Dynamic Reverse
o) add dir, dir2, etc. to .
—idirl:dir2:... . static/: set -
import path
E he i i .
i - ;rtlpty the import directory static/: set)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

105/316

4.20.8

Section 4.7.7

Interface file options

Flag Description Static/Dynamic Reverse
, Dump the new interface to .
— _h -
ddump-hi stdout dynamic
how the diff . th .
—ddump-hi-diffs S O.W ¢ ditierences vs. the dynamic -
old interface
—ddump-minimal- Dump a minimal set of .
. . dynamic -
imports 1mports
--show-iface file See Section 4.5.
4.20.9 Recompilation checking
Section 4.7.8
Flag Description Static/Dynamic Reverse
Turn off recompilation
checking. This is implied
—-fforce-recomp by any —ddump—X option dynamic —-fno-force-recomp
when compiling a single file
(i.e. when using —c).
4.20.10 Interactive-mode options
Section 2.9
Flag Description Static/Dynamic Reverse
. , Disable reading of . ghci .
—-ignore—-dot—-ghci dynamic -
files
.) Read additional .ghci .
—-ghci-script dynamic -
files
—fbreak-on- Break on any exception . —fno-break-on-
. dynamic ,
exception thrown exception
Break on uncaught . —-fno-break-on-
-fbreak-on-error . dynamic
exceptions and errors error
Set the number of entries .
~fghci-hist-size= . : fault i
ghci-hist-size=n GHCi keeps for history dynamic (default is 50)
—fprint-evld-with— | Enable usage of Show . —-fno-print-evld-
. . . dynamic .
show mstances 1n :print with-show
—-fprint-bind- Turn on printing of binding dvnamic —fno-print-bind-
result results in GHCi y result
—fno-print-bind- Turn off Prmtmg'of binding dynamic)
contents contents in GHCi
—fno-implicit- Turn off {mpllclt qual.lﬁed .
imoort—qualified import of everything in dynamic -
portTd GHCi
Select the function to use
—interactive-print for printing evaluated dynamic -

expressions in GHCi

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

106 /316

4.20.11 Packages
Section 4.9
Flag Description Static/Dynamic Reverse
Compile to be part of .
-package—name P static -
package P

-package P

Expose package

static/: set

—hide-all-packages

Hide all packages by default

static

—hide—-package name

Hide package P

static/: set

—-ignore-package
name

Ignore package p

static/: set

Add file to the package

to be trusted

-package—-db file db stack. static -
-clear—-package-db Clear the package db stack. | static -
-no-global- Remove the global package static
package—db db from the stack.
Add the global package db .
global-package—-db to the stack. static -
-no-user-package- Remove the user’s package static
db db from the stack.
Add th ’ kage db .
—user—-package-db © user's package static -
to the stack.
-no-auto-link- Don’t automatically link in .
dynamic -
packages the base and rts packages.
Expose package p and set it .
—-trust P static/: set -

—-distrust P

Expose package p and set it
to be distrusted

static/: set

—distrust-all

Distrust all packages by
default

static/: set

4.20.12 Language options

Language options can be enabled either by a command-line option ~Xblah, or by a {-#LANGUAGE blah #-} pragma in

the file itself. See Section 7.1

extension

Flag Description Static/Dynamic Reverse
Deprecated. Enable most
-fglasgow—exts ?:ﬁ;ljff;ixﬁil;s;({):cst,];ee dynamic -fno-glasgow—exts
which ones.
-firrefutable- Make tuple pattern d . —-fno-irrefutable-
tuples matching irrefutable ynamic tuples
—fcontext—-stack=Nn set the.hm]t for con.text dynamic
reduction. Default is 20.
_ftype-function- set thf: limit tor.type .
depth=Nn functlon reductions. Default | dynamic
is 200.
Allow the user to write
-XAllowAmbiguousTy ambiguous types, and the d . —XNoAllowAmbiguous
pes type inference engine to ynamie Types
infer them.
Enable arrow notation .
—-XArrows dynamic —XNoArrows

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 107 /316
Flag Description Static/Dynamic Reverse
Automatically derive
Typeable instances for
—-XAutoDeriveTypea every datatype and type dvnamic —XNoAutoDeriveType
ble class declaration. Implies — Y able
XDeriveDataTypea
ble.
. . Enable a kind of . -
-XConstraintKinds . dynamic . .
constraints. XNoConstraintKinds
—XDataKinds Enable datatype promotion. | dynamic —XNoDataKinds
-XDeriveDataTypea Enable deriving for the . -XNoDeriveDataType
dynamic
ble Data and Typeable classes. able
, . Enable deriving for the . . .
—XDeriveGeneric . dynamic —XNoDeriveGeneric
Generic class.
-XGeneralizedNewty .. . —-XNoGeneralizedNew
. Enable newtype deriving. dynamic .
peDeriving typeDeriving
-XDisambiguateReco Enable record field dvnamic -XNoDisambiguateRe
rdFields disambiguation Y cordFields
-XEmptyCase Allow empty case dynamic -XNoEmptyCase
Pty alternatives y Pty
Use GHCi’s extended
—-XExtendedDefaultR . . —-XNoExtendedDefaul
default rules in a normal dynamic
ules tRules
module
-XForeignFunctionI Enable foreign function . -XNoForeignFunctio
. . dynamic
nterface interface. nInterface
Enable generalised .
-XGADTs . dynamic -XNoGADTs
algebraic data types.
Enable generalised .
—XGADTSyntax . dynamic —XNoGADTSyntax
algebraic data type syntax.
Deprecated, does nothing.
No longer enables generic
-XGenerics classes. See also GHC’s dynamic -XNoGenerics
support for generic
programming.
-XImplicitParams Enable Implicit Parameters. | dynamic -XNoImplicitParams
- Don’t implicitly import . o
o p y tmp dynamic —-XImplicitPrelude
XNoImplicitPrelude Prelude
Enable incoherent
—XIncoherentInstan . . . —XNoIncoherentInst
instances. Implies ~XOver | dynamic
ces , ances
lappingInstances
-XNoMonomorphismRe Disable the monomorphism dvnamic -XMonomorphismRres
striction restriction Y triction
, . Enable support for negative . -XNoNegativeLiter
-XNegativeLiterals . dynamic
literals als
Disable support for n+k .
—XNoNPlusKPatterns dynamic —XNPlusKPatterns
patterns
. Enable support for . .
—XNumDecimals s dynamic —XNoNumDecimals
fractional’ integer literals
-XOverlappingInsta Enable overlapping dvnamic -XNoOverlappingIns
nces instances y tances
-XOverloadedLists Enable overloaded lists. dynamic N .
v * Y XNoOverloadedLists
- Enable overloaded string . -XNoOverloadedStri
. . dynamic
XOverloadedStrings literals. ngs
-XQuasiQuotes Enable quasiquotation. dynamic -XNoQuasiQuotes

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 108 /316
Flag Description Static/Dynamic Reverse
Relaxed checking for
-XRelaxedPolyRec mutually-recursive dynamic -XNoRelaxedPolyRec
polymorphic functions
Disable support for
-XNoTraditionalRec | traditional record syntax (as dynamic -XTraditionalRecor
ordSyntax supported by Haskell 98) C dSyntax
{f =x}
-XTypeFamilies Enable type families. dynamic -XNoTypeFamilies
-XUndecidableInsta Enable undecidable dynamic -XNoUndecidableIns
nces instances tances
Enable kind polymorphism.
-XPolyKinds Implies — dynamic -XNoPolyKinds
XKindSignatures.
Enable do not generalise
-XMonoLocalBinds focal blndlngs.. Irpplled by dynamic —-XNoMonoLocalBinds
-XTypeFamilies and —
XGADTs.
-XRebindableSyntax Employ rebindable syntax dynamic ;;(iloReblndableSyn
-XScopedTypeVariab Enable lexically-scoped dynamic -XNoScopedTypeVari
les type variables. ables
—XTemplateHaskell Enable Template Haskell. dynamic XNoTemplateHaskell
-XBangPatterns Enable bang patterns. dynamic -XNoBangPatterns
—XCPP Enable the C preprocessor. dynamic —XNoCPP
-XPatternGuards Enable pattern guards. dynamic —-XNoPatternGuards
-XViewPatterns Enable view patterns. dynamic -XNoViewPatterns
-XUnicodeSyntax Enable unicode syntax. dynamic —-XNoUnicodeSyntax
-XMagicHash AHOW i asa pqstﬁx dynamic -XNoMagicHash
modifier on identifiers.
Enable explicit universal
quantification. Implied by —
XScopedTypeVariab
-XExplicitForAll les, ~XLiberalTypeSy dynamic —-XNoExplicitForAll
nonyms, —
XRankNTypes, —
XExistentialQuanti
fication
. Enable polymorphic . .
—XPolymorphicCompo dynamic, synonym for — —XNoPolymorphicCom
nents components for data XRankNTypes ponents
constructors.
-XRank2Types Enable rank-2 types. dynamic, synonym for - —-XNoRank2Types
XRankNTypes
-XRankNTypes Enable rank-N types. dynamic —-XNoRankNTypes
—XImpredicativeTy Enable impredicative types. | dynamic —XNoImpredicativeT
pes ypes
-XExistentialQuant Enable existential . —-XNoExistentialQua
s . e dynamic . .
ification quantification. ntification
-XKindSignatures Enable kind signatures. dynamic -XNoKindSignatures
-XEmptyDataDecls Enable f?mpty data dynamic -XNoEmptyDataDecls
declarations.
) Enable parallel list . -XNoParallellListC
-XParallelListComp . dynamic
comprehensions. omp
- Enable generalised list . —XNoTransformListC
. . dynamic
XTransformListComp comprehensions. omp

mode.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 109/316
Flag Description Static/Dynamic Reverse
—XMonadComprehensi Enable monad dvnamic —XNoMonadComprehen
ons comprehensions. y sions

. . . —XNoUnliftedFFIT
-XUnliftedFFITypes Enable unlifted FFI types. dynamic e so nLiite Y
. . . —-XNoInt tibl
-XInterruptibleFFI Enable interruptible FFL. dynamic FFIO pterruptibie
-XLiberalTypeSynon Enable liberalised type dynamic -XNoLiberalTypeSyn
yms synonyms. y onyms
-XTypeOperators Enable type operators. dynamic -XNoTypeOperators
Enable using the keyword
type to specify the
o namespace of entries in o
-XExplicitNamespa . . —XNoExplicitNamesp
cos imports and exports dynamic sces
(Section 7.3.27). Implied
by -XTypeOperators
and -XTypeFamilies.
, Enable recursive do (mdo) . .
—XRecursiveDo . dynamic —XNoRecursiveDo
notation.
-XParallelArrays Enable parallel arrays. dynamic -XNoParallelArrays
-XRecordwWildCards Enable record wildcards. dynamic N ,
XNoRecordWildCards
-XNamedFieldPuns Enable record puns. dynamic -XNoNamedFieldPuns
-XDisambiguateReco Enable record field . -XNoDisambiguateRe
. . . . dynamic ,
rdFields disambiguation. cordFields
-XUnboxedTuples Enable unboxed tuples. dynamic -XNoUnboxedTuples
—-XStandaloneDeriv .. . —XNoStandaloneDeri
, Enable standalone deriving. | dynamic .
ing ving
-XTypeSynonymInsta Enable type synonyms in . —-XNoTypeSynonymIns
. dynamic
nces instance heads. tances
. . —XNoF1 ibleCont
-XFlexibleContexts Enable flexible contexts. dynamic tho exibetonte
Enable flexible instances. .
N Implies ~-XTypeSynonym | dynamic “XNoFlexiblelnstan
XFlexibleInstances P ybesy Y Y ces
Instances
-XConstrainedClass Enable constrained class . -XNoConstrainedCla
dynamic
Methods methods. ssMethods
- . . —XNoDefaultSi t
, Enable default signatures. dynamic opetan tgnatu
XDefaultSignatures res
-XMultiParamTypeCl Enable multi parameter dvnamic -XNoMultiParamType
asses type classes. Y Classes
-XNullaryTypeClas Enable nullary (no dvnamic -XNoNullaryTypeCla
ses parameter) type classes. y sses
-XFunctionalDepend Enable functional dvnamic -XNoFunctionalDepe
encies dependencies. Y ndencies
Enable package-qualified .
—XPackageImports . dynamic —XNoPackageImports
1mmports.
Enable lambda-case .
—XLambdaCase .d s dynamic —XNoLambdaCase
expressions.
. Enable multi-wa . .
-XMultiWayIf . . y dynamic —-XNoMultiWayIf
if-expressions.
Enable the Safe Haskell .
-XSafe dynamic -
Safe mode.
_XTrustworth Enable the Safe Haskell dvnamic B
Y Trustworthy mode. y
Enable Safe Haskell Unsafe .
-XUnsafe dynamic -

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

110/316

Flag Description Static/Dynamic Reverse
Enable Safe Haskell trusted
-fpackage-trust package requirement for dynamic -
trustworthy modules.
4.20.13 Warnings
Section 4.8
Flag Description Static/Dynamic Reverse
-W enable normal warnings dynamic -w
-w disable all warnings dynamic -
enable almost all warnings .
-Wall . . dynamic -
(details in Section 4.8) y W
-Werror make warnings fatal dynamic -Wwarn
-Wwarn make warnings non-fatal dynamic -Werror
—fdefer-type- Defer as many type errors dvnamic —fno-defer-type-
errors as possible until runtime. Y errors
Make suggestions for . —fno-helpful-
—-fhelpful-errors . £g dynamic noThespiu
mis-spelled names. errors
warn about uses of
-fwarn-deprecated- . . —-fno-warn-—
commandline flags that are | dynamic
flags deprecated-flags
deprecated
. warn when a constraint —-fno-warn-
—fwarn-duplicate-
, appears duplicated in a type | dynamic duplicate-
constraints . .
signature constraints
—-fwarn-duplicate— warn when an entity is dvnamic -fno-warn-
exports exported multiple times y duplicate-exports
. warn when a . hi file in the i
—fwarn-hi- . . —fno-warn—-hi-
, current directory shadows a | dynamic ,
shadowing . shadowing
library
warn about uses of Prelude
numeric conversions that
. o . . . —-fno-warn-
-fwarn—-identities are probably the identity dynamic , .
identities
(and hence could be
omitted)
—-fwarn—-implicit— warn when the Prelude is . -fno-warn-
A, dynamic . o
prelude implicitly imported implicit-prelude
. —-fno-warn-—
—-fwarn-incomplete- warn when a pattern match .
. dynamic incomplete-
patterns could fail
patterns
. warn when a pattern match —fno-warn-
—fwarn—-incomplete— . . .))
: in a lambda expression or dynamic incomplete-uni-
unl-patterns .. .
pattern binding could fail patterns
. —fno-warn-—
—-fwarn-incomplete- warn when a record update . . v
. dynamic incomplete-record-
record-updates could fail
updates
deprecated) warn when a
“fwarn-lazy- (aélnlbmdi1lookSMZ dynamic ~fno-warn-lazy-
unlifted-bindings p g Y Y unlifted-bindings
but must be strict
-fwarn-missing- warn when fields of a dvnamic -fno-warn-missing-
fields record are uninitialised Y fields
warn when an import
-fwarn-missing- declaration does not . -fnowarn-missing-—
dynamic

import-1lists

explicitly list all the names
brought into scope

import-1lists

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

111/316

pragmas

Flag Description Static/Dynamic Reverse
-fwarn-missing- warn when class methods dvnamic -fno-warn-missing-
methods are undefined y methods
-fwarn-missing- warn about top-level dvnamic —-fno-warn-missing-
signatures functions without signatures Y signatures

L warn about polymorphic .
—-fwarn-missing- . . . —-fno-warn-missing-

. local bindings without dynamic .

local-sigs . local-sigs

signatures
-fwarn- warn when the -fno-warn-
monomorphism- Monomorphism Restriction | dynamic monomorphism-
restriction is applied restriction
—fwarn—-name- warn when names are . —fno-warn—-name-—

. dynamic ,

shadowing shadowed shadowing

warn when the module -fno-warn-orphans,
—-fwarn-orphans, - . . .

contains orphan instance dynamic -fno-warn-auto-
fwarn-auto-orphans . .

declarations or rewrite rules orphans
—fwarn- . —fno-warn-

. warn about overlapping . .
overlapping- atterns dynamic overlapping-
patterns p patterns

warn if there are tabs in the .
-fwarn-tabs dynamic -fno-warn-tabs
source file
-fwarn-type- warn when defaultin . —-fno-warn-type-
yP £ dynamic yp
defaults happens defaults
—fwarn- —fno-warn-
unrecognised- warn about uses of pragmas dynamic unrecognised-
g that GHC doesn’t recognise Y g
pragmas pragmas
-fwarn-unused- warn about bindings that . —-fno-warn-unused-
. dynamic .
binds are unused binds
—fwarn-unused- warn about unnecessary . —-fno-warn-unused-
. . dynamic ,
imports 1mports imports
-fwarn-unused- warn about variables in dvnamic -fno-warn-unused-
matches patterns that aren’t used Y matches
warn about do bindings that
—fwarn-unused-do- & . —fno-warn-unused-
\ appear to throw away values | dynamic ,
bind do-bind
of types other than ()
warn about do bindings that
—fwarn-wrong—-do- appear to throw away dvnamic —fno-warn-wrong-
bind monadic values that you y do-bind
should have bound instead
warn if the module being
compiled is regarded to be
unsafe. Should be used to .
—-fwarn-unsafe dynamic —fno-warn—-unsafe
check the safety status of
modules when using safe
inference.
warn if the module being
compiled is regarded to be
safe. Should be used to .
—fwarn-safe dynamic —fno-warn-safe
check the safety status of
modules when using safe
inference.
warn about uses of fro—warn
. . - -w -
—-fwarn-warnings- functions & types that have . .

. . dynamic warnings-—
deprecations warnings or deprecated ,

deprecations

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

112/316

outwards). Implied by -O.

Flag Description Static/Dynamic Reverse
warn on definitions
-fwarn-am conflicting with the dynamic -fno-warn-am
P Applicative-Monad Y b
Proposal (AMP)
. . . —fno- -t d—
-fwarn-typed-holes Enable holes in expressions. | dynamic noTwarnTtype
holes
4.20.14 Optimisation levels
These options are described in more detail in Section 4.10
Flag Description Static/Dynamic Reverse
Enable default optimisati .
-0 ptumisation dynamic -00
(level 1)
-On Set optimisation level n dynamic -00
4.20.15 Individual optimisations
These options are described in more detail in Section 4.10.2.
Flag Description Static/Dynamic Reverse
Enable case-merging. .
-fcase-merge . dynamic -fno-case-merge
Implied by 0.
Turn on common
—-fcse sub-expression elimination. | dynamic -fno-cse
Implied by 0.
-fdicts-strict Make dictionaries strict static -fno-dicts-strict
, Enable eta-reduction. . -fno-do-eta-
—-fdo-eta-reduction . dynamic .
Implied by 0. reduction
-fdo-lambda-eta- Enable lambda . —-fno-do-lambda-
. . dynamic)
expansion eta-reduction eta—-expansion
—-feager- . .
é lackhol -
blackholing Turn on eager blackholing dynamic
Switch on all rewrite rules
includi 1 ted
—fenable-rewrite- (including r'u ©s gc?ne'rac? . —fno-enable-
by automatic specialisation | dynamic .
rules . rewrite-rules
of overloaded functions).
Implied by 0.
, Enable vectorisation of . .
—fvectorise . dynamic —fno-vectorise
nested data parallelism
Enable vectorisation
-favoid-vect avoidance dynamic -fno-avoid-vect
(EXPERIMENTAL)
. Enable excess intermediate . -fno-excess-
-fexcess-precision .. dynamic o
precision precision
Turn on the float-in
-ffloat-in transformation. Implied by | dynamic —-fno-float-in
-0.
Turn on full laziness
—-ffull-laziness (floating bindings dynamic —fno-full-laziness

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

113/316

Flag

Description

Static/Dynamic

Reverse

—-ffun-to-thunk

Allow worker-wrapper to
convert a function closure
into a thunk if the function
does not use any of its
arguments. Off by default.

dynamic

—-fno-fun-to-thunk

—-fignore—-asserts

Ignore assertions in the
source

dynamic

—-fno-ignore-
asserts

—fignore-
interface-pragmas

Ignore pragmas in interface
files

dynamic

—fno-ignore-
interface-pragmas

—floopification

Turn saturated
self-recursive tail-calls into
local jumps in the generated
assembly.

dynamic

—fno-loopification

—-flate-dmd-anal

Run demand analysis again,
at the end of the
simplification pipeline

dynamic

—fno-late-dmd-anal

—-fliberate-case

Turn on the liberate-case
transformation. Implied by
-02.

dynamic

-fno-liberate-case

—-fliberate-case—
threshold=n

Set the size threshold for
the liberate-case

transformation to n (default:
200)

static

—fno-liberate—
case-threshold

—fmax-relevant-
bindings=N

Set the maximum number
of bindings to display in
type error messages (default
6).

dynamic

—fno-max-relevant-—
bindings

—fmax-simplifier-
iterations=N

Set the max iterations for
the simplifier

dynamic

—fmax-worker—args=
N

If a worker has that many
arguments, none will be
unpacked anymore (default:
10)

dynamic

—fno-opt-coercion

Turn off the coercion
optimiser

static

—fno-pre—-inlining

Turn off pre-inlining

dynamic

—-fno-state—-hack

Turn off the "state hack"
whereby any lambda with a
real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.

static

—fpedantic-bottoms

Make GHC be more precise
about its treatment of
bottom (but see also —fno-
state—hack). In
particular, GHC will not
eta-expand through a case
expression.

dynamic

—-fno-pedantic-
bottoms

—fomit-interface-
pragmas

Don’t generate interface
pragmas

dynamic

—fno-omit—
interface-pragmas

—fsimplifier-
phases

Set the number of phases
for the simplifier (default
2). Ignored with -00.

dynamic

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

114 /316

Flag Description Static/Dynamic Reverse
Set the percentage factor for
—fsimpl-tick- . . P . & .
simplifier ticks (default dynamic -
factor=n
100)
Turn on the SpecConstr
—-fspec-constr transformation. Implied by | dynamic -fno-spec—-constr
-02.
Set the size threshold for
-fspec—constr- the SpecConstr static -fno-spec-constr-—
threshold=n transformation to n (default: threshold
200)
Set to n (default: 3) the
maximum number of
-fspec—constr- specialisations that will be static -fno-spec-constr—
count=n created for any one function count
by the SpecConstr
transformation
Turn on specialisation of
-fspecialise overloaded functions. dynamic -fno-specialise
Implied by 0.
, Turn on strictness analysis. . .
—fstrictness . dynamic —fno-strictness
Implied by 0.
. Run an additional strictness
—fstrictness=
analysis before simplifier dynamic -
before=n
phase n
, Turn on the static argument —fno-static-
—fstatic—-argument- . . .
X transformation. Implied by | dynamic argument—
transformation ,
-02. transformation
—funbox—-strict— Flatten strict constructor . —-fno—unbox-strict-
. dynamic]
fields fields fields
“fumbor-small- | p o ersined | dynanic ~no-unbox small-
strict-fields . P Y strict-fields
representation
—-funfolding- . . . —fno-unfolding-
Tweak unfolding settings dynamic
creation-threshold W " & & Y creation-threshold
—funfoldi —fun-— . . . —fno-unfolding-
. unto-aingTiun Tweak unfolding settings dynamic 1o l.m o-cing
discount fun-discount
—funfoldi - . . . —fno-unfolding-
unto-cing Tweak unfolding settings dynamic noTuntoLaing
keeness—-factor keeness—-factor
—funfolding-use- . . . —fno-unfolding-
Tweak unfolding settings dynamic
threshold & & y use—-threshold
4.20.16 Profiling options
Chapter 5
Flag Description Static/Dynamic Reverse
-prof Turn on profiling static -
Auto-add SCCs to all
—fprof-auto bindings not marked dynamic —fno-prof-auto
INLINE
Auto-add SCCs to all
—-fprof-auto-top top-level bindings not dynamic —-fno-prof-auto

marked INLINE

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

115/316

Flag Description Static/Dynamic Reverse
Auto-add SCCs to all
—fprof-auto- .4 .
exported exported bindings not dynamic -fno-prof-auto
P marked INLINE
—fprof-cafs Auto-add SCCs to all CAFs | dynamic —fno-prof-cafs
ffnofproffcountf Do not collect entry counts dynamic 7fpr<.)ffcountf
entries entries
—ticky Turn on ticky-ticky static)
profiling
4.20.17 Program coverage options
Section 5.7
Flag Description Static/Dynamic Reverse
_fhpe Turn on Haskell program dynamic B
coverage instrumentation
Directory to deposit .mix
~hpcdir dir files during compilation dynamic -
(default is .hpc)
4.20.18 Haskell pre-processor options
Section 4.12.4
Flag Description Static/Dynamic Reverse
Enable the use of a
-F pre-processor (set with — dynamic -
pgmE)
4.20.19 C pre-processor options
Section 4.12.3
Flag Description Static/Dynamic Reverse
B Run the C pre-processor on dvnamic)
cpp Haskell source files Y
Define a symbol in the C .
-Dsymbol[=value] dynamic -Usymbol
pre-processor
Undefine a symbol in the C .
-Usymbol dynamic -
pre-processor
Add dir to the directory
-Idir search list for #include dynamic -
files
4.20.20 Code generation options
Section 4.12.5
Flag Description Static/Dynamic Reverse
fasm Use the native code dynamic _fllvm
generator
_£11vm Compile using the LLVM dynamic _fasm
code generator

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

116/316

Flag Description Static/Dynamic Reverse
—fno-code Omit code generation dynamic -
-fbyte—-code Generate byte-code dynamic -
-fobject-code Generate object code dynamic -
4.20.21 Linking options
Section 4.12.6
Flag Description Static/Dynamic Reverse
Generate a shared library
—shared (as opposed to an dynamic -
executable)
On Darwin/OS X/iOS only,
generate a standalone static
,) library (as opposed to an .
“staticlib execu}t/able).p'lghis is the dynamic)
usual way to compile for
iOS.
Generate
-fPIC position-independent code dynamic -
(where available)
_dynamic Use dynamic Haskell static)
libraries (if available)
Build dynamic object files
—dynamic-too as well as static object files | static -
during compilation
Set the output path for the .
~dyno dynamically linked objects static)
—dynosuf Set the output suffix for static)
dynamic object files
Selects one of a number of
—dynload modes for finding shared static -
libraries at runtime.
On Darwin/OS X/iOS only,
link in the framework name.
—framework name This option corresponds to dynamic -
the —framework option
for Apple’s Linker.
On Darwin/OS X/iOS only,
add dir to the list of
—framework-path directories searched for .
. . dynamic -
name frameworks. This option
corresponds to the —F
option for Apple’s Linker.
-11ib Link in library 1ib dynamic -
Add dir to the list of
-Ldir directories searched for dynamic -
libraries
L Set main module and .
-main-is . dynamic -
function
DLL-creation mode .
—-mk-dll (Windows only) dynamic -
no-hs—main Don’t assume this program dynamic)

contains main

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

117 /316

Flag Description Static/Dynamic Reverse
Control whether the RTS
behaviour can be tweaked
via command-line flags and
the GHCRTS environment
variable. Using none
-rtsopts, —-rtsopts= means no RTS flags can be .
. dynamic -
{none, some, all} given; some means only a
minimum of safe options
can be given (the default),
and all (or no argument at
all) means that all RTS flags
are permitted.
. Set the default RTS options .
-with-rtsopts=opts dynamic -
to opts.
-no-link Onmit linking dynamic -
-split-obijs Split objects (for libraries) dynamic -
-static Use static Haskell libraries static -
~threaded Use the threaded runtime static -
—debug Use the debugging runtime | static -
Enable runtime event .
—eventlog . static -
tracing
fro-gen-mani fest Do not generate a manifest dvnamic)
g file (Windows only) y
Do not embed the manifest
—fno-embed- . . .
. in the executable (Windows | dynamic -
manifest
only)
Don’t generate an import
—-fno-shared-implib library for a DLL (Windows | dynamic -
only)
Set the install name (via —
install_name passed to
Apple’s linker), specifying
the full install path of the
—dylib-install- library file. Any libraries or .
. ol dynamic -
name path executables that link with it
later will pick up that path
as their runtime search
location for it. (Darwin/OS
X only)
4.20.22 Plugin options
Section 9.3
Flag Description Static/Dynamic Reverse
—-fplugin=module L.Oad a plugin exported by a static -
given module
, Give arguments to a plugin
fplugin module; module must be static -

opt=module:args

specified with —fplugin

4.20.23 Replacing phases

Section 4.12.1

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

118/316

Flag Description Static/Dynamic Reverse
Use cmd as the literate .
-pgmL cmd dynamic -
pre-processor
Use cmd as the C
-pgmP cmd pre-processor (with —cpp dynamic -
only)
-pgmc cmd Use cmd as the C compiler dynamic -
-pgms cmd Use cmd as the splitter dynamic -
-pgma cmd Use cmd as the assembler dynamic -
-pgml cmd Use cmd as the linker dynamic -
the DLL .
-pgmdll cmd Use cmd as the dynamic -
generator
Use cmd as the
—pgmF cmd pre-processor (with —F dynamic -
only)
Use cmd as the program for
-pgmwindres cmd embedding manifests on dynamic -
Windows.
Use cmd as the command
-pgmlibtool cmd for libtool (with — dynamic -
staticlib only).
4.20.24 Forcing options to particular phases
Section 4.12.2
Flag Description Static/Dynamic Reverse
) pass option to the literate .
—optL option dynamic -
pre-processor
tiont ith — .
—optP option pass option (0 cpp (Wi dynamic -
cpp only)
. pass option to the custom .
-optF option dynamic -
pre-processor
, pass option to the C .
—optc option . dynamic -
compiler
tion to the LLVM .
—optlo option pass optontothe dynamic -
optimiser
i he LLVM .
—-optlc option pass ?ptlon to the dynamic -
compiler
—optm option pass option to the mangler | dynamic -
opta oot ion pass option to the dvnamic)
btaoptio assembler Y
—optl option pass option to the linker dynamic -
i on to the DLL .
—optdll option pass optzonlo the dynamic -
generator
—optwindres option pass optiontowindres. | dynamic -
4.20.25 Platform-specific options
Section 4.16
Flag Description Static/Dynamic Reverse
1 E2 f .
-msse2 (XS6.OH y) .Use S8 or dynamic -
floating point

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

119/316

Flag Description Static/Dynamic Reverse
(x86 only) give some
-monly—-[432]-regs registers back to the C dynamic -
compiler
4.20.26 External core file options
Section 4.18
Flag Description Static/Dynamic Reverse
fext—core Generate . hcr external dvnamic)
Core files Y
4.20.27 Compiler debugging options
Section 4.19
Flag Description Static/Dynamic Reverse
_deore-lint Turn Qn internal sanity dynamic)
checking
—ddump—to-file Dump to files instead of dynamic)
stdout
—ddump-asm Dump assembly dynamic -
—ddump-bcos Dump interpreter byte code | dynamic -
—ddump-cmm Dump C-- output dynamic -
Print a one-line summary of
—ddump-core-stats the size of the Core dynamic -
P program at the end of the Y
optimisation pipeline
—ddump-cpranal Dump 'output from CPR dynamic -
analysis
—ddump-cse Dump CSE output dynamic -
—ddump-deriv Dump deriving output dynamic -
—ddump-ds Dump desugarer output dynamic -
—ddump-flatC Dump “flat” C dynamic -
—ddump-foreign Dump foreign export dynamic -
stubs
_ddump-hpe Dump after instrumentation dynamic)
for program coverage
—ddump-inlinings Dump inlining info dynamic -
_ddump—11vm Dump LLVM intermediate dynamic)
code
—ddump-occur-anal Dump occurrence analysis dynamic -
output
D h Its of C-- .
—ddump-opt —cmm umpt. ¢ resu ts of C--to dynamic -
C-- optimising passes
—ddump-parsed Dump parse tree dynamic -
—ddump-prep Dump prepared core dynamic -
—ddump-rn Dump renamer output dynamic -
—ddump-rule- .. .
firings Dump rule firing info dynamic -
- ddump -rule- Dump detailed rule firing dynamic)
rewrites info
—ddump-rules Dump rules dynamic -

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

120/316

Flag Description Static/Dynamic Reverse
D iser i .
—ddump-vect ump vectoriser input and dynamic]
output
D final simplifi .
—ddump-simpl ump Hnat stmpiiier dynamic -
output
—-dd —simpl- D tput f ach .
ump-simp oump output from eac dynamic)
phases simplifier phase
—-dd —-simpl- D tput fi h .
~ddump-simp Jump output from eac dynamic)
iterations simplifier iteration
—ddump-spec Dump specialiser output dynamic -
Dump TH spliced
—ddump-splices expressions, and what they dynamic -
evaluate to
—ddump-stg Dump final STG dynamic -
—ddump-stranal Dump strictness analyser dynamic)
output
—ddump-strsigs Dump strictness signatures dynamic -
—ddump-tc Dump typechecker output dynamic -
—ddump-types Dump type signatures dynamic -
—ddump-worker- Dump worker-wrapper dynamic _
wrapper output
—ddump-if-trace Trace interface files dynamic -
—ddump-tc-trace Trace typechecker dynamic -
—ddump-vt-trace Trace vectoriser dynamic -
—-ddump-rn-trace Trace renamer dynamic -
—ddump-rn-stats Renamer stats dynamic -
—ddump-simpl-stats Dump simplifier stats dynamic -
lici .
—dno-debug-output Suppress unsolicited static -
debugging output
Turn on debug printing .
—d —-deb tatic -
pPpr-cebug (more verbose) sttt
Don’t output pragma info in .
—dppr-noprags dumps utput prag static -
t the depth fi inti .
—dppr-user—length Set the . °p . Of printing dynamic -
expressions in error msgs
Set the width of debugging
—dppr—-col sNNN output. For example — dynamic -
dppr-cols200
Print single alternative case .
—dppr-case—as—let . . dynamic -
expressions as strict lets.
In core dumps, suppress
—dsuppress-all eve.zrythlng (e)?cept for dynamic -
uniques) that is
suppressible.
Suppress the printing of
-dsuppress—-uniques uniques in debug output dynamic -
(easier to use diff)
Suppress extended
—dsuppress—-idinfo information about dynamic -
bp identifiers where they are y
bound
S the printi f
—dsuppress—-module- HPppress gpnn}ngo .
. module qualification dynamic -
prefixes
prefixes
~dsuppress-type- Suppress type signatures dynamic -

signatures

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

121/316

Flag Description Static/Dynamic Reverse
—dsuppress-type-— . .
Suppress type applications dynamic -
applications upp ype app y
S the printi f
_dsuppress— uppress the printing o '
, coercions in Core dumps to | dynamic -
coercions
make them shorter
—-dsource-stats Dump haskell source stats dynamic -
—dcmm-1lint C-- pass sanity checking dynamic -
—-dstg-1lint STG pass sanity checking dynamic -
-dstg-stats Dump STG stats dynamic -
—-dverbose— Show output from each .
dynamic -
core2core core-to-core pass
Show output from each .
_ - 2 d -
dverbose-stg2stg STG-t0-STG pass ynamic
Print out h .
—dshow-passes ; [Nt out each pass name as dynamic -
it happens
. Show statistics for fast .
-dfaststring-stats . . dynamic -
string usage when finished
4.20.28 Misc compiler options
Flag Description Static/Dynamic Reverse
When compiling with ——
-J N make, compile N modules dynamic -
in parallel.
—fno-hi-version- Don’t complain about .hi .
. static -
check file mismatches
—dno-black-holing Turn off black h?llng static -
(probably doesn’t work)
Set simplification hist .
—fhistory-size .e stmpliication hustory dynamic -
size
, . Unregisterised compilation .
—funregisterised . static -
(use —unregq instead)
Do not use the load/store
—-fno-ghci-history the GHCi command history | dynamic -
from/to ghci_history.
Turn off the GHCi sandbox.
M tati .
—fno-ghci-sandbox eans computations are dynamic -

run in the main thread,
rather than a forked thread.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 122/316

Chapter 5

Profiling

GHC comes with a time and space profiling system, so that you can answer questions like "why is my program so slow?", or
"why is my program using so much memory?".

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the —prof option, and probably one of the options for adding automatic

annotations: —fprof-auto is the most common'.

If you are using external packages with cabal, you may need to reinstall these packages with profiling support; typically
this is done with cabal install -p package —-reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile. For example, a simple time
profile can be generated by running the program with +RTS -p, which generates a file named prog.prof where prog
is the name of your program (without the . exe extension, if you are on Windows).

There are many different kinds of profile that can be generated, selected by different RTS options. We will be describing
the various kinds of profile throughout the rest of this chapter. Some profiles require further processing using additional
tools after running the program.

3. Examine the generated profiling information, use the information to optimise your program, and repeat as necessary.

5.1 Cost centres and cost-centre stacks

GHC'’s profiling system assigns costs to cost centres. A cost is simply the time or space (memory) required to evaluate an
expression. Cost centres are program annotations around expressions; all costs incurred by the annotated expression are assigned
to the enclosing cost centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given expression at
run-time and generate a call-tree of cost attributions.

Let’s take a look at an example:

main = print (fib 30)
fib n = 1if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

$ ghc -prof —-fprof-auto -rtsopts Main.hs
$./Main +RTS -p

121393

$

When a GHC-compiled program is run with the —p RTS option, it generates a file called prog.prof. In this case, the file will
contain something like this:

! —fprof-auto was known as —auto-all prior to GHC 7.4.1.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 123/316

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)
Main +RTS -p —-RTS

total time = 0.68 secs (34 ticks @ 20 ms)
total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE $%$time %alloc

fib Main 100.0 100.0
individual inherited

COST CENTRE MODULE no. entries %$time %alloc $time %$alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total memory allocation measured during
the run of the program (note that the total memory allocation figure isn’t the same as the amount of /ive memory needed by the
program at any one time; the latter can be determined using heap profiling, which we will describe later in Section 5.4).

The second part of the file is a break-down by cost centre of the most costly functions in the program. In this case, there was
only one significant function in the program, namely fib, and it was responsible for 100% of both the time and allocation costs
of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is roughly a call-tree profile of the
program. In the example above, it is clear that the costly call to £ib came from main.

The time and allocation incurred by a given part of the program is displayed in two ways: “individual”, which are the costs
incurred by the code covered by this cost centre stack alone, and “inherited”, which includes the costs incurred by all the children
of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (£ 30 + g 30)

where
fn = fib n
gn = fib (n ‘div‘' 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

COST CENTRE MODULE no. entries %$time %alloc %$time %$alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main.f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 124 /316

Now although we had two calls to £ib in the program, it is immediately clear that it was the call from £ which took all the time.
The functions £ and g which are defined in the where clause in main are given their own cost centres, main.f and main.g
respectively.

The actual meaning of the various columns in the output is:

entries The number of times this particular point in the call tree was entered.
individual %time The percentage of the total run time of the program spent at this point in the call tree.

individual %alloc The percentage of the total memory allocations (excluding profiling overheads) of the program made by this
call.

inherited %time The percentage of the total run time of the program spent below this point in the call tree.

inherited %alloc The percentage of the total memory allocations (excluding profiling overheads) of the program made by this
call and all of its sub-calls.

In addition you can use the —P RTS option to get the following additional information:

ticks The raw number of time “ticks” which were attributed to this cost-centre; from this, we get the $t ime figure mentioned
above.

bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number from which we get the
%$alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs attributed? Well, although GHC
does keep information about which groups of functions called each other recursively, this information isn’t displayed in the basic
time and allocation profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs elsewhere on
the current stack does not push another entry on the stack, instead the costs for this call are aggregated into the caller”.

5.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say —fprof—auto to the compiler, it automatically inserts a cost centre
annotation around every binding not marked INLINE in your program, but you are entirely free to add cost centre annotations
yourself.

The syntax of a cost centre annotation is

{—# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it appears in the profiling output, and
<expression> is any Haskell expression. An SCC annotation extends as far to the right as possible when parsing. (SCC
stands for "Set Cost Centre"). The double quotes can be omitted if name is a Haskell identifier, for example:

{-# SCC my_function #-} <expression>

Here is an example of a program with a couple of SCCs:

main :: IO ()
main = do let xs = [1..1000000]
let ys = [1..2000000]
print $ {-# SCC last_xs #-} last xs
print $ {—-# SCC last_init_xs #-} last $ init xs
print $ {-# SCC last_ys #-} last ys
print $ {-# SCC last_init_ys #-}last $ init ys

which gives this profile when run:

2 Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further, feedback is welcome.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 125/316

COST CENTRE MODULE no. entries %$time %alloc $time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last_init_ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last_init_xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

5.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind the scenes, and attributes any costs
(memory allocation and time) to whatever the current cost-centre stack is at the time the cost is incurred.

The mechanism is simple: whenever the program evaluates an expression with an SCC annotation, { -#SCC ¢ —#} E, the cost
centre c is pushed on the current stack, and the entry count for this stack is incremented by one. The stack also sometimes has to
be saved and restored; in particular when the program creates a thunk (a lazy suspension), the current cost-centre stack is stored
in the thunk, and restored when the thunk is evaluated. In this way, the cost-centre stack is independent of the actual evaluation
order used by GHC at runtime.

At a function call, GHC takes the stack stored in the function being called (which for a top-level function will be empty), and
appends it to the current stack, ignoring any prefix that is identical to a prefix of the current stack.

We mentioned earlier that lazy computations, i.e. thunks, capture the current stack when they are created, and restore this stack
when they are evaluated. What about top-level thunks? They are "created" when the program is compiled, so what stack should
we give them? The technical name for a top-level thunk is a CAF ("Constant Applicative Form"). GHC assigns every CAF in a
module a stack consisting of the single cost centre M. CAF, where M is the name of the module. It is also possible to give each
CAF a different stack, using the option ~fprof-cafs. This is especially useful when compiling with ~-ffull-laziness
(as is default with —O and higher), as constants in function bodies will be lifted to the top-level and become CAFs. You will
probably need to consult the Core (~ddump—-simpl) in order to determine what these CAFs correspond to.

5.2 Compiler options for profiling

—-prof: To make use of the profiling system all modules must be compiled and linked with the —prof option. Any SCC
annotations you’ve put in your source will spring to life.

Without a ~prof option, your SCCs are ignored; so you can compile SCC-laden code without changing it.

There are a few other profiling-related compilation options. Use them in addition to —prof. These do not have to be used
consistently for all modules in a program.

—fprof-auto: All bindings not marked INLINE, whether exported or not, top level or nested, will be given automatic SCC
annotations. Functions marked INLINE must be given a cost centre manually.

—-fprof-auto-top: GHC will automatically add SCC annotations for all top-level bindings not marked INLINE. If you
want a cost centre on an INLINE function, you have to add it manually.

—fprof-auto-exported: GHC will automatically add SCC annotations for all exported functions not marked INLINE.
If you want a cost centre on an INLINE function, you have to add it manually.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 126 /316

—fprof-auto-calls: Adds an automatic SCC annotation to all call sites. This is particularly useful when using profiling
for the purposes of generating stack traces; see the function traceStack in the module Debug.Trace, or the —xc
RTS flag (Section 4.17.7) for more details.

—fprof-cafs: The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre. With this option, all
CAFs get their own cost-centre. An “if all else fails” option. ..

—fno-prof-auto: Disables any previous —~fprof-auto, —fprof—-auto-top, or —fprof-auto—exported op-
tions.

—-fno-prof-cafs: Disables any previous —~fprof-cafs option.

—fno-prof-count-entries: Tells GHC not to collect information about how often functions are entered at runtime (the
"entries" column of the time profile), for this module. This tends to make the profiled code run faster, and hence closer to
the speed of the unprofiled code, because GHC is able to optimise more aggressively if it doesn’t have to maintain correct
entry counts. This option can be useful if you aren’t interested in the entry counts (for example, if you only intend to do
heap profiling).

5.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled program when you run it (RTS
options should be enclosed between +RTS. . . —RTS as usual):

-por-Por-pa: The —p option produces a standard time profile report. It is written into the file program.prof.
The —-P option produces a more detailed report containing the actual time and allocation data as well. (Not used much.)

The —pa option produces the most detailed report containing all cost centres in addition to the actual time and allocation
data.

—Vsecs Sets the interval that the RTS clock ticks at, which is also the sampling interval of the time and allocation profile. The
default is 0.02 seconds.

—xc This option causes the runtime to print out the current cost-centre stack whenever an exception is raised. This can be
particularly useful for debugging the location of exceptions, such as the notorious Prelude.head:empty list error.
See Section 4.17.7.

5.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also generate a graph of its memory usage
over time. This is useful for detecting the causes of space leaks, when your program holds on to more memory at run-time that
it needs to. Space leaks lead to slower execution due to heavy garbage collector activity, and may even cause the program to run
out of memory altogether.

To generate a heap profile from your program:

1. Compile the program for profiling (Section 5.2).

2. Run it with one of the heap profiling options described below (eg. —h for a basic producer profile). This generates the file
prog.hp.

3. Run hp2ps to produce a Postscript file, prog. ps. The hp2ps utility is described in detail in Section 5.5.

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a Postscript-capable printer.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 127 /316

q+RTS-h

bytes

S0M_

A58 |

40M_

35M

30M.

25M.

20M

15N

10M

SM.

am

For example, here is a heap profile produced for the program given above in Section 5.1.1: 0o 0.2
You might also want to take a look at hp2any, a more advanced suite of tools (not distributed with GHC) for displaying heap
profiles.

5.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile types yield a graph of live heap
against time, but they differ in how the live heap is broken down into bands. The following RTS options select which break-down
to use:

-hc (can be shortened to —h). Breaks down the graph by the cost-centre stack which produced the data.
—hm Break down the live heap by the module containing the code which produced the data.

-hd Breaks down the graph by closure description. For actual data, the description is just the constructor name, for other
closures it is a compiler-generated string identifying the closure.

-hy Breaks down the graph by fype. For closures which have function type or unknown/polymorphic type, the string will
represent an approximation to the actual type.

—hr Break down the graph by retainer set. Retainer profiling is described in more detail below (Section 5.4.2).

-hb Break down the graph by biography. Biographical profiling is described in more detail below (Section 5.4.3).

http://www.haskell.org/haskellwiki/Hp2any

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 128 /316

In addition, the profile can be restricted to heap data which satisfies certain criteria - for example, you might want to display a
profile by type but only for data produced by a certain module, or a profile by retainer for a certain type of data. Restrictions are
specified as follows:

—hcname,... Restrict the profile to closures produced by cost-centre stacks with one of the specified cost centres at the top.

—hCname,... Restrict the profile to closures produced by cost-centre stacks with one of the specified cost centres anywhere in
the stack.

—hmmodule,... Restrict the profile to closures produced by the specified modules.
—hddesc,... Restrict the profile to closures with the specified description strings.
-hytype,... Restrict the profile to closures with the specified types.

—hrce,... Restrict the profile to closures with retainer sets containing cost-centre stacks with one of the specified cost centres
at the top.

-hbbio,.. Restrict the profile to closures with one of the specified biographies, where bio is one of lag, drag, void, or
use.

For example, the following options will generate a retainer profile restricted to Branch and Leaf constructors:

prog tRTS —-hr -hdBranch,Leaf

There can only be one "break-down" option (eg. —hr in the example above), but there is no limit on the number of further
restrictions that may be applied. All the options may be combined, with one exception: GHC doesn’t currently support mixing
the ~hr and -hb options.

There are three more options which relate to heap profiling:

—isecs: Setthe profiling (sampling) interval to secs seconds (the default is 0.1 second). Fractions are allowed: for example -
10.2 will get 5 samples per second. This only affects heap profiling; time profiles are always sampled with the frequency
of the RTS clock. See Section 5.3 for changing that.

—-xt Include the memory occupied by threads in a heap profile. Each thread takes up a small area for its thread state in addition
to the space allocated for its stack (stacks normally start small and then grow as necessary).
This includes the main thread, so using —xt is a good way to see how much stack space the program is using.
Memory occupied by threads and their stacks is labelled as “TSO” and “STACK” respectively when displaying the profile

by closure description or type description.

—Lnum Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

5.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?”. We start by defining what we
mean by a retainer:

A retainer is either the system stack, an unevaluated closure (thunk), or an explicitly mutable object.

In particular, constructors are not retainers.

An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by recursively following pointers starting
from object B, but not meeting any other retainer objects on the way. Each live object is retained by one or more retainer objects,
collectively called its retainer set, or its retainer set, or its retainers.

When retainer profiling is requested by giving the program the —hr option, a graph is generated which is broken down by retainer
set. A retainer set is displayed as a set of cost-centre stacks; because this is usually too large to fit on the profile graph, each
retainer set is numbered and shown abbreviated on the graph along with its number, and the full list of retainer sets is dumped
into the file prog.prof.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 129/316

Retainer profiling requires multiple passes over the live heap in order to discover the full retainer set for each object, which can
be quite slow. So we set a limit on the maximum size of a retainer set, where all retainer sets larger than the maximum retainer
set size are replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with the —R RTS option:

—Rsize Restrict the number of elements in a retainer set to size (default 8).

5.4.2.1 Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large structure is retained by an unevaluated
computation, and will be released once the computation is forced. A good example is looking up a value in a finite map, where
unless the lookup is forced in a timely manner the unevaluated lookup will cause the whole mapping to be retained. These kind
of space leaks can often be eliminated by forcing the relevant computations to be performed eagerly, using seq or strictness
annotations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only the nearest of which will be reported
by retainer profiling - for example A retains B, B retains C, and C retains a large structure. There might be a large number of Bs
but only a single A, so A is really the one we’re interested in eliminating. However, retainer profiling will in this case report B as
the retainer of the large structure. To move further up the chain of retainers, we can ask for another retainer profile but this time
restrict the profile to B objects, so we get a profile of the retainers of B:

prog +RTS —-hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the retainers we are interested in, but
we’ve found this to be a useful technique in most cases.

5.4.3 Biographical Profiling
A typical heap object may be in one of the following four states at each point in its lifetime:

* The lag stage, which is the time between creation and the first use of the object,
* the use stage, which lasts from the first use until the last use of the object, and
* The drag stage, which lasts from the final use until the last reference to the object is dropped.

* An object which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states listed above. Usually the most interesting
states are the void and drag states: live heap in these states is more likely to be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria, by restricting a profile by biography.
For example, to show the portion of the heap in the drag or void state by producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step is usually to find the retainer(s):

prog +RTS —-hr -hccc...

NOTE: this two stage process is required because GHC cannot currently profile using both biographical and retainer information
simultaneously.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 130/316

5.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory residency of your program when you run
it? You might see a large discrepancy between the residency reported by the heap profiler, and the residency reported by tools on
your system (eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:

 There is an overhead of profiling itself, which is subtracted from the residency figures by the profiler. This overhead goes away
when compiling without profiling support, of course. The space overhead is currently 2 extra words per heap object, which
probably results in about a 30% overhead.

* Garbage collection requires more memory than the actual residency. The factor depends on the kind of garbage collection
algorithm in use: a major GC in the standard generation copying collector will usually require 3L bytes of memory, where L is
the amount of live data. This is because by default (see the +RTS —F option) we allow the old generation to grow to twice its
size (2L) before collecting it, and we require additionally L bytes to copy the live data into. When using compacting collection
(see the +RTS —c option), this is reduced to 2L, and can further be reduced by tweaking the —F option. Also add the size of
the allocation area (currently a fixed 512Kb).

* The stack isn’t counted in the heap profile by default. See the +RTS -xt option.

* The program text itself, the C stack, any non-heap data (eg. data allocated by foreign libraries, and data allocated by the RTS),
and mmap () ’d memory are not counted in the heap profile.

5.5 hp2ps--heap profile to PostScript

Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps converts a heap profile as produced by the ~h<break-down> runtime option into a PostScript graph of
the heap profile. By convention, the file to be processed by hp2ps has a . hp extension. The PostScript output is written to
<file>@.ps. If <file> is omitted entirely, then the program behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally developed by Dave Wakeling as
part of the HBC/LML heap profiler.

The flags are:

—d In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier. The default sort ordering is for
the bands with the largest area to be stacked on top of the smaller ones. The —d option causes rougher bands (those
representing series of values with the largest standard deviations) to be stacked on top of smoother ones.

—b Normally, hp2ps puts the title of the graph in a small box at the top of the page. However, if the JOB string is too long to fit
in a small box (more than 35 characters), then hp2ps will choose to use a big box instead. The —b option forces hp2ps to
use a big box.

—-e<float>[in|mm|pt] Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually, the PostScript
graph is drawn in landscape mode in an area 9 inches wide by 6 inches high, and hp2ps arranges for this area to be ap-
proximately centred on a sheet of a4 paper. This format is convenient of studying the graph in detail, but it is unsuitable
for inclusion in LaTeX documents. The —e option causes the graph to be drawn in portrait mode, with float specifying the
width in inches, millimetres or points (the default). The resulting PostScript file conforms to the Encapsulated PostScript
(EPS) convention, and it can be included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

—g Create output suitable for the gs PostScript previewer (or similar). In this case the graph is printed in portrait mode without
scaling. The output is unsuitable for a laser printer.

-1 Normally a profile is limited to 20 bands with additional identifiers being grouped into an OTHER band. The -1 flag removes
this 20 band and limit, producing as many bands as necessary. No key is produced as it won’t fit!. It is useful for creation
time profiles with many bands.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 131/316

-m<int> Normally a profile is limited to 20 bands with additional identifiers being grouped into an OTHER band. The —m flag
specifies an alternative band limit (the maximum is 20).

-mO requests the band limit to be removed. As many bands as necessary are produced. However no key is produced as it
won’t fit! It is useful for displaying creation time profiles with many bands.

—p Use previous parameters. By default, the PostScript graph is automatically scaled both horizontally and vertically so that
it fills the page. However, when preparing a series of graphs for use in a presentation, it is often useful to draw a new
graph using the same scale, shading and ordering as a previous one. The —p flag causes the graph to be drawn using the
parameters determined by a previous run of hp2ps on £ile. These are extracted from file@.aux.

—s Use a small box for the title.

—-t<float> Normally trace elements which sum to a total of less than 1% of the profile are removed from the profile. The -t
option allows this percentage to be modified (maximum 5%).

-t 0 requests no trace elements to be removed from the profile, ensuring that all the data will be displayed.
—c Generate colour output.
-y Ignore marks.

—2 Print out usage information.

5.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)

The FOO . hp file produced when you ask for the heap profile of a program FOO is a text file with a particularly simple structure.
Here’s a representative example, with much of the actual data omitted:

JOB "FOO —-hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07

. sample data ...
END_SAMPLE 15.07
BEGIN_SAMPLE 30.23

. sample data ...
END_SAMPLE 30.23

. etc.

BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE_UNIT, VALUE_UNIT) form a header. Each block of lines starting with BEGIN_SA
MPLE and ending with END_SAMPLE forms a single sample (you can think of this as a vertical slice of your heap profile). The
hp2ps utility should accept any input with a properly-formatted header followed by a series of *complete* samples.

5.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the .hp file into a text editor and deleting the
unwanted samples. The resulting . hp file can be run through hp2ps and viewed or printed.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 132/316

5.5.3 Viewing the heap profile of a running program

The . hp file is generated incrementally as your program runs. In principle, running hp2ps on the incomplete file should produce
a snapshot of your program’s heap usage. However, the last sample in the file may be incomplete, causing hp2ps to fail. If you
are using a machine with UNIX utilities installed, it’s not too hard to work around this problem (though the resulting command
line looks rather Byzantine):

head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : —-f 1' FOO.hp \
| hp2ps > FOO.ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in FOO . hp, and labels each sample
with its ending line number. We then select the line number of the last complete sample using tail and cut. This is used as a
parameter to head; the result is as if we deleted the final incomplete sample from FOO . hp. This results in a properly-formatted
.hp file which we feed directly to hp2ps.

5.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a "watch file" option can be used to view an up-to-date heap profile of your program as it
runs. Simply generate an incremental heap profile as described in the previous section. Run gv on your profile:

gv —-watch -seascape FOO.ps

If you forget the —~wat ch flag you can still select "Watch file" from the "State" menu. Now each time you generate a new profile
FOO. ps the view will update automatically.

This can all be encapsulated in a little script:

#!/bin/sh
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1 FOO.hp \
| hp2ps > FOO.ps
gv —-watch -seascape FOO.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : —-f 1 FOO.hp \
| hp2ps > FOO.ps
done

Occasionally gv will choke as it tries to read an incomplete copy of FOO . ps (because hp2ps is still running as an update occurs).
A slightly more complicated script works around this problem, by using the fact that sending a SIGHUP to gv will cause it to
re-read its input file:

#!/bin/sh
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1 FOO.hp \
| hp2ps > FOO.ps
gv FOO.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : —-f 1 FOO.hp \
| hp2ps > FOO.ps
kill -HUP S$gvpsnum
done

5.6 Profiling Parallel and Concurrent Programs

Combining -threaded and —prof is perfectly fine, and indeed it is possible to profile a program running on multiple proces-
sors with the +RTS -N option.’

3This feature was added in GHC 7.4.1.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 133/316

Some caveats apply, however. In the current implementation, a profiled program is likely to scale much less well than the
unprofiled program, because the profiling implementation uses some shared data structures which require locking in the runtime
system. Furthermore, the memory allocation statistics collected by the profiled program are stored in shared memory but not
locked (for speed), which means that these figures might be inaccurate for parallel programs.

We strongly recommend that you use —~fno-prof-count—-entries when compiling a program to be profiled on multiple
cores, because the entry counts are also stored in shared memory, and continuously updating them on multiple cores is extremely
slow.

We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for visualising parallel execution, and is
complementary to the time and space profiling features provided with GHC.

5.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been actually executed, and which parts
have never actually been invoked. GHC has an option for generating instrumented code that records code coverage as part of
the Haskell Program Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the generated code
coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the program was used, measured at three different levels: declarations (both top-
level and local), alternatives (among several equations or case branches) and expressions (at every level). Boolean coverage is the
extent to which each of the values True and False is obtained in every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways: textual reports with summary statistics (hpc report) and
sources with color mark-up (hpc markup). For boolean coverage, there are four possible outcomes for each guard, condition
or qualifier: both True and False values occur; only True; only False; never evaluated. In hpc-markup output, highlighting with
a yellow background indicates a part of the program that was never evaluated; a green background indicates an always-True
expression and a red background indicates an always-False one.

5.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal representations of reciprocals, with
recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = (0" : ’.’ : digits, recur)
| otherwise = error
"attempting to compute reciprocal of number <= 1"
where
(digits, recur) = divide n 1 []
divide :: Int -> Int -> [Int] -> (String, Int)
divide n ¢c cs | ¢ ‘elem' cs = ([], position c cs)
| r==20 = (show g, 0)
| r /=0 = (show g ++ digits, recur)
where
(a, r) = (c*10) ‘quotRem‘ n
(digits, recur) = divide n r (c:cs)
position :: Int -> [Int] -> Int
position n (x:xs) | n==x =1
| otherwise = 1 + position n xs
showRecip :: Int —-> String
showRecip n =
"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where

p = length d - r

http://www.haskell.org/haskellwiki/ThreadScope

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 134 /316

(d, r) = reciprocal n

main = do
number <- readLn
putStrLn (showRecip number)
main

HPC instrumentation is enabled with the -fhpc flag:

$ ghc —-fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in there, one for each module
compiled. You don’t need to worry about these files: they contain information needed by the hpc tool to generate the coverage
data for compiled modules after the program is run.

$./Recip
1/3
= 0.(3)

Running the program generates a file with the . t ix suffix, in this case Recip.tix, which contains the coverage data for this
run of the program. The program may be run multiple times (e.g. with different test data), and the coverage data from the separate
runs is accumulated in the . t ix file. To reset the coverage data and start again, just remove the . t ix file.

Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)
14% guards (1/7), 3 always True,
1 always False,
2 unevaluated
0% ’if’ conditions (0/1), 1 always False
100% qualifiers (0/0)
55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html, hpc_index_alt.html, hpc_index_exp.html, hpc_index_fun.t

5.7.2 Options for instrumenting code for coverage

—fhpc Enable code coverage for the current module or modules being compiled.

Modules compiled with this option can be freely mixed with modules compiled without it; indeed, most libraries will
typically be compiled without —fhpc. When the program is run, coverage data will only be generated for those modules
that were compiled with —fhpc, and the hpc tool will only show information about those modules.

5.7.3 The hpc toolkit

The hpc command has several sub-commands:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

135/316

$ hpc
Usage: hpc COMMAND

Commands :
help Display help for hpc or a single command
Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage
Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file
Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage
Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a . t ix file after an instrumented binary has generated it.

The hpc tool assumes you are in the top-level directory of the location where you built your application, and the .t ix file is in
the same top-level directory. You can use the flag ——srcdir to use hpc for any other directory, and use ——srcdir multiple

times to analyse programs compiled from difference locations, as is typical for packages.

‘We now explain in more details the major modes of hpc.

5.7.3.1 hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are considered in generating report,
unless include or exclude are used. The report is a summary unless the ——per-module flag is used. The ——xml-output

option allows for tools to use hpc to glean coverage.

$ hpc help report

Usage: hpc report [OPTION] .. <TIX_ FILE> [<MODULE> [<MODULE> ..]]
Options:
——per—-module show module level detail
——decl-1list show unused decls

——exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
——include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

.mix files

—-srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
—-—hpcdir=DIR append sub-directory that contains
default .hpc [rarely used]
—-—reset-hpcdirs empty the list of hpcdir’s
[rarely used]
——xml-output show output in XML

5.7.3.2 hpc markup

hpc markup marks up source files into colored html.

S hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 136/316
——exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
——include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE
——-srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
——hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
—-reset-hpcdirs empty the list of hpcdir’s
[rarely used]
—-—fun-entry-count show top-level function entry counts
—-highlight-covered highlight covered code, rather that code gaps
——destdir=DIR path to write output to
5.7.3.3 hpc sum
hpc sum adds together any number of . t ix files into a single . tix file. hpc sum does not change the original . tix file; it

generates a new . tix file.

$ hpc help sum
Usage: hpc sum
Sum multiple

[OPTION]

Options:

——exclude=[PACKAGE:] [MODULE]
——include=[PACKAGE:] [MODULE]
——output=FILE
——union

intersection)

5.7.3.4 hpc combine

<TIX_FILE>
.tix files in a single

[<TIX_FILE>
.tix file

[<TIX _FILE>

exclude MODULE and/or PACKAGE
include MODULE and/or PACKAGE
output FILE

use the union of the module namespace

-11]

(default is

<

hpc combine is the swiss army knife of hpc. It can be used to take the difference between . t ix files, to subtract one . tix
file from another, or to add two . t ix files. hpc combine does not change the original . t ix file; it generates a new . tix file.

S hpc help combine
Usage: hpc combine [OPTION]
Combine two

Options:
——exclude=[PACKAGE:] [MODULE]
——include=[PACKAGE:] [MODULE]
——output=FILE

——function=FUNCTION

——union
intersection)

5.7.3.5 hpc map

.tix files in a single

<TIX_FILE> <TIX_FILE>

.tix file

exclude MODULE and/or PACKAGE
include MODULE and/or PACKAGE
output FILE

combine
FUNCTION = ADD |

DIFF | SUB

use the union of the module namespace

.tix files with join function,

default =

(default is

ADD

<

hpc map inverts or zeros a . t ix file. hpc map does not change the original .t ix file; it generates a new . tix file.

$ hpc help map
Usage: hpc map [OPTION]
Map a function over a single

Options:

<TIX_FILE>
.tix file

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 137 /316

——exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
——include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

——output=FILE output FILE
——function=FUNCTION apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO
——union use the union of the module namespace (default is <>
intersection)

5.7.3.6 hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is used to generate a draft overlay from
a .tix file, and hpc overlay generates a .tix files from an overlay.

)

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY FILE> [<OVERLAY FILE> [...]]

Options:

——srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

——hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
—-reset-hpcdirs empty the list of hpcdir’s

[rarely used]
——output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX _FILE>

Options:

—-—exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
——include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

——-srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

—-—hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]

—-reset-hpcdirs empty the list of hpcdir’s
[rarely used]

——output=FILE output FILE

5.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .t ix file, so multiple concurrently running binaries in the same directory will exhibit a race
condition. There is no way to change the name of the . t ix file generated, apart from renaming the binary. HPC does not work
with GHCi.

5.8 Using “ticky-ticky” profiling (for implementors)

Because ticky-ticky profiling requires a certain familiarity with GHC internals, we have moved the documentation to the wiki.
Take a look at its overview of the profiling options, which includeds a link to the ticky-ticky profiling page.

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 138/316

Chapter 6

Advice on: sooner, faster, smaller, thriftier

Please advise us of other “helpful hints” that should go here!

6.1 Sooner: producing a program more quickly

Don’t use —O or (especially) —02: By using them, you are telling GHC that you are willing to suffer longer compilation times
for better-quality code.

GHC is surprisingly zippy for normal compilations without —O!
Use more memory: Within reason, more memory for heap space means less garbage collection for GHC, which means less

compilation time. If you use the ~-Rghc—-timing option, you’ll get a garbage-collector report. (Again, you can use the
cheap-and-nasty +RTS —S -RTS option to send the GC stats straight to standard error.)

If it says you’re using more than 20% of total time in garbage collecting, then more memory might help: use the -
H<size> option. Increasing the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A<size> —RTS option.

If GHC persists in being a bad memory citizen, please report it as a bug.
Don’t use too much memory! As soon as GHC plus its “fellow citizens” (other processes on your machine) start using more

than the real memory on your machine, and the machine starts “thrashing,” the party is over. Compile times will be worse
than terrible! Use something like the csh-builtin time command to get a report on how many page faults you’re getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t know the memory configuration of
your machine, don’t try to be clever about memory use: you’ll just make your life a misery (and for other people, too,
probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be large, it can take many real seconds to
slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using remotely-mounted disks; then /ink on a slow machine that
had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.

GHC compiles some program constructs slowly: We’d rather you reported such behaviour as a bug, so that we can try to
correct it.

To figure out which part of the compiler is badly behaved, the —v2 option is your friend.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 139/316

6.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities, described separately in Chapter 5.
There is no substitute for finding where your program’s time/space is really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program’s performance dramatically is to use better algorithms.
Once profiling has thrown the spotlight on the guilty time-consumer(s), it may be better to re-think your program than to try all
the tweaks listed below.

Another extremely efficient way to make your program snappy is to use library code that has been Seriously Tuned By Someone
Else. You might be able to write a better quicksort than the one in Data.List, but it will take you much longer than typing
import Data.List.

Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credible competition in the performance
department these days it’s hard to say what overly-slow means, so just use your judgement! Of course, if a GHC compiled
program runs slower than the same program compiled with NHC or Hugs, then it’s definitely a bug.

Optimise, using —0 or —02: This is the most basic way to make your program go faster. Compilation time will be slower,
especially with —02.

At present, —02 is nearly indistinguishable from -O.

Compile via LLVM: The LLVM code generator can sometimes do a far better job at producing fast code than the native code
generator. This is not universal and depends on the code. Numeric heavy code seems to show the best improvement when
compiled via LLVM. You can also experiment with passing specific flags to LLVM with the —opt 1o and —opt 1c flags.
Be careful though as setting these flags stops GHC from setting its usual flags for the LLVM optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is elegant, neat, etc., etc., but it is death
to performance if left to linger in an inner loop. How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported, top-level functions is good software-
engineering practice, anyway. (Tip: using —~fwarn-missing-signatures can help enforce good signature-
practice).

The automatic specialisation of overloaded functions (with —0O) should take care of overloaded local and/or unex-
ported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program. See Section 7.19.9 and Sec-
tion 7.19.10.

“But how do I know where overloading is creeping in?”’: A low-tech way: grep (search) your interface files for over-
loaded type signatures. You can view interface files using the ——show—1iface option (see Section 4.7.7).

% ghc —--show-iface Foo.hi | egrep ""“[a-z].*x::.x=>'
Strict functions are your dear friends: and, among other things, lazy pattern-matching is your enemy.

(If you don’t know what a “strict function” is, please consult a functional-programming textbook. A sentence or two of
explanation here probably would not do much good.)

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of lets to get stricter code (a good thing):

f (Wibble x y) # beautiful but slow
= let
(al, bl, cl) unpackFoo x
(a2, b2, c2) = unpackFoo y
in ...

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 140/316

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (al, bl, cl) —>
case (unpackFoo y) of { (a2, b2, c2) —>

P}

GHC loves single-constructor data-types: It’s all the better if a function is strict in a single-constructor type (a type with only
one data-constructor; for example, tuples are single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a single field, use a newt ype declaration
instead of a data declaration. The newt ype will be optimised away in most cases.

“How do I find out a function’s strictness?”” Don’t guess—Iook it up.

Look for your function in the interface file, then for the third field in the pragma; it should say St rictness:<string>.
The <string> gives the strictness of the function’s arguments: see the GHC Commentary for a description of the
strictness notation.

For an “unpackable” U (...) argument, the info inside tells the strictness of its components. So, if the argument is a
pair, and it says U (AU (LSS)), that means “the first component of the pair isn’t used; the second component is itself
unpackable, with three components (lazy in the first, strict in the second \& third).”

If the function isn’t exported, just compile with the extra flag ~ddump-simpl; next to the signature for any binder, it will
print the self-same pragmatic information as would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain functions that are used a lot can have
a dramatic effect. See Section 7.19.6.1.

Explicit export list: If you do not have an explicit export list in a module, GHC must assume that everything in that module
will be exported. This has various pessimising effects. For example, if a bit of code is actually unused (perhaps because
of unfolding effects), GHC will not be able to throw it away, because it is exported and some other module may be relying
on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your compilation with ~ddump-simpl
(don’t forget the —0).

If profiling has pointed the finger at particular functions, look at their Core code. 1et s are bad, cases are good, dictionar-
ies (d.<Class>.<Unique>) [or anything overloading-ish] are bad, nested lambdas are bad, explicit data constructors
are good, primitive operations (e.g., eqInt#) are good,. ..

2

Use strictness annotations: Putting a strictness annotation (’!”) on a constructor field helps in two ways: it adds strictness to
the program, which gives the strictness analyser more to work with, and it might help to reduce space leaks.

It can also help in a third way: when used with —funbox-strict-fields (see Section 4.10.2), a strict field can be
unpacked or unboxed in the constructor, and one or more levels of indirection may be removed. Unpacking only happens
for single-constructor datatypes (Int is a good candidate, for example).

Using —funbox-strict—-fields is only really a good idea in conjunction with —O, because otherwise the extra
packing and unpacking won’t be optimised away. In fact, it is possible that -funbox—strict-fields may worsen
performance even with —O, but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you want to get right down to the “raw
bits.” Please see Section 7.2.1 for some information about using unboxed types.
Before resorting to explicit unboxed types, try using strict constructor fields and —funbox-strict-fields first (see
above). That way, your code stays portable.

Use foreign import (a GHC extension) to plug into fast libraries: This may take real work, but... There exist piles of
massively-tuned library code, and the best thing is not to compete with it, but link with it.

Chapter 8 describes the foreign function interface.

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 141/316

Don’t use Floats: If you're using Complex, definitely use Complex Double rather than Complex Float (the former
is specialised heavily, but the latter isn’t).

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know What You Are Doing. Use
Doubles. There’s rarely a speed disadvantage—modern machines will use the same floating-point unit for both. With
Doubles, you are much less likely to hang yourself with numerical errors.

One time when F1loat might be a good idea is if you have a /ot of them, say a giant array of Floats. They take up half
the space in the heap compared to Doubles. However, this isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic arithmetic element types including
Int and Char: see the Data.Array.Unboxed library for details. These arrays are likely to be much faster than using
standard Haskell 98 arrays from the Data.Array library.

Use a bigger heap! If your program’s GC stats (—S RTS option) indicate that it’s doing lots of garbage-collection (say, more than
20% of execution time), more memory might help—with the -M<size> or ~A<size> RTS options (see Section 4.17.3).

6.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a —funfolding-use-threshold0 option
for the extreme case. (“Only unfoldings with zero cost should proceed.”) Warning: except in certain specialised cases (like
Happy parsers) this is likely to actually increase the size of your program, because unfolding generally enables extra simplifying
optimisations to be performed.

Avoid Read.

Use st rip on your executables.

6.4 Thriftier: producing a program that gobbles less heap space

“I think I have a space leak...” Re-run your program with +RTS -3, and remove all doubt! (You’ll see the heap usage get
bigger and bigger...) [Hmmm. .. this might be even easier with the —~G1 RTS option; so... .Ja.out +RTS -S -G1...]

Once again, the profiling facilities (Chapter 5) are the basic tool for demystifying the space behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous section. Strict functions get right down
to business, rather than filling up the heap with closures (the system’s notes to itself about how to evaluate something, should it
eventually be required).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 142 /316

Chapter 7

GHC Language Features

As with all known Haskell systems, GHC implements some extensions to the language. They can all be enabled or disabled by
commandline flags or language pragmas. By default GHC understands the most recent Haskell version it supports, plus a handful
of extensions.

Some of the Glasgow extensions serve to give you access to the underlying facilities with which we implement Haskell. Thus,
you can get at the Raw Iron, if you are willing to write some non-portable code at a more primitive level. You need not be “stuck”
on performance because of the implementation costs of Haskell’s “high-level” features—you can always code “under” them. In
an extreme case, you can write all your time-critical code in C, and then just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., sloshing MutableByteArray#s around your program), you
may wish to check if there are libraries that provide a “Haskellised veneer” over the features you want. The separate libraries
documentation describes all the libraries that come with GHC.

7.1 Language options

The language option flags control what variation of the language are permitted.

Language options can be controlled in two ways:

» Every language option can switched on by a command-line flag "-X..." (e.g. ~-XTemplateHaskell), and switched off
by the flag "~XNo. .."; (e.g. ~-XNoTemplateHaskell).

» Language options recognised by Cabal can also be enabled using the LANGUAGE pragma, thus { -#LANGUAGE Template
Haskell #-} (see Section 7.19.1).

The flag —fglasgow-exts is equivalent to enabling the following extensions: —-XForeignFunctionInterface, -
XUnliftedFFITypes, - XImplicitParams, -XScopedTypeVariables, ~-XUnboxedTuples, - XTypeSynonym
Instances, -XStandaloneDeriving, —-XDeriveDataTypeable, -XDeriveFunctor, -XDeriveFoldable, -
XDeriveTraversable, -XDeriveGeneric, -XFlexibleContexts, -XFlexibleInstances, -XConstraine
dClassMethods, -XMultiParamTypeClasses, - XFunctionalDependencies, -XMagicHash, -XExistenti
alQuantification, -XUnicodeSyntax, -XPostfixOperators, -XPatternGuards, -XLiberalTypeSynon
yms, —XRankNTypes, ~-XTypeOperators, - XExplicitNamespaces, -XRecursiveDo, -XParallellListComp,
-XEmptyDataDecls, -XKindSignatures, -XGeneralizedNewtypeDeriving. Enabling these options is the only
effect of ~-fglasgow—exts. We are trying to move away from this portmanteau flag, and towards enabling features individu-
ally.

7.2 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; "primitive" in the sense that they cannot be defined in Haskell itself.
While you really can use this stuff to write fast code, we generally find it a lot less painful, and more satisfying in the long run,

../libraries/index.html
../libraries/index.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 143 /316

to use higher-level language features and libraries. With any luck, the code you write will be optimised to the efficient unboxed
version in any case. And if it isn’t, we’d like to know about it.

All these primitive data types and operations are exported by the library GHC . Prim, for which there is detailed online documen-
tation. (This documentation is generated from the file compiler/prelude/primops.txt.pp.)

If you want to mention any of the primitive data types or operations in your program, you must first import GHC . Prim to bring
them into scope. Many of them have names ending in "#", and to mention such names you need the —~XMagicHash extension
(Section 7.3.2).

The primops make extensive use of unboxed types and unboxed tuples, which we briefly summarise here.

7.2.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a pointer to a heap object. The represen-
tation of a Haskell Int, for example, is a two-word heap object. An unboxed type, however, is represented by the value itself,
no pointers or heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int), Double# (double), Addr# (void
*), etc. The primitive operations (PrimOps) on these types are what you might expect; e.g., (+#) is addition on Int#s, and is
the machine-addition that we all know and love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and compiler. Primitive types
are always unlifted; that is, a value of a primitive type cannot be bottom. We use the convention (but it is only a convention) that
primitive types, values, and operations have a # suffix (see Section 7.3.2). For some primitive types we have special syntax for
literals, also described in the same section.

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#. But this is not necessarily
the case: a primitive value might be represented by a pointer to a heap-allocated object. Examples include Array#, the type of
primitive arrays. A primitive array is heap-allocated because it is too big a value to fit in a register, and would be too expensive
to copy around; in a sense, it is accidental that it is represented by a pointer. If a pointer represents a primitive value, then it
really does point to that value: no unevaluated thunks, no indirections. .. nothing can be at the other end of the pointer than the
primitive value. A numerically-intensive program using unboxed types can go a lof faster than its “standard” counterpart—we
saw a threefold speedup on one example.

There are some restrictions on the use of primitive types:

* The main restriction is that you can’t pass a primitive value to a polymorphic function or store one in a polymorphic data type.
This rules out things like [Int#] (i.e. lists of primitive integers). The reason for this restriction is that polymorphic arguments
and constructor fields are assumed to be pointers: if an unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks. Or a seq operation on the polymorphic component may attempt to
dereference the pointer, with disastrous results. Even worse, the unboxed value might be larger than a pointer (Double# for
instance).

* You cannot define a newtype whose representation type (the argument type of the data constructor) is an unboxed type. Thus,
this is illegal:

newtype A = MkA Int#

* You cannot bind a variable with an unboxed type in a top-/evel binding.
* You cannot bind a variable with an unboxed type in a recursive binding.

* You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding, but you must make any such pattern-match
strict. For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

../libraries/ghc-prim-0.3.1.0/GHC-Prim.html
../libraries/ghc-prim-0.3.1.0/GHC-Prim.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 144 /316

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

7.2.2 Unboxed tuples

Unboxed tuples aren’t really exported by GHC . Ext s; they are a syntactic extension enabled by the language flag —~-XUnboxed
Tuples. An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1. . e_n are expressions of any type (primitive or non-primitive). The type of an unboxed tuple looks the same.

Note that when unboxed tuples are enabled, (# is a single lexeme, so for example when using operators like # and #- you need
to write (#) and (#-) ratherthan (#) and (#-).

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap allocation normally associated
with using fully-fledged tuples. When an unboxed tuple is returned, the components are put directly into registers or on the
stack; the unboxed tuple itself does not have a composite representation. Many of the primitive operations listed in primops.
txt . pp return unboxed tuples. In particular, the TO and ST monads use unboxed tuples to avoid unnecessary allocation during
sequences of operations.

There are some restrictions on the use of unboxed tuples:

* Values of unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they may not be stored in
polymorphic data structures or passed to polymorphic functions.

* The typical use of unboxed tuples is simply to return multiple values, binding those multiple results with a case expression,
thus:

= (# x+1, y-1 #)

x
X case f x x of { (# a, b #) —> a + b }

=

£
g
You can have an unboxed tuple in a pattern binding, thus

f x = let (# p,g #) = h x in ..body..

If the types of p and g are not unboxed, the resulting binding is lazy like any other Haskell pattern binding. The above example
desugars like this:

f x = let t = case h x of { (# p,q #) —> (p,q) }

p = fst t
g = snd t
in ..body..

Indeed, the bindings can even be recursive.

7.3 Syntactic extensions

7.3.1 Unicode syntax

The language extension -XUnicodeSyntax enables Unicode characters to be used to stand for certain ASCII character se-
quences. The following alternatives are provided:

ASCII Unicode alternative

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 145/316

ASCII Unicode alternative
=> =

forall N

-> —

<- —

< —

>- —

-<<

>>-

* *

7.3.2 The magic hash
The language extension —XMagicHash allows "#" as a postfix modifier to identifiers. Thus, "x#" is a valid variable, and "T#"
is a valid type constructor or data constructor.

The hash sign does not change semantics at all. We tend to use variable names ending in "#" for unboxed values or types (e.g.
Int#), but there is no requirement to do so; they are just plain ordinary variables. Nor does the —XMagicHash extension bring
anything into scope. For example, to bring Int # into scope you must import GHC . Prim (see Section 7.2); the —~XMagicHash
extension then allows you to refer to the Int# that is now in scope. Note that with this option, the meaning of x#y =0 is
changed: it defines a function x# taking a single argument y; to define the operator #, put a space: x #y =0.

The —XMagicHash also enables some new forms of literals (see Section 7.2.1):

* ' x' # has type Char#

e "foo"# has type Addr#

* 34 has type Int#. In general, any Haskell integer lexeme followed by a # is an Int# literal, e.g. —0x3A# as well as 32 4.
e 344 has type Word#. In general, any non-negative Haskell integer lexeme followed by ## is a Word#.

e 3.24# has type Float#.

e 3.2## has type Double#

7.3.3 Negative literals
The literal —123 is, according to Haskell98 and Haskell 2010, desugared as negate (fromInteger 123). The language
extension —XNegativeLiterals means that it is instead desugared as fromInteger (-123).

This can make a difference when the positive and negative range of a numeric data type don’t match up. For example, in 8-bit
arithmetic -128 is representable, but +128 is not. So negate (fromInteger 128) will elicit an unexpected integer-literal-
overflow message.

7.3.4 Fractional looking integer literals
Haskell 2010 and Haskell 98 define floating literals with the syntax 1.2e6. These literals have the type Fractional a =>
a.

The language extension —XNumDecimals allows you to also use the floating literal syntax for instances of Integral, and
have values like (1.2e6 ::Num a => a)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 146/316

7.3.5 Hierarchical Modules

GHC supports a small extension to the syntax of module names: a module name is allowed to contain a dot *.’. This is also
known as the “hierarchical module namespace” extension, because it extends the normally flat Haskell module namespace into a
more flexible hierarchy of modules.

This extension has very little impact on the language itself; modules names are always fully qualified, so you can just think of
the fully qualified module name as “the module name”. In particular, this means that the full module name must be given after
the module keyword at the beginning of the module; for example, the module A . B. C must begin

module A.B.C

It is a common strategy to use the as keyword to save some typing when using qualified names with hierarchical modules. For
example:

import qualified Control.Monad.ST.Strict as ST

For details on how GHC searches for source and interface files in the presence of hierarchical modules, see Section 4.7.3.

GHC comes with a large collection of libraries arranged hierarchically; see the accompanying library documentation. More
libraries to install are available from HackageDB.

7.3.6 Pattern guards

The discussion that follows is an abbreviated version of Simon Peyton Jones’s original proposal. (Note that the proposal was
written before pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returns Not hing if the supplied key is not in the domain of the mapping, and (Just wv) otherwise, where v is the
value that the key maps to. Now consider the following definition:

clunky env varl var2 | okl && ok2 = vall + val2

| otherwise = varl + var2
where
ml = lookup env varl
m2 = lookup env var2
okl = maybeToBool ml
ok2 = maybeToBool m2
vall = expectJust ml
val2 = expectJust m2

The auxiliary functions are

maybeToBool :: Maybe a —-> Bool

maybeToBool (Just x) = True

maybeToBool Nothing = False

expectJust :: Maybe a -> a

expectJust (Just x) = x

expectJust Nothing = error "Unexpected Nothing"

What is clunky doing? The guard okl && ok2 checks that both lookups succeed, using maybeToBool to convert the
Maybe types to booleans. The (lazily evaluated) expectJust calls extract the values from the results of the lookups, and
binds the returned values to vall and val?2 respectively. If either lookup fails, then clunky takes the otherwise case and
returns the sum of its arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the desired effect. Arguably, a
more direct way to write clunky would be to use case expressions:

../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://research.microsoft.com/~simonpj/Haskell/guards.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 147 /316

clunky env varl var2 = case lookup env varl of
Nothing —-> fail
Just vall —-> case lookup env var2 of
Nothing -> fail
Just val2 -> vall + val2
where
fail = varl + var2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded equations as case expres-
sions; that is precisely what the compiler does when compiling equations! The reason that Haskell provides guarded equations
is because they allow us to write down the cases we want to consider, one at a time, independently of each other. This structure
is hidden in the case version. Two of the right-hand sides are really the same (fai1), and the whole expression tends to become
more and more indented.

Here is how I would write clunky:

clunky env varl var2
| Just vall <- lookup env varl
, Just val2 <- lookup env var2
= vall + val2

...other equations for clunky...

The semantics should be clear enough. The qualifiers are matched in order. For a <- qualifier, which I call a pattern guard, the
right hand side is evaluated and matched against the pattern on the left. If the match fails then the whole guard fails and the next
equation is tried. If it succeeds, then the appropriate binding takes place, and the next qualifier is matched, in the augmented
environment. Unlike list comprehensions, however, the type of the expression to the right of the <- is the same as the type of
the pattern to its left. The bindings introduced by pattern guards scope over all the remaining guard qualifiers, and over the right
hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern guards. For example:

f x| [y] <- x
;Y >3
, Just z <- h vy

Haskell’s current guards therefore emerge as a special case, in which the qualifier list has just one element, a boolean expression.

7.3.7 View patterns

View patterns are enabled by the flag —XViewPatterns. More information and examples of view patterns can be found on
the Wiki page.

View patterns are somewhat like pattern guards that can be nested inside of other patterns. They are a convenient way of pattern-
matching against values of abstract types. For example, in a programming language implementation, we might represent the
syntax of the types of the language as follows:

type Typ

data TypView = Unit
| Arrow Typ Typ

view :: Typ —-> TypView

—— additional operations for constructing Typ’s

The representation of Typ is held abstract, permitting implementations to use a fancy representation (e.g., hash-consing to manage
sharing). Without view patterns, using this signature a little inconvenient:

http://ghc.haskell.org/trac/ghc/wiki/ViewPatterns

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 148 /316

size :: Typ —> Integer
size t = case view t of
Unit -> 1

Arrow tl t2 -> size tl + size t2

It is necessary to iterate the case, rather than using an equational function definition. And the situation is even worse when the
matching against t is buried deep inside another pattern.

View patterns permit calling the view function inside the pattern and matching against the result:

size (view —-> Unit) = 1
size (view —-> Arrow tl t2) = size tl + size t2

That is, we add a new form of pattern, written expression —> pattern that means "apply the expression to whatever we’re
trying to match against, and then match the result of that application against the pattern”. The expression can be any Haskell
expression of function type, and view patterns can be used wherever patterns are used.

The semantics of a pattern (exp —> pat) are as follows:

* Scoping: The variables bound by the view pattern are the variables bound by pat.

Any variables in exp are bound occurrences, but variables bound "to the left" in a pattern are in scope. This feature permits,
for example, one argument to a function to be used in the view of another argument. For example, the function clunky from
Section 7.3.6 can be written using view patterns as follows:

clunky env (lookup env —-> Just wvall) (lookup env —-> Just val2) = vall + val2

...other equations for clunky...

More precisely, the scoping rules are:

— In a single pattern, variables bound by patterns to the left of a view pattern expression are in scope. For example:

example :: Maybe ((String —-> Integer,Integer), String) -> Bool
example Just ((f,_), £ —-> 4) = True

Additionally, in function definitions, variables bound by matching earlier curried arguments may be used in view pattern
expressions in later arguments:

example :: (String -> Integer) -> String -> Bool
example £ (f -> 4) = True

That is, the scoping is the same as it would be if the curried arguments were collected into a tuple.

— In mutually recursive bindings, such as let, where, or the top level, view patterns in one declaration may not mention
variables bound by other declarations. That is, each declaration must be self-contained. For example, the following program
is not allowed:

let {(x —> y) = el ;
(y —> x) e2 } in x

(For some amplification on this design choice see Trac #4061.)
» Typing: If exp has type T1 —> T2 and pat matches a T2, then the whole view pattern matches a T1.

* Matching: To the equations in Section 3.17.3 of the Haskell 98 Report, add the following:

case v of { (e > p) —> el ; _ —> e2 }

case (e v) of { p > el ; _ —> e2 }

That is, to match a variable v against a pattern (exp —> pat), evaluate (exp v) and match the result against pat.

http://ghc.haskell.org/trac/ghc/ticket/4061
http://www.haskell.org/onlinereport/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 149/316

« Efficiency: When the same view function is applied in multiple branches of a function definition or a case expression (e.g., in
size above), GHC makes an attempt to collect these applications into a single nested case expression, so that the view function
is only applied once. Pattern compilation in GHC follows the matrix algorithm described in Chapter 4 of The Implementation
of Functional Programming Languages. When the top rows of the first column of a matrix are all view patterns with the "same"
expression, these patterns are transformed into a single nested case. This includes, for example, adjacent view patterns that
line up in a tuple, as in
f ((view -> A, pl), p2) = el
f ((view -> B, p3), p4) = e2

The current notion of when two view pattern expressions are "the same" is very restricted: it is not even full syntactic equality.
However, it does include variables, literals, applications, and tuples; e.g., two instances of view ("hi", "there") will
be collected. However, the current implementation does not compare up to alpha-equivalence, so two instances of (x, view
x —> vy) will not be coalesced.

7.3.8 Pattern synonyms
Pattern synonyms are enabled by the flag ~-XPatternSynonyms. More information and examples of view patterns can be
found on the Wiki page.

Pattern synonyms enable giving names to parametrized pattern schemes. They can also be thought of as abstract constructors
that don’t have a bearing on data representation. For example, in a programming language implementation, we might represent
types of the language as follows:

data Type = App String [Type]

Here are some examples of using said representation. Consider a few types of the Type universe encoded like this:

App "->" [tl, t2] == ¢l => €2
App "Int" [] -— Int
App "Maybe" [App "Int" []] —-- Maybe Int

This representation is very generic in that no types are given special treatment. However, some functions might need to handle
some known types specially, for example the following two functions collect all argument types of (nested) arrow types, and
recognize the Int type, respectively:

collectArgs :: Type —> [Type]

collectArgs (App "->" [tl, t2]) = tl : collectArgs t2
collectArgs _ = []

isInt :: Type —> Bool

isInt (App "Int" []) = True

isInt _ = False

Matching on App directly is both hard to read and error prone to write. And the situation is even worse when the matching is
nested:

isIntEndo :: Type —> Bool
isIntEndo (App "->" [App "Int" [], App "Int" []]) = True
isIntEndo _ = False

Pattern synonyms permit abstracting from the representation to expose matchers that behave in a constructor-like manner with
respect to pattern matching. We can create pattern synonyms for the known types we care about, without committing the
representation to them (note that these don’t have to be defined in the same module as the Type type):

pattern Arrow tl t2 = App "->" [tl, t2]
pattern Int = App "Int" [1
pattern Maybe t App "Maybe" [t]

Which enables us to rewrite our functions in a much cleaner style:

http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/
http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/
http://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 150/316

collectArgs :: Type —> [Type]

collectArgs (Arrow tl t2) = tl : collectArgs t2
collectArgs _ = []

isInt :: Type -> Bool

isInt Int = True

isInt __ = False

isIntEndo :: Type —> Bool

isIntEndo (Arrow Int Int) = True

isIntEndo _ = False

Note that in this example, the pattern synonyms Int and Arrow can also be used as expressions (they are bidirectional). This
is not necessarily the case: unidirectional pattern synonyms can also be declared with the following syntax:

pattern Head x <- x:xs

In this case, Head x cannot be used in expressions, only patterns, since it wouldn’t specify a value for the xs on the right-hand
side.

The semantics of a unidirectional pattern synonym declaration and usage are as follows:

e Syntax: A pattern synonym declaration can be either unidirectional or bidirectional. The syntax for unidirectional pattern
synonyms is:

pattern Name args <- pat

and the syntax for bidirectional pattern synonyms is:

pattern Name args = pat

Pattern synonym declarations can only occur in the top level of a module. In particular, they are not allowed as local definitions.
Currently, they also don’t work in GHCi, but that is a technical restriction that will be lifted in later versions.

The name of the pattern synonym itself is in the same namespace as proper data constructors. Either prefix or infix syntax can
be used. In export/import specifications, you have to prefix pattern names with the pattern keyword, e.g.:

module Example (pattern Single) where
pattern Single x = [x]

* Scoping: The variables in the left-hand side of the definition are bound by the pattern on the right-hand side. For bidirectional
pattern synonyms, all the variables of the right-hand side must also occur on the left-hand side; also, wildcard patterns and
view patterns are not allowed. For unidirectional pattern synonyms, there is no restriction on the right-hand side pattern.

Pattern synonyms cannot be defined recursively.
* Typing: Given a pattern synonym definition of the form

pattern P varl var2 ... varN <- pat

it is assigned a pattern type of the form

pattern CProv => P tl t2 ... tN :: CReq => t

where cProv and CReq are type contexts, and t 1, t2, ..., tN and t are types.

A pattern synonym of this type can be used in a pattern if the instatiated (monomorphic) type satisfies the constraints of CReg.
In this case, it extends the context available in the right-hand side of the match with cProv, just like how an existentially-typed
data constructor can extend the context.

For example, in the following program:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 151/316

{—# LANGUAGE PatternSynonyms, GADTs #-}
module ShouldCompile where

data T a where
MKT :: (Show b) => a -> b -> T a

pattern ExNumPat x = MkT 42 x

the pattern type of ExNumPat is

pattern (Show b) => ExNumPat b :: (Num a, Eq a) => T a

and so can be used in a function definition like the following:
f :: (Num t, Eg t) => T t -> String
f (ExNumPat x) = show x
For bidirectional pattern synonyms, uses as expressions have the type

(CProv, CReq) => tl -> t2 -> ... —> tN -> t

So in the previous example, ExNumPat, when used in an expression, has type

ExNumPat :: (Show b, Num a, Egq a) => b -> T t

* Matching: A pattern synonym occurrence in a pattern is evaluated by first matching against the pattern synonym itself, and
then on the argument patterns. For example, in the following program, £ and £’ are equivalent:

pattern Pair x y <- [x, VY]

f (Pair True True) = True

f _ = False

f’ [x, y] | True <- x, True <- y = True

£fr _ = False

Note that the strictness of f differs from that of g defined below:

g [True, True] = True
g _ = False

*Main> f (False:undefined)

**xx Exception: Prelude.undefined
*Main> g (False:undefined)

False

7.3.9 n+k patterns

n+k pattern support is disabled by default. To enable it, you can use the ~-XNP1lusKPatterns flag.

7.3.10 Traditional record syntax

Traditional record syntax, such as C {f =x}, is enabled by default. To disable it, you can use the ~-XNoTraditionalReco
rdSyntax flag.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 152 /316

7.3.11 The recursive do-notation

The do-notation of Haskell 98 does not allow recursive bindings, that is, the variables bound in a do-expression are visible only
in the textually following code block. Compare this to a let-expression, where bound variables are visible in the entire binding

group.

It turns out that such recursive bindings do indeed make sense for a variety of monads, but not all. In particular, recursion in this
sense requires a fixed-point operator for the underlying monad, captured by the mf i x method of the MonadFix class, defined
in Control.Monad.Fix as follows:

class Monad m => MonadFix m where
mfix :: (a -—> m a) -> m a

Haskell’s Maybe, [] (list), ST (both strict and lazy versions), I0, and many other monads have MonadFix instances. On the
negative side, the continuation monad, with the signature (a —> r) —> r, does not.

For monads that do belong to the MonadFix class, GHC provides an extended version of the do-notation that allows recursive
bindings. The ~XRecursiveDo (language pragma: RecursiveDo) provides the necessary syntactic support, introducing
the keywords mdo and rec for higher and lower levels of the notation respectively. Unlike bindings in a do expression, those
introduced by mdo and rec are recursively defined, much like in an ordinary let-expression. Due to the new keyword mdo, we
also call this notation the mdo-notation.

Here is a simple (albeit contrived) example:

{—# LANGUAGE RecursiveDo #-}
JjustOnes = mdo { xs <- Just (l:xs)
; return (map negate xs) }

or equivalently

{—# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (l:xs) }
; return (map negate xs) }

As you can guess justOnes will evaluate to Just [-1,-1,-1,....

GHC'’s implementation the mdo-notation closely follows the original translation as described in the paper A recursive do for
Haskell, which in turn is based on the work Value Recursion in Monadic Computations. Furthermore, GHC extends the syntax
described in the former paper with a lower level syntax flagged by the rec keyword, as we describe next.

7.3.11.1 Recursive binding groups

The flag ~-XRecursiveDo also introduces a new keyword rec, which wraps a mutually-recursive group of monadic statements
inside a do expression, producing a single statement. Similar to a let statement inside a do, variables bound in the rec are
visible throughout the rec group, and below it. For example, compare

do { a <- getChar do { a <- getChar
; let { rl = £ a r2 ; rec { rl <- f a r2
8 ; r2 = g rl } 8 ; r2 <- g rl }
; return (rl ++ r2) } ; return (rl ++ r2) }

In both cases, r1 and r2 are available both throughout the 1et or rec block, and in the statements that follow it. The difference
is that 1et is non-monadic, while rec is monadic. (In Haskell 1et is really letrec, of course.)

The semantics of rec is fairly straightforward. Whenever GHC finds a rec group, it will compute its set of bound variables,
and will introduce an appropriate call to the underlying monadic value-recursion operator mf i x, belonging to the MonadFix
class. Here is an example:

rec { b <- f a c ===> (b,c) <- mfix (\ ~(b,c) -> do { b <- f a ¢
; c <- fba} ; ¢ <- fba
; return (b,c) })

https://sites.google.com/site/leventerkok/recdo.pdf
https://sites.google.com/site/leventerkok/recdo.pdf
http://sites.google.com/site/leventerkok/erkok-thesis.pdf

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 153 /316

As usual, the meta-variables b, c etc., can be arbitrary patterns. In general, the statement rec ss is desugared to the statement

vs <— mfix (\ ~vs —-> do { ss; return vs })

where vs is a tuple of the variables bound by ss.

Note in particular that the translation for a rec block only involves wrapping a call to mfix: it performs no other analysis on
the bindings. The latter is the task for the mdo notation, which is described next.

7.3.11.2 The mdo notation

A rec-block tells the compiler where precisely the recursive knot should be tied. It turns out that the placement of the recursive
knots can be rather delicate: in particular, we would like the knots to be wrapped around as minimal groups as possible. This
process is known as segmentation, and is described in detail in Secton 3.2 of A recursive do for Haskell. Segmentation improves
polymorphism and reduces the size of the recursive knot. Most importantly, it avoids unnecessary interference caused by a
fundamental issue with the so-called right-shrinking axiom for monadic recursion. In brief, most monads of interest (10, strict
state, etc.) do not have recursion operators that satisfy this axiom, and thus not performing segmentation can cause unnecessary
interference, changing the termination behavior of the resulting translation. (Details can be found in Sections 3.1 and 7.2.2 of
Value Recursion in Monadic Computations.)

The mdo notation removes the burden of placing explicit rec blocks in the code. Unlike an ordinary do expression, in which
variables bound by statements are only in scope for later statements, variables bound in an mdo expression are in scope for all
statements of the expression. The compiler then automatically identifies minimal mutually recursively dependent segments of
statements, treating them as if the user had wrapped a rec qualifier around them.

The definition is syntactic:

* A generator g depends on a textually following generator g, if

— g’ defines a variable that is used by g, or
— g textually appears between g and g”, where g depends on g”.
* A segment of a given mdo-expression is a minimal sequence of generators such that no generator of the sequence depends on

an outside generator. As a special case, although it is not a generator, the final expression in an mdo-expression is considered
to form a segment by itself.

Segments in this sense are related to strongly-connected components analysis, with the exception that bindings in a segment
cannot be reordered and must be contiguous.

Here is an example mdo-expression, and its translation to rec blocks:

mdo { a <- getChar ===> do { a <- getChar
; b <- f ac ; rec { b <- f ac
; ¢ <= f b a ; ; ¢ <= f b a }
; z <-— h ab ; z <- h ab
; d <- g de ; rec { d <- g d e
; e <-gaz 8 ; e <-gaz}
; putChar c } ; putChar c }

Note that a given mdo expression can cause the creation of multiple rec blocks. If there are no recursive dependencies, mdo will
introduce no rec blocks. In this latter case an mdo expression is precisely the same as a do expression, as one would expect.

In summary, given an mdo expression, GHC first performs segmentation, introducing rec blocks to wrap over minimal recursive
groups. Then, each resulting rec is desugared, using a call to Control.Monad.Fix.mfix as described in the previous
section. The original mdo-expression typechecks exactly when the desugared version would do so.

Here are some other important points in using the recursive-do notation:

* It is enabled with the flag ~-XRecursiveDo, or the LANGUAGE RecursiveDo pragma. (The same flag enables both
mdo-notation, and the use of rec blocks inside do expressions.)

https://sites.google.com/site/leventerkok/recdo.pdf
http://sites.google.com/site/leventerkok/erkok-thesis.pdf

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 154 /316

* rec blocks can also be used inside mdo-expressions, which will be treated as a single statement. However, it is good style to
either use mdo or rec blocks in a single expression.

¢ If recursive bindings are required for a monad, then that monad must be declared an instance of the MonadF1ix class.

* The following instances of MonadF i x are automatically provided: List, Maybe, 1O. Furthermore, the Control.Monad.ST
and Control.Monad. ST.Lazy modules provide the instances of the MonadFix class for Haskell’s internal state monad
(strict and lazy, respectively).

e Like let and where bindings, name shadowing is not allowed within an mdo-expression or a rec-block; that is, all the
names bound in a single rec must be distinct. (GHC will complain if this is not the case.)

7.3.12 Parallel List Comprehensions

Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can be thought of as a nice
syntax for writing maps and filters. Parallel comprehensions extend this to include the zipWith family.

A parallel list comprehension has multiple independent branches of qualifier lists, each separated by a *I” symbol. For example,
the following zips together two lists:

[(x, v) | x <= xs | y <= ys]

The behaviour of parallel list comprehensions follows that of zip, in that the resulting list will have the same length as the shortest
branch.

We can define parallel list comprehensions by translation to regular comprehensions. Here’s the basic idea:
Given a parallel comprehension of the form:

[e | pl <= ell, p2 <- el2,
| gl <- e2l1, g2 <- e22,

This will be translated to:

[e | ((pl,p2), (9l,92), ...) <= zipN [(pl,p2) | pl <- ell, p2 <- el2, ...]
[(gl,g2) | gl <= e21, g2 <- e22, ...]

where “zipN’ is the appropriate zip for the given number of branches.

7.3.13 Generalised (SQL-Like) List Comprehensions

Generalised list comprehensions are a further enhancement to the list comprehension syntactic sugar to allow operations such
as sorting and grouping which are familiar from SQL. They are fully described in the paper Comprehensive comprehensions:
comprehensions with "order by" and "group by", except that the syntax we use differs slightly from the paper.

The extension is enabled with the flag ~-XTransformListComp.
Here is an example:

employees = [("Simon", "MS", 80)
("Erik", "MS", 100)

, ("Phil", "Ed", 40)

, ("Gordon", "Ed", 45)

, ("Paul", "Yale", 60)]

output = [(the dept, sum salary)

| (name, dept, salary) <- employees

, then group by dept using groupWith

, then sortWith by (sum salary)

, then take 5]

http://research.microsoft.com/~simonpj/papers/list-comp
http://research.microsoft.com/~simonpj/papers/list-comp

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 155/316

In this example, the list output would take on the value:

[("Yale", 60), ("Ed", 85), ("MS", 180)]

There are three new keywords: group, by, and using. (The functions sortWith and groupWith are not keywords; they
are ordinary functions that are exported by GHC . Exts.)

There are five new forms of comprehension qualifier, all introduced by the (existing) keyword then:

then f

This statement requires that £ have the type forall a.[a] —-> [a]. Youcan see an example of its use in the motivating
example, as this form is used to apply take 5.

then f by e

This form is similar to the previous one, but allows you to create a function which will be passed as the first argument to f. As
a consequence f must have the type forall a. (a -> t) -> [a] —> [a]. Asyou can see from the type, this function
lets f "project out" some information from the elements of the list it is transforming.

An example is shown in the opening example, where sortWith is supplied with a function that lets it find out the sum
salary for any item in the list comprehension it transforms.

then group by e using f

This is the most general of the grouping-type statements. In this form, f is required to have type forall a.(a -> t) -
> [a]l -> [[al]. Aswiththe then f by e case above, the first argument is a function supplied to f by the compiler
which lets it compute e on every element of the list being transformed. However, unlike the non-grouping case, f additionally
partitions the list into a number of sublists: this means that at every point after this statement, binders occurring before it in the
comprehension refer to lists of possible values, not single values. To help understand this, let’s look at an example:

—— This works similarly to groupWith in GHC.Exts, but doesn’t sort its input first

groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y —> f x == f y)
output = [(the x, y)

| = <= ([1oco3] +F [L1o.21)
r Yy <= [4..6]
, then group by x using groupRuns]

This results in the variable out put taking on the value below:

(1, (4, 5, 61), (2, [4, 5, 6]), (3, [4, 5, 61), (1, [4, 5, 61), (2, [4, 5, 6])]

Note that we have used the the function to change the type of x from a list to its original numeric type. The variable y, in
contrast, is left unchanged from the list form introduced by the grouping.

then group using £

With this form of the group statement, f is required to simply have the type forall a.[a] -> [[a]], which will be used
to group up the comprehension so far directly. An example of this form is as follows:

output = [x

| v <= [1..5]

, X <— "hello"

, then group using inits]

This will yield a list containing every prefix of the word "hello" written out 5 times:

["","h","he", "hel", "hell", "hello", "helloh", "hellohe", "hellohel", "hellohell", "hellohello"," ¢
hellohelloh", ...]

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 156 /316

7.3.14 Monad comprehensions
Monad comprehensions generalise the list comprehension notation, including parallel comprehensions (Section 7.3.12) and trans-
form comprehensions (Section 7.3.13) to work for any monad.

Monad comprehensions support:

* Bindings:

[x + v | x <= Just 1, y <= Just 2]

Bindings are translated with the (>>=) and return functions to the usual do-notation:

do x <- Just 1
y <— Just 2
return (x+y)

¢ Guards:

[x | x <= [1..10], x <= 5]

Guards are translated with the guard function, which requires a MonadP lus instance:

do x <— [1..10]
guard (x <= 5)
return x

¢ Transform statements (as with —-XTransformListComp):

[x+ty | x <= [1..10], y <= [1l..x], then take 2]

This translates to:

do (x,y) <- take 2 (do x <= [1..10]
y <= [1l..x]
return (x,V))
return (x+y)

* Group statements (as with —XTransformListComp):

[x | x <= [1,1,2,2,3], then group by x using GHC.Exts.groupWith]
[x | x <= [1,1,2,2,3], then group using myGroup]

* Parallel statements (as with —-XParallelListComp):

[(xty) | x <= [1..10]
| v <= [11..20]
]

Parallel statements are translated using the mzip function, which requires a MonadZip instance defined in Control.
Monad. Zip:

do (x,y) <- mzip (do x <- [1..10]
return x)
(do y <— [11..20]
return y)
return (x+y)

../libraries/base-4.7.0.0/Control-Monad-Zip.html
../libraries/base-4.7.0.0/Control-Monad-Zip.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 157 /316

All these features are enabled by default if the MonadComprehensions extension is enabled. The types and more detailed
examples on how to use comprehensions are explained in the previous chapters Section 7.3.13 and Section 7.3.12. In general
you just have to replace the type [a] with the type Monad m => m a for monad comprehensions.

Note: Even though most of these examples are using the list monad, monad comprehensions work for any monad. The base
package offers all necessary instances for lists, which make MonadComprehensions backward compatible to built-in, trans-
form and parallel list comprehensions.

More formally, the desugaring is as follows. We write D[e | Q] to mean the desugaring of the monad comprehension [e
| QJ:

Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S

Basic forms

D[e |] = return e

D[e | p <- e, Q] =e >>=\p —>D[e | Q]

D[e | e, Q 1 = guard e >> \p —> D[e | Q]

D[e | let d, Q] = let d in D[e | Q]

—— Parallel comprehensions (iterate for multiple parallel branches)

D[e | (Q | R), S] = mzip D[Qv | Q 1] D[Rv | R] >>= \(Qv,Rv) -> D[e | S]

—-— Transform comprehensions
D[e | Q then f, R]

£f D[Qv | Q1 >>

\Qv -> D[e | R]

D[e | O then f by b, R] =f (\Qv => b) D[Qv | Q@] >>= \Qv —> D[e | R]
D[e | Q then group using £, R] = £ D[Qv | Q] >>= \ys —>
case (fmap selQvl ys, ..., fmap selQvn ys) of

Qv —> D[e | R]

D[e | Q then group by b using £, R] = f (\Qv -=> b) D[Qv | Q] >>= \ys —>
case (fmap selQvl ys, ..., fmap selQvn ys) of
Qv => D[e | R]

where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv

Operator Standard binding Expected type

return GHC.Base tl > m t2

(>>=) GHC .Base ml tl -> (t2 -> m2 t3) -> m3 t3
(>>) GHC .Base ml t1l —> m2 t2 -> m3 t3
guard Control.Monad tl > m t2

fmap GHC .Base forall a b. (a=>b) -> n a > n b
mzip Control.Monad.Zip forall a b. ma -> mb -> m (a,b)

The comprehension should typecheck when its desugaring would typecheck.

Monad comprehensions support rebindable syntax (Section 7.3.15). Without rebindable syntax, the operators from the "standard
binding" module are used; with rebindable syntax, the operators are looked up in the current lexical scope. For example, parallel
comprehensions will be typechecked and desugared using whatever "mzip" is in scope.

The rebindable operators must have the "Expected type" given in the table above. These types are surprisingly general. For
example, you can use a bind operator with the type

(>>=) :: Txya~->(a->TyzDb) >T=xzb

In the case of transform comprehensions, notice that the groups are parameterised over some arbitrary type n (provided it has an
fmap, as well as the comprehension being over an arbitrary monad.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 158 /316

7.3.15 Rebindable syntax and the implicit Prelude import

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a ~-XNoImplicitPrelude option.
The idea is that you can then import a Prelude of your own. (But don’t call it Prelude; the Haskell module namespace is flat,
and you must not conflict with any Prelude module.)

Suppose you are importing a Prelude of your own in order to define your own numeric class hierarchy. It completely defeats
that purpose if the literal "1" means "Prelude.fromInteger 1", which is what the Haskell Report specifies. So the -
XRebindableSyntax flag causes the following pieces of built-in syntax to refer to whatever is in scope, not the Prelude
versions:

* An integer literal 368 means "fromInteger (368::Integer)", rather than "Prelude.fromInteger (368::

"

Integer)".
* Fractional literals are handed in just the same way, except that the translation is fromRational (3.68::Rational).
* The equality test in an overloaded numeric pattern uses whatever (==) is in scope.
 The subtraction operation, and the greater-than-or-equal test, in n+k patterns use whatever (-) and (>=) are in scope.
* Negation (e.g. "- (£ x)")means "negate (f x)",both in numeric patterns, and expressions.
* Conditionals (e.g. "if el thene2 else e3") means "1 fThenElse el e2 e3". However case expressions are unaffected.

* "Do" notation is translated using whatever functions (>>=), (>>), and fail, are in scope (not the Prelude versions). List
comprehensions, mdo (Section 7.3.11), and parallel array comprehensions, are unaffected.

* Arrow notation (see Section 7.16) uses whatever arr, (>>>), first, app, (| | |) and 1oop functions are in scope. But
unlike the other constructs, the types of these functions must match the Prelude types very closely. Details are in flux; if you
want to use this, ask!

-XRebindableSyntax implies ~-XNoImplicitPrelude.

In all cases (apart from arrow notation), the static semantics should be that of the desugared form, even if that is a little unexpected.
For example, the static semantics of the literal 368 is exactly that of fromInteger (368::Integer);it’sfine for fromI
nteger to have any of the types:

fromInteger :: Integer -> Integer

fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a —-> Integer
fromInteger :: Integer —-> Bool —> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use ~dcore-1lint to typecheck the desugared
program. If Core Lint is happy you should be all right.

7.3.16 Postfix operators
The -XPost fixOperators flag enables a small extension to the syntax of left operator sections, which allows you to define
postfix operators. The extension is this: the left section

(e 1)

is equivalent (from the point of view of both type checking and execution) to the expression

(1) e)

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section is equivalent to

ANy =—> (1) ey
That is, the operator must be a function of two arguments. GHC allows it to take only one argument, and that in turn allows you
to write the function postfix.

The extension does not extend to the left-hand side of function definitions; you must define such a function in prefix form.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 159/316

7.3.17 Tuple sections

The -XTupleSections flag enables Python-style partially applied tuple constructors. For example, the following program

(, True)

is considered to be an alternative notation for the more unwieldy alternative

\x —> (x, True)

You can omit any combination of arguments to the tuple, as in the following

("1, , , "Love", , 1337)

which translates to

\a bcd-> (a, "I", b, ¢, "Love", d, 1337)

If you have unboxed tuples enabled, tuple sections will also be available for them, like so

(# , True #)

Because there is no unboxed unit tuple, the following expression

(# #)

continues to stand for the unboxed singleton tuple data constructor.

7.3.18 Lambda-case

The -XLambdaCase flag enables expressions of the form

\case { pl —> el; ...; pN —> eN }

which is equivalent to

\freshName -> case freshName of { pl -> el; ...; pN —> eN }

Note that \ case starts a layout, so you can write

\case
pl —> el
pN —> eN

7.3.19 Empty case alternatives

The -XEmpt yCase flag enables case expressions, or lambda-case expressions, that have no alternatives, thus:

case e of { } —— No alternatives
or
\case { } —— —XLambdaCase is also required

This can be useful when you know that the expression being scrutinised has no non-bottom values. For example:

data Void
f :: Void -> Int
f x = case x of { }

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 160/316

With dependently-typed features it is more useful (see Trac). For example, consider these two candidate definitions of absurd:

data a :==: b where
Refl :: a :==: a
absurd :: True :~: False -> a
absurd x = error "absurd" -— (A)
absurd x = case x of {} -— (B)
We much prefer (B). Why? Because GHC can figure out that (True :~:False) is an empty type. So (B) has no partiality

and GHC should be able to compile with ~-fwarn-incomplete-patterns. (Though the pattern match checking is not yet
clever enough to do that.) On the other hand (A) looks dangerous, and GHC doesn’t check to make sure that, in fact, the function
can never get called.

7.3.20 Multi-way if-expressions

With -XMultiWayIf flag GHC accepts conditional expressions with multiple branches:

if | guardl -> exprl

] coo
| guardN —> exprN

which is roughly equivalent to

case () of
_ | guardl -> exprl

_ | guardN —-> exprN

Multi-way if expressions introduce a new layout context. So the example above is equivalent to:

if { | guardl -> exprl
N

; | guardN —-> exprN

}

The following behaves as expected:

if | guardl -> if | guard2 -> expr2
| guard3 —-> expr3
| guard4 -> expré

because layout translates it as

if { | guardl -> if { | guard2 -> expr2
; | guard3 -> expr3
}
; | guard4 -> expr4d

}

Layout with multi-way if works in the same way as other layout contexts, except that the semi-colons between guards in a multi-
way if are optional. So it is not necessary to line up all the guards at the same column; this is consistent with the way guards
work in function definitions and case expressions.

7.3.21 Record field disambiguation

In record construction and record pattern matching it is entirely unambiguous which field is referred to, even if there are two
different data types in scope with a common field name. For example:

http://ghc.haskell.org/trac/ghc/ticket/2431

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 161/316

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where

import M

data T = MkT { x :: Int }

okl (MkS { x = n }) = n+l —— Unambiguous
ok2 n = MkT { x = n+l1 } —— Unambiguous
badl k = k { x = 3 } —-- Ambiguous

bad2 k = x k —— Ambiguous

Even though there are two x’s in scope, it is clear that the x in the pattern in the definition of ok 1 can only mean the field x from
type S. Similarly for the function ok2. However, in the record update in badl and the record selection in bad? it is not clear
which of the two types is intended.

Haskell 98 regards all four as ambiguous, but with the —~XDisambiguateRecordFields flag, GHC will accept the former
two. The rules are precisely the same as those for instance declarations in Haskell 98, where the method names on the left-hand
side of the method bindings in an instance declaration refer unambiguously to the method of that class (provided they are in
scope at all), even if there are other variables in scope with the same name. This reduces the clutter of qualified names when you
import two records from different modules that use the same field name.

Some details:

* Field disambiguation can be combined with punning (see Section 7.3.22). For example:

module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 —— Uses both disambiguation and punning

* With -XDisambiguateRecordFields you can use unqualified field names even if the corresponding selector is only in
scope qualified For example, assuming the same module M as in our earlier example, this is legal:

module Foo where
import qualified M —— Note qualified

ok4 (M.MkS { x = n }) = n+l —— Unambiguous

Since the constructor Mk S is only in scope qualified, you must name it M.MkS, but the field x does not need to be qualified
even though M. x is in scope but x is not. (In effect, it is qualified by the constructor.)

7.3.22 Record puns

Record puns are enabled by the flag —~XNamedFieldPuns.

When using records, it is common to write a pattern that binds a variable with the same name as a record field, such as:
data C = C {a :: Int}

f (C {a = a}) = a

Record punning permits the variable name to be elided, so one can simply write

f (C {a}) = a

to mean the same pattern as above. That is, in a record pattern, the pattern a expands into the pattern a =a for the same name a.

Note that:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 162 /316

* Record punning can also be used in an expression, writing, for example,

let a =1 in C {a}

instead of

let a =1 in C {a = a}

The expansion is purely syntactic, so the expanded right-hand side expression refers to the nearest enclosing variable that is
spelled the same as the field name.

* Puns and other patterns can be mixed in the same record:

data C = C {a :: Int, b :: Int}
£ (C {a, b = 4}) = a

* Puns can be used wherever record patterns occur (e.g. in 1et bindings or at the top-level).

* A pun on a qualified field name is expanded by stripping off the module qualifier. For example:

f (C {M.a}) = a

means

f (M.C {M.a al) = a

(This is useful if the field selector a for constructor M. C is only in scope in qualified form.)

7.3.23 Record wildcards

Record wildcards are enabled by the flag ~-XRecordWildCards. This flag implies ~-XDisambiguateRecordFields.
For records with many fields, it can be tiresome to write out each field individually in a record pattern, as in
data C = C {a :: Int, b :: Int, ¢ :: Int, d :: Int}

£f (€ {a=1, b =b, ¢ =¢, d=4d}) =b + c +d

Record wildcard syntax permits a ".." in a record pattern, where each elided field f is replaced by the pattern £ =f. For
example, the above pattern can be written as

f (C{a=1, ..}) =b + c + d
More details:

* Wildcards can be mixed with other patterns, including puns (Section 7.3.22); for example, in a pattern C {a =1, b,
}) . Additionally, record wildcards can be used wherever record patterns occur, including in 1et bindings and at the top-level.
For example, the top-level binding

C {fa=1, ..} = e
defines b, c, and d.
* Record wildcards can also be used in expressions, writing, for example,

let {a =1; b =2; ¢ =3; d=4} in C {..}

in place of

let {a =1; b =2; ¢ =3; d=14} in C {a=a, b=b, c=c, d=d}

The expansion is purely syntactic, so the record wildcard expression refers to the nearest enclosing variables that are spelled
the same as the omitted field names.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 163/316

e The ". ." expands to the missing in-scope record fields. Specifically the expansion of "C {. . }" includes £ if and only if:

— fis arecord field of constructor C.
— The record field £ is in scope somehow (either qualified or unqualified).
— In the case of expressions (but not patterns), the variable f is in scope unqualified, apart from the binding of the record

selector itself.

For example

module M where
data R = R { a,b,c :: Int }
module X where
import M(R(a,c))
fb=R{ ..}

The R{ ..} expands to R{M.a=a}, omitting b since the record field is not in scope, and omitting c since the variable c is not
in scope (apart from the binding of the record selector c, of course).

7.3.24 Local Fixity Declarations

A careful reading of the Haskell 98 Report reveals that fixity declarations (infix, infix1, and infixr) are permitted to
appear inside local bindings such those introduced by let and where. However, the Haskell Report does not specify the
semantics of such bindings very precisely.

In GHC, a fixity declaration may accompany a local binding:

let £ = ...
infixr 3 ‘f°©
in

and the fixity declaration applies wherever the binding is in scope. For example, in a 1et, it applies in the right-hand sides of
other 1et-bindings and the body of the 1etC. Or, in recursive do expressions (Section 7.3.11), the local fixity declarations of a
let statement scope over other statements in the group, just as the bound name does.

Moreover, a local fixity declaration *must* accompany a local binding of that name: it is not possible to revise the fixity of name
bound elsewhere, as in

let infixr 9 $ in ...

Because local fixity declarations are technically Haskell 98, no flag is necessary to enable them.

7.3.25 Package-qualified imports
With the -XPackageImports flag, GHC allows import declarations to be qualified by the package name that the module is
intended to be imported from. For example:

import "network" Network.Socket

would import the module Network . Socket from the package network (any version). This may be used to disambiguate an
import when the same module is available from multiple packages, or is present in both the current package being built and an
external package.

The special package name this can be used to refer to the current package being built.

Note: you probably don’t need to use this feature, it was added mainly so that we can build backwards-compatible versions of
packages when APIs change. It can lead to fragile dependencies in the common case: modules occasionally move from one
package to another, rendering any package-qualified imports broken.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 164 /316

7.3.26 Safe imports

With the -XSafe, -XTrustworthy and —-XUnsafe language flags, GHC extends the import declaration syntax to take an
optional safe keyword after the import keyword. This feature is part of the Safe Haskell GHC extension. For example:

import safe qualified Network.Socket as NS

would import the module Network . Socket with compilation only succeeding if Network.Socket can be safely imported. For
a description of when a import is considered safe see Section 7.26

7.3.27 Explicit namespaces in import/export

In an import or export list, such as

module M(£, (++)) where
import N(£, (++))

the entities £ and (++) are values. However, with type operators (Section 7.4.4) it becomes possible to declare (++) as a type
constructor. In that case, how would you export or import it?

The -XExplicitNamespaces extension allows you to prefix the name of a type constructor in an import or export list with
"type" to disambiguate this case, thus:

module M(f, type (++)) where ...
import N(£, type (++))

module N(£, type (++)) where

data family a ++ b = L a | R b

The extension —-XExplicitNamespaces isimplied by -XTypeOperators and (for some reason) by —-XTypeFamilies.

7.3.28 Summary of stolen syntax

Turning on an option that enables special syntax might cause working Haskell 98 code to fail to compile, perhaps because it uses
a variable name which has become a reserved word. This section lists the syntax that is "stolen" by language extensions. We use
notation and nonterminal names from the Haskell 98 lexical syntax (see the Haskell 98 Report). We only list syntax changes here
that might affect existing working programs (i.e. "stolen" syntax). Many of these extensions will also enable new context-free
syntax, but in all cases programs written to use the new syntax would not be compilable without the option enabled.

There are two classes of special syntax:

* New reserved words and symbols: character sequences which are no longer available for use as identifiers in the program.

 Other special syntax: sequences of characters that have a different meaning when this particular option is turned on.

The following syntax is stolen:

forall Stolen (in types) by: —XExplicitForAll, and hence by -XScopedTypeVariables, -XLiberalTypeSy
nonyms, ~XRankNTypes, ~-XExistentialQuantification

mdo Stolen by: ~-XRecursiveDo
foreign Stolen by: -XForeignFunctionInterface
rec, proc, —<, >—, —<<,>>—,and (|, |) brackets Stolen by: ~-XArrows

?varid Stolen by: ~-XImplicitParams

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 165/316

[l, [el, [Pl, [dl, [t],$(,$S$S(I, [ell,$varid, $$varid Stolen by: -XTemplateHaskell
[varid| Stolen by: ~XQuasiQuotes

varid{#}, char#, string#, integer#, float#, float## Stolenby: -XMagicHash

(#, #) Stolen by: ~-XUnboxedTuples

varid!varid Stolen by: -XBangPatterns

pattern Stolen by: ~-XPatternSynonyms

7.4 Extensions to data types and type synonyms

7.4.1 Data types with no constructors
With the ~-XEmptyDataDecls flag (or equivalent LANGUAGE pragma), GHC lets you declare a data type with no construc-
tors. For example:

data S -—= S :1: *

data T a —— T 1: *x => %

Syntactically, the declaration lacks the "= constrs" part. The type can be parameterised over types of any kind, but if the kind is
not * then an explicit kind annotation must be used (see Section 7.12.5).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when defining "phantom types".

7.4.2 Data type contexts

Haskell allows datatypes to be given contexts, e.g.

data Eg a => Set a = NilSet | ConsSet a (Set a)

give constructors with types:
NilSet :: Set a

ConsSet :: Eg a => a —> Set a —-> Set a

This is widely considered a misfeature, and is going to be removed from the language. In GHC, it is controlled by the deprecated
extension DatatypeContexts.

7.4.3 Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written infix, very much like expressions.
More specifically:

* A type constructor or class can be an operator, beginning with a colon; e.g. : * :. The lexical syntax is the same as that for data
constructors.
* Data type and type-synonym declarations can be written infix, parenthesised if you want further arguments. E.g.

data a :x: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

= Baz a b x
Either (a,b) y

data (a :**: b) x
type (a :++: b) vy

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 166 /316

* Types, and class constraints, can be written infix. For example

x :: Int :x: Bool
f :: (a :=: b) =>a —>b>b

* Back-quotes work as for expressions, both for type constructors and type variables; e.g. Int “Either’ Bool, or Int
“a' Bool. Similarly, parentheses work the same; e.g. (:+x:) Int Bool.

* Fixities may be declared for type constructors, or classes, just as for data constructors. However, one cannot distinguish
between the two in a fixity declaration; a fixity declaration sets the fixity for a data constructor and the corresponding type
constructor. For example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for : x:. Int “a° Bool.

* Function arrow is infixr with fixity 0. (This might change; I'm not sure what it should be.)

7.4.4 Type operators

In types, an operator symbol like (+) is normally treated as a type variable, just like a. Thus in Haskell 98 you can say

type T (+) = ((+), (+))

—-— Just like: type T a = (a,a)
f :: T Int -> Int

f (x,y)= x

As you can see, using operators in this way is not very useful, and Haskell 98 does not even allow you to write them infix.

The language —XTypeOperators changes this behaviour:

* QOperator symbols become type constructors rather than type variables.

¢ QOperator symbols in types can be written infix, both in definitions and uses. for example:

data a + b = Plus a b
type Foo = Int + Bool

* There is now some potential ambiguity in import and export lists; for example if you write import M((+)) doyou mean
the function (+) or the type constructor (+)? The default is the former, but with —-XExplicitNamespaces (which is
implied by —XExplicitTypeOperators) GHC allows you to specify the latter by preceding it with the keyword type,
thus:

import M(type (+))

See Section 7.3.27.

» The fixity of a type operator may be set using the usual fixity declarations but, as in Section 7.4.3, the function and type
constructor share a single fixity.

7.4.5 Liberalised type synonyms
Type synonyms are like macros at the type level, but Haskell 98 imposes many rules on individual synonym declarations. With
the -XLiberalTypeSynonyms extension, GHC does validity checking on types only after expanding type synonyms. That

means that GHC can be very much more liberal about type synonyms than Haskell 98.

* You can write a forall (including overloading) in a type synonym, thus:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 167 /316

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f xy = (x, show y)
g :: Discard Int -> (Int,String) —-— A rank-2 type

g £ = f 3 True

* If you also use —XUnboxedTuples, you can write an unboxed tuple in a type synonym:
type Pr = (# Int, Int #)
h :: Int -> Pr

h x = (# x, x #)

* You can apply a type synonym to a forall type:

type Foo a = a —> a —> Bool
f :: Foo (forall b. b—>b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

* You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -—> [x]

GHC currently does kind checking before expanding synonyms (though even that could be changed.)

After expanding type synonyms, GHC does validity checking on types, looking for the following mal-formedness which isn’t
detected simply by kind checking:

* Type constructor applied to a type involving for-alls (if XImpredicativeTypes is off)

¢ Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = forall a. a

h :: [Pr]
h

because GHC does not allow type constructors applied to for-all types.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 168 /316

7.4.6 Existentially quantified data constructors

The idea of using existential quantification in data type declarations was suggested by Perry, and implemented in Hope+ (Nigel
Perry, The Implementation of Practical Functional Programming Languages, PhD Thesis, University of London, 1991). It was
later formalised by Laufer and Odersky (Polymorphic type inference and abstract data types, TOPLAS, 16(5), pp1411-1430,
1994). It’s been in Lennart Augustsson’s hbe Haskell compiler for several years, and proved very useful. Here’s the idea.
Consider the declaration:

data Foo = forall a. MkFoo a (a —> Bool)
| Nil
The data type Foo has two constructors with types:
MkFoo :: forall a. a —> (a —> Bool) —> Foo
Nil :: Foo
Notice that the type variable a in the type of MkFoo does not appear in the data type itself, which is plain Foo. For example, the
following expression is fine:

[MkFoo 3 even, MkFoo ’c’ isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool; and MkFoo ’'c’ 1isUp
per packages a character with a compatible function. These two things are each of type Foo and can be put in a list.

What can we do with a value of type Foo?. In particular, what happens when we pattern-match on MkFoo?

f (MkFoo val fn) = ?2°?°?
Since all we know about val and f£n is that they are compatible, the only (useful) thing we can do with them is to apply fn to
val to get a boolean. For example:

f :: Foo -> Bool

f (MkFoo val fn) = fn val

What this allows us to do is to package heterogeneous values together with a bunch of functions that manipulate them, and then
treat that collection of packages in a uniform manner. You can express quite a bit of object-oriented-like programming this way.

7.4.6.1 Why existential?

What has this to do with existential quantification? Simply that MkF oo has the (nearly) isomorphic type

MkFoo :: (exists a . (a, a —-> Bool)) —-> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given above, thereby avoiding adding a
new existential quantification construct.

7.4.6.2 Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

data Baz = forall a. Eg a => Bazl a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Bazl :: forall a. Eqg a => a —> a —> Baz
Baz2 :: forall b. Show b => b -> (b —> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and when pattern matching on Baz2 the
first matched value can be converted to a string (as well as applying the function to it). So this program is legal:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 169/316

f :: Baz -> String
f (Bazl p qgq) | p == = "Yes"
| otherwise = "No"

f (Baz2 v fn) show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must store the dictionaries for Eq and
Show respectively, and extract it on pattern matching.

7.4.6.3 Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self —> self
, _display :: self -> IO ()
, tag toa

}

Here tag is a public field, with a well-typed selector function tag ::Counter a -> a. The self type is hidden from
the outside; any attempt to apply _this, _inc or _display as functions will raise a compile-time error. In other words,
GHC defines a record selector function only for fields whose type does not mention the existentially-quantified variables. (This
example used an underscore in the fields for which record selectors will not be defined, but that is only programming style; GHC
ignores them.)

To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a —-> Counter a
inc (NewCounter x i1 d t) = NewCounter
{ _this = i x, _inc = i, _display = d, tag = t }

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x

Now we can define counters with different underlying implementations:

counterA :: Counter String
counterA = NewCounter

{ _this = 0, _inc = (1+), _display = print, tag = "A" }
counterB :: Counter String
counterB = NewCounter

{ _this = "", _inc = ("#’:), _display = putStrln, tag = "B" }
main = do

display (inc counterA) -— prints "1"

display (inc (inc counterB)) —— prints "##"

Record update syntax is supported for existentials (and GADTs):

setTag :: Counter a —-> a —-> Counter a
setTag obj t = obj{ tag = t }

The rule for record update is this: the types of the updated fields may mention only the universally-quantified type variables
of the data constructor. For GADTs, the field may mention only types that appear as a simple type-variable argument in the
constructor’s result type. For example:

data T a b where { Tl { fl::a, f2::b, f3::(b,c) } :: T a b } —— c is existential
updl t x = t { fl=x } —— OK: updl :: T a b > a’” -=> T a’" b
upd2 t x t { £f3=x } -— BAD (f3’s type mentions ¢, which is

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 170/316

== existentially quantified)

data G a b where { G1 { gl::a, g2::c } :: G a [c] }
upd3 g x = g { gl=x } == QX3 upd3 :: Gab —>c¢c —>Gcb
upd4d g x = g { g2=x } —-— BAD (f2’'s type mentions c, which is not a simple

== type-variable argument in Gl’s result type)

7.4.6.4 Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can be use.

* When pattern matching, each pattern match introduces a new, distinct, type for each existential type variable. These types
cannot be unified with any other type, nor can they escape from the scope of the pattern match. For example, these fragments
are incorrect:

fl (MkFoo a f) = a

Here, the type bound by MkFoo "escapes”, because a is the result of £1. One way to see why this is wrong is to ask what type
£1 has:

fl :: Foo -> a —— Weird!

What is this "a" in the result type? Clearly we don’t mean this:

fl :: forall a. Foo —> a —-— Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Bazl a b) (Bazl p g) = a==q

It’s ok to say a==Db or p==q, but a==q is wrong because it equates the two distinct types arising from the two Baz 1 construc-
tors.

* You can’t pattern-match on an existentially quantified constructor in a 1et or where group of bindings. So this is illegal:

f3 x = a==b where { Bazl a b = x }

Instead, use a case expression:

f3 x = case x of Bazl a b —> a==

In general, you can only pattern-match on an existentially-quantified constructor in a case expression or in the patterns of a
function definition. The reason for this restriction is really an implementation one. Type-checking binding groups is already
a nightmare without existentials complicating the picture. Also an existential pattern binding at the top level of a module
doesn’t make sense, because it’s not clear how to prevent the existentially-quantified type "escaping". So for now, there’s a
simple-to-state restriction. We’ll see how annoying it is.

* You can’t use existential quantification for newt ype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and a value of type t. That contradicts the
idea that newtype should have no concrete representation. You can get just the same efficiency and effect by using data
instead of newtype. If there is no overloading involved, then there is more of a case for allowing an existentially-quantified
newtype, because the data version does carry an implementation cost, but single-field existentially quantified constructors
aren’t much use. So the simple restriction (no existential stuff on newtype) stands, unless there are convincing reasons to
change it.

* You can’t use deriving to define instances of a data type with existentially quantified data constructors. Reason: in most
cases it would not make sense. For example:;

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 171/316

data T = forall a. MkT [a] deriving(Eqg)

To derive Eq in the standard way we would need to have equality between the single component of two Mk T constructors:

instance Eq T where
(MKT a) == (MkT b) = ?2?27?

But a and b have distinct types, and so can’t be compared. It’s just about possible to imagine examples in which the derived
instance would make sense, but it seems altogether simpler simply to prohibit such declarations. Define your own instances!

7.4.7 Declaring data types with explicit constructor signatures

When the GADTSyntax extension is enabled, GHC allows you to declare an algebraic data type by giving the type signatures
of constructors explicitly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a —> Maybe a

The form is called a "GADT-style declaration" because Generalised Algebraic Data Types, described in Section 7.4.8, can only
be declared using this form.

Notice that GADT-style syntax generalises existential types (Section 7.4.6). For example, these two declarations are equivalent:

data Foo = forall a. MkFoo a (a —> Bool)
data Foo’ where { MKFoo :: a -> (a->Bool) -> Foo’ }

Any data type that can be declared in standard Haskell-98 syntax can also be declared using GADT-style syntax. The choice is
largely stylistic, but GADT-style declarations differ in one important respect: they treat class constraints on the data constructors
differently. Specifically, if the constructor is given a type-class context, that context is made available by pattern matching. For
example:

data Set a where
MkSet :: Egq a => [a] —> Set a

makeSet :: Egq a => [a] —> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a ‘elem' as = MkSet as
| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a) constraint, as you would expect.
The new feature is that pattern-matching on MkSet (as in the definition of insert) makes available an (Eq a) context. In
implementation terms, the MkSet constructor has a hidden field that stores the (Eq a) dictionary that is passed to MkSet;
so when pattern-matching that dictionary becomes available for the right-hand side of the match. In the example, the equality
dictionary is used to satisfy the equality constraint generated by the call to e lem, so that the type of insert itself has no Eg
constraint.

For example, one possible application is to reify dictionaries:

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a —> a —> a —> a
plus MkNumInst p g = p + g

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 172/316

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.

All this applies to constructors declared using the syntax of Section 7.4.6.2. For example, the NumInst data type above could
equivalently be declared like this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existential, there is no forall, because the Num constrains the data type’s
universally quantified type variable a. A constructor may have both universal and existential type variables: for example, the
following two declarations are equivalent:

data Tl a

= forall b. (Num a, Eg b) => MkTl a b
data T2 a where

MkT2 :: (Num a, Eg b) => a -> b -> T2 a

All this behaviour contrasts with Haskell 98’s peculiar treatment of contexts on a data type declaration (Section 4.2.1 of the
Haskell 98 Report). In Haskell 98 the definition

data Eg a => Set’ a = MkSet’ [a]

gives MkSet’ the same type as MkSet above. But instead of making available an (Eq a) constraint, pattern-matching on
MkSet’ requires an (Eq a) constraint! GHC faithfully implements this behaviour, odd though it is. But for GADT-style
declarations, GHC’s behaviour is much more useful, as well as much more intuitive.

The rest of this section gives further details about GADT-style data type declarations.

* The result type of each data constructor must begin with the type constructor being defined. If the result type of all constructors
has the form T al ...an, where al ...an are distinct type variables, then the data type is ordinary; otherwise is a
generalised data type (Section 7.4.8).

* As with other type signatures, you can give a single signature for several data constructors. In this example we give a single
signature for T1 and T2:

data T a where
T1,T2 :: a —> T a
T3 :: T a

* The type signature of each constructor is independent, and is implicitly universally quantified as usual. In particular, the
type variable(s) in the "data T a where" header have no scope, and different constructors may have different universally-
quantified type variables:

data T a where —— The ’a’ has no scope
T1,T2 :: b > T b —— Means forall b. b -=> T b
T3 :: T a —-— Means forall a. T a

* A constructor signature may mention type class constraints, which can differ for different constructors. For example, this is
fine:

data T a where
Tl :: Eg b => b -—> b -> T b
T2 :: (Show ¢, Ix c) => ¢ —> [c] -> T ¢

When pattern matching, these constraints are made available to discharge constraints in the body of the match. For example:

f :: T a —> String
f (Tl x y) | x==y = "yes"
| otherwise = "no"

f (T2 a b) show a

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 173/316

Note that £ is not overloaded; the Eq constraint arising from the use of == is discharged by the pattern match on T1 and
similarly the Show constraint arising from the use of show.

Unlike a Haskell-98-style data type declaration, the type variable(s) in the "data Set a where" header have no scope.
Indeed, one can write a kind signature instead:

data Set :: x —> % where

or even a mixture of the two:

data Bar a :: (* —=> *x) —-> x where

The type variables (if given) may be explicitly kinded, so we could also write the header for Foo like this:

data Bar a (b :: x —> %) where

You can use strictness annotations, in the obvious places in the constructor type:

data Term a where

Lit :: !Int -> Term Int
If :: Term Bool -> ! (Term a) —-> ! (Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

You can use a deriving clause on a GADT-style data type declaration. For example, these two declarations are equivalent

data Maybel a where {
Nothingl :: Maybel a ;
Justl :: a —> Maybel a
} deriving(Eqgq, Ord)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eqg, Ord)

The type signature may have quantified type variables that do not appear in the result type:

data Foo where
MkFoo :: a —> (a->Bool) —> Foo
Nil :: Foo

Here the type variable a does not appear in the result type of either constructor. Although it is universally quantified in the type
of the constructor, such a type variable is often called "existential". Indeed, the above declaration declares precisely the same
type as the data Foo in Section 7.4.6.

The type may contain a class context too, of course:

data Showable where
MkShowable :: Show a => a —-> Showable

You can use record syntax on a GADT-style data type declaration:

data Person where
Adult :: { name :: String, children :: [Person] } —-> Person
Child :: Show a => { name :: !String, funny :: a } —-> Person

As usual, for every constructor that has a field £, the type of field £ must be the same (modulo alpha conversion). The Child
constructor above shows that the signature may have a context, existentially-quantified variables, and strictness annotations,
just as in the non-record case. (NB: the "type" that follows the double-colon is not really a type, because of the record syntax
and strictness annotations. A "type" of this form can appear only in a constructor signature.)

Record updates are allowed with GADT-style declarations, only fields that have the following property: the type of the field
mentions no existential type variables.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 174 /316

* As in the case of existentials declared using the Haskell-98-like record syntax (Section 7.4.6.3), record-selector functions are
generated only for those fields that have well-typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where

NewCounter :: { _this :: self
, _inc :: self —> self
, _display :: self -> IO ()
, tag toa

} —> Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you can still use all the field names in
pattern matching and record construction.

* In a GADT-style data type declaration there is no obvious way to specify that a data constructor should be infix, which makes
a difference if you derive Show for the type. (Data constructors declared infix are displayed infix by the derived show.) So
GHC implements the following design: a data constructor declared in a GADT-style data type declaration is displayed infix by
Show iff (a) it is an operator symbol, (b) it has two arguments, (c) it has a programmer-supplied fixity declaration. For example

infix 6 (:——:)

data T a where
(:=—:) :: Int -> Bool —> T Int

7.4.8 Generalised Algebraic Data Types (GADTS)

Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing constructors to have richer return types.
Here is an example:

data Term a where

Lit :: Int -> Term Int

Succ :: Term Int -> Term Int

IsZero :: Term Int -> Term Bool

If :: Term Bool -> Term a —> Term a —> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with ordinary data types. This generality
allows us to write a well-typed eval function for these Terms:

eval :: Term a —-> a

eval (Lit 1i) = 1

eval (Succ t) =1 + eval t

eval (IsZero t) = eval t == 0

eval (If b el e2) = 1if eval b then eval el else eval e2
eval (Pair el e2) = (eval el, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in the right hand side of the equation

eval :: Term a —-> a
eval (Lit i) =

the type a is refined to Int. That’s the whole point! A precise specification of the type rules is beyond what this user manual
aspires to, but the design closely follows that described in the paper Simple unification-based type inference for GADTs, (ICFP
2006). The general principle is this: type refinement is only carried out based on user-supplied type annotations. So if no
type signature is supplied for eval, no type refinement happens, and lots of obscure error messages will occur. However, the
refinement is quite general. For example, if we had:

eval :: Term a —> a —> a
eval (Lit i) j = 1i+j

http://research.microsoft.com/%7Esimonpj/papers/gadt/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 175/316

the pattern match causes the type a to be refined to Int (because of the type of the constructor Lit), and that refinement also
applies to the type of j, and the result type of the case expression. Hence the addition i+ 7 is legal.

These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is a longer introduction on the wiki,
and Ralf Hinze’s Fun with phantom types also has a number of examples. Note that papers may use different notation to that
implemented in GHC.

The rest of this section outlines the extensions to GHC that support GADTs. The extension is enabled with ~-XGADTs. The -
XGADTs flag also sets ~-XRelaxedPolyRec.

* A GADT can only be declared using GADT-style syntax (Section 7.4.7); the old Haskell-98 syntax for data declarations always
declares an ordinary data type. The result type of each constructor must begin with the type constructor being defined, but for a
GADT the arguments to the type constructor can be arbitrary monotypes. For example, in the Term data type above, the type
of each constructor must end with Term ty, but the ty need not be a type variable (e.g. the Lit constructor).

* It is permitted to declare an ordinary algebraic data type using GADT-style syntax. What makes a GADT into a GADT is not
the syntax, but rather the presence of data constructors whose result type is not just T a b.

* You cannot use a deriving clause for a GADT; only for an ordinary data type.

* As mentioned in Section 7.4.7, record syntax is supported. For example:

data Term a where

Lit :: { val :: Int } -> Term Int
Succ { num :: Term Int } -> Term Int
Pred { num :: Term Int } —-> Term Int
IsZero :: { arg :: Term Int } —-> Term Bool
Pair { argl :: Term a
arg2 :: Term b

} -> Term (a,b)
If :: { cnd :: Term Bool

, tru :: Term a

, fls :: Term a

} —> Term a

However, for GADTs there is the following additional constraint: every constructor that has a field £ must have the same result
type (modulo alpha conversion) Hence, in the above example, we cannot merge the num and arg fields above into a single
name. Although their field types are both Term Int, their selector functions actually have different types:

num :: Term Int —-> Term Int
arg :: Term Bool —-> Term Int

* When pattern-matching against data constructors drawn from a GADT, for example in a case expression, the following rules
apply:
— The type of the scrutinee must be rigid.
— The type of the entire case expression must be rigid.

— The type of any free variable mentioned in any of the case alternatives must be rigid.

A type is "rigid" if it is completely known to the compiler at its binding site. The easiest way to ensure that a variable a rigid
type is to give it a type signature. For more precise details see Simple unification-based type inference for GADTs . The
criteria implemented by GHC are given in the Appendix.

7.5 Extensions to the "deriving" mechanism

7.5.1 Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

http://www.haskell.org/haskellwiki/GADT
http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf
http://research.microsoft.com/%7Esimonpj/papers/gadt

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 176/316

data TO £ a = MkTO a deriving(Eqgq)
data Tl £ a = MkT1 (f a) deriving(Eq)
data T2 f a MkT2 (f (f a)) deriving(Eqg)

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (TO f a) where
instance Eqgq (f a) => Eq (Tl f a) where
instance Eq (f (f a)) => Egq (T2 f a) where

The first of these is obviously fine. The second is still fine, although less obviously. The third is not Haskell 98, and risks losing
termination of instances.

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this: each constraint in the inferred
instance context must consist only of type variables, with no repetitions.

This rule is applied regardless of flags. If you want a more exotic context, you can write it yourself, using the standalone deriving
mechanism.

7.5.2 Stand-alone deriving declarations

GHC now allows stand-alone deriving declarations, enabled by ~-XStandaloneDeriving:

data Foo a = Bar a | Baz String

deriving instance Eg a => Egq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword deriving, and (b) the absence of
the where part. Note the following points:

* You must supply an explicit context (in the example the context is (Eq a)), exactly as you would in an ordinary instance
declaration. (In contrast, in a deriving clause attached to a data type declaration, the context is inferred.)

* Aderiving instance declaration must obey the same rules concerning form and termination as ordinary instance dec-
larations, controlled by the same flags; see Section 7.6.3.

* Unlike a deriving declaration attached to a dat a declaration, the instance can be more specific than the data type (assuming
you also use ~XFlexibleInstances, Section 7.6.3.3). Consider for example

data Foo a = Bar a | Baz String

deriving instance Egq a => Eg (Foo [a])
deriving instance Eg a => Eg (Foo (Maybe a))

This will generate a derived instance for (Foo [a]) and (Foo (Maybe a)), butother types such as (Foo (Int,Boo
1)) will not be an instance of Eq.

* Unlike a deriving declaration attached to a data declaration, GHC does not restrict the form of the data type. Instead,
GHC simply generates the appropriate boilerplate code for the specified class, and typechecks it. If there is a type error, it is
your problem. (GHC will show you the offending code if it has a type error.) The merit of this is that you can derive instances
for GADTs and other exotic data types, providing only that the boilerplate code does indeed typecheck. For example:

data T a where
Tl :: T Int
T2 :: T Bool

deriving instance Show (T a)

In this example, you cannot say . . .deriving (Show) on the data type declaration for T, because T is a GADT, but you
can generate the instance declaration using stand-alone deriving.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 177 /316

* The stand-alone syntax is generalised for newtypes in exactly the same way that ordinary deriving clauses are generalised
(Section 7.5.5). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

GHC always treats the last parameter of the instance (Foo in this example) as the type whose instance is being derived.

7.5.3 Deriving clause for extra classes (Typeable, Data, etc)

Haskell 98 allows the programmer to add "deriving (Eq, Ord)"toadatatype declaration, to generate a standard instance
declaration for classes specified in the deriving clause. In Haskell 98, the only classes that may appear in the deriving
clause are the standard classes Eq, Ord, Enum, Ix, Bounded, Read, and Show.

GHC extends this list with several more classes that may be automatically derived:

* With -XDeriveDataTypeable, you can derive instances of the classes Typeable, and Data, defined in the library
modules Data.Typeable and Data.Data respectively.

Since GHC 7.8.1, Typeable is kind-polymorphic (see Section 7.8) and can be derived for any datatype and type class.
Instances for datatypes can be derived by attaching a deriving Typeable clause to the datatype declaration, or by using
standalone deriving (see Section 7.5.2). Instances for type classes can only be derived using standalone deriving. For data
families, Typeable should only be derived for the uninstantiated family type; each instance will then automatically have a
Typeable instance too. See also Section 7.5.4.

Also since GHC 7.8.1, handwritten (ie. not derived) instances of Typeable are forbidden, and will result in an error.

* With -XDeriveGeneric, you can derive instances of the classes Generic and Genericl, defined in GHC.Generics.
You can use these to define generic functions, as described in Section 7.23.

* With -XDeriveFunctor, you can derive instances of the class Functor, defined in GHC . Base.
* With -XDeriveFoldable, you can derive instances of the class Foldable, defined in Data.Foldable.

* With -XDeriveTraversable, you can derive instances of the class Traversable, defined in Data.Traversable.

In each case the appropriate class must be in scope before it can be mentioned in the deriving clause.

7.5.4 Automatically deriving Typeable instances

The flag -XAutoDeriveTypeable triggers the generation of derived Typeable instances for every datatype and type class
declaration in the module it is used. It will also generate Typeable instances for any promoted data constructors (Section 7.9).
This flag implies ~-XDeriveDataTypeable (Section 7.5.3).

7.5.5 Generalised derived instances for newtypes

When you define an abstract type using newt ype, you may want the new type to inherit some instances from its representation.
In Haskell 98, you can inherit instances of Eq, Ord, Enum and Bounded by deriving them, but for any other classes you have
to write an explicit instance declaration. For example, if you define

newtype Dollars = Dollars Int

and you want to use arithmetic on Dol lars, you have to explicitly define an instance of Num:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+tb)

All the instance does is apply and remove the newt ype constructor. It is particularly galling that, since the constructor doesn’t
appear at run-time, this instance declaration defines a dictionary which is wholly equivalent to the Int dictionary, only slower!

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 178 /316

7.5.5.1 Generalising the deriving clause

GHC now permits such instances to be derived instead, using the flag -XGeneralizedNewtypeDeriving, SO one can write

newtype Dollars = Dollars Int deriving (Eg, Show, Num)

and the implementation uses the same Num dictionary for Dollars as for Int. Notionally, the compiler derives an instance
declaration of the form

instance Num Int => Num Dollars

which just adds or removes the newt ype constructor according to the type.

We can also derive instances of constructor classes in a similar way. For example, suppose we have implemented state and failure
monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension, we can make the parser type
abstract, without needing to write an instance of class Monad, via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, since Monad is a constructor class, the instance is a partial application of the new type, not the entire left hand side.
We can imagine that the type declaration is "eta-converted" to generate the context of the instance declaration.

We can even derive instances of multi-parameter classes, provided the newtype is the last class parameter. In this case, a ~“partial
application” of the class appears in the deriving clause. For example, given the class

class StateMonad s m | m —-> s where
instance Monad m => StateMonad s (State s m) where

then we can derive an instance of StateMonad for Parsers by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

As a result of this extension, all derived instances in newtype declarations are treated uniformly (and implemented just by
reusing the dictionary for the representation type), except Show and Read, which really behave differently for the newtype and
its representation.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 179/316

7.5.5.2 A more precise specification

Derived instance declarations are constructed as follows. Consider the declaration (after expansion of any type synonyms)

newtype T vl...vn = T’ (t vk+l...vn) deriving (cl...cm)

where

* The ci are partial applications of classes of the form C t1’ ...t j’, where the arity of C is exactly j+1. That is, C lacks
exactly one type argument.

e The k is chosen so that ci (T wv1...vk) is well-kinded.

» The type t is an arbitrary type.

* The type variables vk+1. . .vn do not occur in t, nor in the ci, and

* None of the ci is Read, Show, Typeable, or Data. These classes should not "look through" the type or its constructor.
You can still derive these classes for a newtype, but it happens in the usual way, not via this new mechanism.

* It is safe to coerce each of the methods of ci. That is, the missing last argument to each of the c1i is not used at a nominal role
in any of the ci’s methods. (See Section 7.24.)

Then, for each c1i, the derived instance declaration is:

instance ci t => ci (T vl...vk)

As an example which does not work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variable s occursin State s m, and so cannot be "eta-converted" away. It is a good thing that this deriving
clause is rejected, because NonMonad m is not, in fact, a monad --- for the same reason. Try defining >>= with the correct type:
you won’t be able to.

Notice also that the order of class parameters becomes important, since we can only derive instances for the last one. If the
StateMonad class above were instead defined as

class StateMonad m s | m —-> s where

then we would not have been able to derive an instance for the Parser type above. We hypothesise that multi-parameter classes
usually have one "main" parameter for which deriving new instances is most interesting.

Lastly, all of this applies only for classes other than Read, Show, Typeable, and Data, for which the built-in derivation
applies (section 4.3.3. of the Haskell Report). (For the standard classes Eq, Ord, Ix, and Bounded it is immaterial whether the
standard method is used or the one described here.)

7.6 Class and instances declarations

7.6.1 Class declarations

This section, and the next one, documents GHC’s type-class extensions. There’s lots of background in the paper Type classes:
exploring the design space (Simon Peyton Jones, Mark Jones, Erik Meijer).

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/
http://research.microsoft.com/~simonpj/Papers/type-class-design-space/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 180/316

7.6.1.1 Multi-parameter type classes

Multi-parameter type classes are permitted, with flag ~-XMultiParamTypeClasses. For example:

class Collection ¢ a where
union :: c¢ca ->ca ->c a
...etc.

7.6.1.2 The superclasses of a class declaration

In Haskell 98 the context of a class declaration (which introduces superclasses) must be simple; that is, each predicate must
consist of a class applied to type variables. The flag ~XFlexibleContexts (Section 7.12.2) lifts this restriction, so that the
only restriction on the context in a class declaration is that the class hierarchy must be acyclic. So these class declarations are
OK:

class Functor (m k) => FiniteMap m k where
class (Monad m, Monad (t m)) => Transform t m where
lift :: ma —> (t m) a

As in Haskell 98, The class hierarchy must be acyclic. However, the definition of "acyclic" involves only the superclass relation-
ships. For example, this is OK:

class C a where {
op :: Db =>a->Db ->b

class C a => D a where { ... }

Here, C is a superclass of D, but it’s OK for a class operation op of C to mention D. (It would not be OK for D to be a superclass
of C.)

With the extension that adds a kind of constraints, you can write more exotic superclass definitions. The superclass cycle check
is even more liberal in these case. For example, this is OK:

class A cls c where
meth :: cls ¢ => ¢ -> ¢c

class A B ¢ => B c where

A superclass context for a class C is allowed if, after expanding type synonyms to their right-hand-sides, and uses of classes
(other than C) to their superclasses, C does not occur syntactically in the context.

7.6.1.3 Class method types

Haskell 98 prohibits class method types to mention constraints on the class type variable, thus:

class Seg s a where
fromList :: [a] -> s a
elem :: Ega=>a ->s a —-> Bool

The type of elem is illegal in Haskell 98, because it contains the constraint Eq a, constrains only the class type variable (in this
case a). GHC lifts this restriction (flag —XConstrainedClassMethods).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 181/316

7.6.1.4 Default method signatures

Haskell 98 allows you to define a default implementation when declaring a class:

class Enum a where
enum :: [a]
enum = []

The type of the enum method is [a], and this is also the type of the default method. You can lift this restriction and give another
type to the default method using the flag —-XDefaultSignatures. For instance, if you have written a generic implementation
of enumeration in a class GEnum with method genum in terms of GHC . Generics, you can specify a default method that uses
that generic implementation:

class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [al]
enum = map to genum

We reuse the keyword default to signal that a signature applies to the default method only; when defining instances of the
Enum class, the original type [a] of enum still applies. When giving an empty instance, however, the default implementation
map to genum is filled-in, and type-checked with the type (Generic a, GEnum (Rep a)) => [a].

We use default signatures to simplify generic programming in GHC (Section 7.23).

7.6.1.5 Nullary type classes

Nullary (no parameter) type classes are enabled with —XNullaryTypeClasses. Since there are no available parameters,
there can be at most one instance of a nullary class. A nullary type class might be used to document some assumption in a type
signature (such as reliance on the Riemann hypothesis) or add some globally configurable settings in a program. For example,

class RiemannHypothesis where
assumeRH :: a —-> a

—— Deterministic version of the Miller test

—— correctness depends on the generalized Riemann hypothesis
isPrime :: RiemannHypothesis => Integer -> Bool

isPrime n = assumeRH (...)

The type signature of isPrime informs users that its correctness depends on an unproven conjecture. If the function is used,
the user has to acknowledge the dependence with:

instance RiemannHypothesis where
assumeRH = id

7.6.2 Functional dependencies

Functional dependencies are implemented as described by Mark Jones in “Type Classes with Functional Dependencies”, Mark P.
Jones, In Proceedings of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany, March 2000, Springer-
Verlag LNCS 1782, .

Functional dependencies are introduced by a vertical bar in the syntax of a class declaration; e.g.

class (Monad m) => MonadState s m | m —> s where

class Foo a b ¢ | a b —> ¢ where

There should be more documentation, but there isn’t (yet). Yell if you need it.

http://citeseer.ist.psu.edu/jones00type.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 182/316

7.6.2.1 Rules for functional dependencies
In a class declaration, all of the class type variables must be reachable (in the sense mentioned in Section 7.12.2) from the free
variables of each method type. For example:

class Coll s a where
empty :: s
insert :: s -> a —> s

is not OK, because the type of empty doesn’t mention a. Functional dependencies can make the type variable reachable:

class Coll s a | s —> a where
empty :: s
insert :: s -> a —> s

Alternatively Col1 might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a —> s a

which makes the connection between the type of a collection of a’s (namely (s a)) and the element type a. Occasionally this

really doesn’t work, in which case you can split the class like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a —> s

7.6.2.2 Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from the Hugs user manual, reproduced
here (with minor changes) by kind permission of Mark Jones.

Consider the following class, intended as part of a library for collection types:

class Collects e ce where

empty :: ce
insert :: e —-> ce —-> ce
member :: e —-> ce —> Bool

The type variable e used here represents the element type, while ce is the type of the container itself. Within this framework, we
might want to define instances of this class for lists or characteristic functions (both of which can be used to represent collections
of any equality type), bit sets (which can be used to represent collections of characters), or hash tables (which can be used to
represent any collection whose elements have a hash function). Omitting standard implementation details, this would lead to the
following declarations:

instance Egq e => Collects e [e] where
instance Egq e => Collects e (e —> Bool) where
instance Collects Char BitSet where
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where

All this looks quite promising; we have a class and a range of interesting implementations. Unfortunately, there are some serious
problems with the class declaration. First, the empty function has an ambiguous type:

empty :: Collects e ce => ce

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 183/316

By "ambiguous" we mean that there is a type variable e that appears on the left of the => symbol, but not on the right. The
problem with this is that, according to the theoretical foundations of Haskell overloading, we cannot guarantee a well-defined
semantics for any term with an ambiguous type.

We can sidestep this specific problem by removing the empty member from the class declaration. However, although the remain-
ing members, insert and member, do not have ambiguous types, we still run into problems when we try to use them. For example,
consider the following two functions:

f x y = insert x . insert y
g = f True ’a’
for which GHC infers the following types:

f :: (Collects a ¢, Collects b c) =>a > b -> c -> ¢
g :: (Collects Bool ¢, Collects Char c) => c -> ¢

Notice that the type for f allows the two parameters x and y to be assigned different types, even though it attempts to insert each
of the two values, one after the other, into the same collection. If we’re trying to model collections that contain only one type
of value, then this is clearly an inaccurate type. Worse still, the definition for g is accepted, without causing a type error. As a
result, the error in this code will not be flagged at the point where it appears. Instead, it will show up only when we try to use g,
which might even be in a different module.

7.6.2.2.1 An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to use something like the following
version of the class declaration:

class Collects e c where

empty :: C e
insert :: e => c e -> c e
member :: e -> c e —-> Bool

The key difference here is that we abstract over the type constructor c that is used to form the collection type ¢ e, and not over that
collection type itself, represented by ce in the original class declaration. This avoids the immediate problems that we mentioned
above: empty has type Collects e ¢ => c e, which is not ambiguous.

The function f from the previous section has a more accurate type:

f :: (Collects e c) =>e —> e —> c e —> c e

The function g from the previous section is now rejected with a type error as we would hope because the type of f does not allow
the two arguments to have different types. This, then, is an example of a multiple parameter class that does actually work quite
well in practice, without ambiguity problems. There is, however, a catch. This version of the Collects class is nowhere near
as general as the original class seemed to be: only one of the four instances for Collects given above can be used with this
version of Collects because only one of them---the instance for lists---has a collection type that can be written in the form c e, for
some type constructor ¢, and element type e.

7.6.2.2.2 Adding functional dependencies

To get a more useful version of the Collects class, Hugs provides a mechanism that allows programmers to specify dependencies
between the parameters of a multiple parameter class (For readers with an interest in theoretical foundations and previous work:
The use of dependency information can be seen both as a generalization of the proposal for “parametric type classes’ that was
put forward by Chen, Hudak, and Odersky, or as a special case of Mark Jones’s later framework for "improvement" of qualified
types. The underlying ideas are also discussed in a more theoretical and abstract setting in a manuscript [implparam], where they
are identified as one point in a general design space for systems of implicit parameterization.). To start with an abstract example,
consider a declaration such as:

class C a b where

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 184 /316

which tells us simply that C can be thought of as a binary relation on types (or type constructors, depending on the kinds of a
and b). Extra clauses can be included in the definition of classes to add information about dependencies between parameters, as
in the following examples:

class D a b | a —> b where
class E ab | a > b, b -> a where

The notation a -> b used here between the | and where symbols --- not to be confused with a function type --- indicates that
the a parameter uniquely determines the b parameter, and might be read as "a determines b." Thus D is not just a relation, but
actually a (partial) function. Similarly, from the two dependencies that are included in the definition of E, we can see that E
represents a (partial) one-one mapping between types.

More generally, dependencies take the form x1 ...xn -> y1 ...ym,wherexl, .., xn,andyl, ..., ynare type variables with
n>0 and m>=0, meaning that the y parameters are uniquely determined by the x parameters. Spaces can be used as separators if
more than one variable appears on any single side of a dependency, asin t —> a b. Note that a class may be annotated with
multiple dependencies using commas as separators, as in the definition of E above. Some dependencies that we can write in this
notation are redundant, and will be rejected because they don’t serve any useful purpose, and may instead indicate an error in the
program. Examples of dependencies like thisincludea -> a ,a -> a a ,a —-> ,etc. There can also be some redundancy
if multiple dependencies are given, as in a—>b, b—->c , a->c , and in which some subset implies the remaining dependencies.
Examples like this are not treated as errors. Note that dependencies appear only in class declarations, and not in any other part of
the language. In particular, the syntax for instance declarations, class constraints, and types is completely unchanged.

By including dependencies in a class declaration, we provide a mechanism for the programmer to specify each multiple parameter
class more precisely. The compiler, on the other hand, is responsible for ensuring that the set of instances that are in scope at any
given point in the program is consistent with any declared dependencies. For example, the following pair of instance declarations
cannot appear together in the same scope because they violate the dependency for D, even though either one on its own would be
acceptable:

instance D Bool Int where
instance D Bool Char where

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where

The problem here is that this instance would allow one particular choice of [a] to be associated with more than one choice for b,
which contradicts the dependency specified in the definition of D. More generally, this means that, in any instance of the form:

instance D t s where

for some particular types t and s, the only variables that can appear in s are the ones that appear in t, and hence, if the type t is
known, then s will be uniquely determined.

The benefit of including dependency information is that it allows us to define more general multiple parameter classes, without
ambiguity problems, and with the benefit of more accurate types. To illustrate this, we return to the collection class example, and
annotate the original definition of Collects with a simple dependency:

class Collects e ce | ce —> e where
empty :: ce
insert :: e -> ce -> ce
member :: e —-> ce —> Bool

The dependency ce —> e here specifies that the type e of elements is uniquely determined by the type of the collection ce.
Note that both parameters of Collects are of kind *; there are no constructor classes here. Note too that all of the instances of
Collects that we gave earlier can be used together with this new definition.

What about the ambiguity problems that we encountered with the original definition? The empty function still has type Collects
e ce => ce, but it is no longer necessary to regard that as an ambiguous type: Although the variable e does not appear on the right
of the => symbol, the dependency for class Collects tells us that it is uniquely determined by ce, which does appear on the right
of the => symbol. Hence the context in which empty is used can still give enough information to determine types for both ce and

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 185/316

e, without ambiguity. More generally, we need only regard a type as ambiguous if it contains a variable on the left of the => that
is not uniquely determined (either directly or indirectly) by the variables on the right.

Dependencies also help to produce more accurate types for user defined functions, and hence to provide earlier detection of
errors, and less cluttered types for programmers to work with. Recall the previous definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a ¢, Collects b c¢c) =>a ->b -> c -> c

Given the dependency information that we have for Collects, however, we can deduce that a and b must be equal because they
both appear as the second parameter in a Collects constraint with the same first parameter c. Hence we can infer a shorter and
more accurate type for f:

f :: (Collects a c) =>a -> a —> c —> cC

In a similar way, the earlier definition of g will now be flagged as a type error.

Although we have given only a few examples here, it should be clear that the addition of dependency information can help
to make multiple parameter classes more useful in practice, avoiding ambiguity problems, and allowing more general sets of
instance declarations.

7.6.3 Instance declarations

An instance declaration has the form

instance (assertionl, ..., assertionn) => class typel ... typem where

The part before the "=>" is the context, while the part after the "=>" is the head of the instance declaration.

7.6.3.1 Instance resolution
When GHC tries to resolve, say, the constraint C Int Bool, it tries to match every instance declaration against the constraint,
by instantiating the head of the instance declaration. Consider these declarations:

instance contextl => C Int a where ... -— (A)

instance context2 => C a Bool where ... -— (B)

GHC'’s default behaviour is that exactly one instance must match the constraint it is trying to resolve. For example, the constraint
C Int Bool matches instances (A) and (B), and hence would be rejected; while C Int Char matches only (A) and hence
(A) is chosen.

Notice that

* When matching, GHC takes no account of the context of the instance declaration (context1 etc).

* It is fine for there to be a potential of overlap (by including both declarations (A) and (B), say); an error is only reported if a
particular constraint matches more than one.

See also Section 7.6.3.5 for flags that loosen the instance resolution rules.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 186/316

7.6.3.2 Relaxed rules for the instance head

In Haskell 98 the head of an instance declaration must be of the form C (T al ...an), where C is the class, T is a data type
constructor, and the al .. .an are distinct type variables. In the case of multi-parameter type classes, this rule applies to each
parameter of the instance head. (Arguably it should be OK if just one has this form and the others are type variables, but that’s
the rules at the moment.)

GHC relaxes this rule in two ways.

* With the -XTypeSynonymInstances flag, instance heads may use type synonyms. As always, using a type synonym is
just shorthand for writing the RHS of the type synonym definition. For example:

type Point a = (a,a)
instance C (Point a) where
is legal. The instance declaration is equivalent to

instance C (a,a) where

As always, type synonyms must be fully applied. You cannot, for example, write:

instance Monad Point where

* The -XFlexibleInstances flag allows the head of the instance declaration to mention arbitrary nested types. For exam-
ple, this becomes a legal instance declaration

instance C (Maybe Int) where

See also the rules on overlap.

The -XFlexibleInstances flag implies -XTypeSynonymInstances.

7.6.3.3 Relaxed rules for instance contexts

In Haskell 98, the assertions in the context of the instance declaration must be of the form C a where a is a type variable that
occurs in the head.

The -XFlexibleContexts flag relaxes this rule, as well as the corresponding rule for type signatures (see Section 7.12.2).
With this flag the context of the instance declaration can each consist of arbitrary (well-kinded) assertions (C t1 ...tn)
subject only to the following rules:

1. The Paterson Conditions: for each assertion in the context

(a) No type variable has more occurrences in the assertion than in the head

(b) The assertion has fewer constructors and variables (taken together and counting repetitions) than the head

2. The Coverage Condition. For each functional dependency, tvsierr —> tvsiigh, Of the class, every type variable in
S(tvsright) must appear in S(tvsief), where S is the substitution mapping each type variable in the class declaration to
the corresponding type in the instance declaration.

These restrictions ensure that context reduction terminates: each reduction step makes the problem smaller by at least one
constructor. Both the Paterson Conditions and the Coverage Condition are lifted if you give the ~-XUndecidableInstances
flag (Section 7.6.3.4). You can find lots of background material about the reason for these restrictions in the paper Understanding
functional dependencies via Constraint Handling Rules.

For example, these are OK:

http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/
http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 187 /316

instance C Int [a] —— Multiple parameters
instance Eq (S [a]) —-— Structured type in head

—— Repeated type variable in head
instance C4 a a => C4 [a] [al]
instance Stateful (ST s) (MutVar s)

—-— Head can consist of type variables only
instance C a
instance (Egq a, Show b) => C2 a b

—— Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b

But these are not:

—— Context assertion no smaller than head
instance C a => C a where

—-— (C b b) has more occurrences of b than the head
instance C b b => Foo [b] where

The same restrictions apply to instances generated by deriving clauses. Thus the following is accepted:
data MinHeap h a = H a (h a)
deriving (Show)
because the derived instance

instance (Show a, Show (h a)) => Show (MinHeap h a)

conforms to the above rules.

A useful idiom permitted by the above rules is as follows. If one allows overlapping instance declarations then it’s quite conve-
nient to have a "default instance" declaration that applies if something more specific does not:

instance C a where
op = ... —— Default

7.6.3.4 Undecidable instances

Sometimes even the rules of Section 7.6.3.3 are too onerous. For example, sometimes you might want to use the following to get
the effect of a "class synonym":

class (Cl a, C2 a, C3 a) => C a where { }

instance (Cl a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: Ca=>
instead of
f :: (Cl a, C2 a, C3 a) =>

The restrictions on functional dependencies (Section 7.6.2) are particularly troublesome. It is tempting to introduce type variables
in the context that do not appear in the head, something that is excluded by the normal rules. For example:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 188/316

class HasConverter a b | a —> b where
convert :: a —-> b

data Foo a = MkFoo a

instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)

This is dangerous territory, however. Here, for example, is a program that would make the typechecker loop:

class D a

class F a b | a—>b
instance F [a] [[a]l]
instance (D ¢, F a c) => D [a] —— ¢’ 1is not mentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul a b ¢ | a b —> ¢ where

(.*x.) 2 a —>Db -—>c
instance Mul Int Int Int where (.*.) = (%)
instance Mul Int Float Float where x .*x. y = fromIntegral x x y

instance Mul a b ¢ => Mul a [b] [c] where x .x. v = map (xX.*.) V

The third instance declaration does not obey the coverage condition; and indeed the (somewhat strange) definition:

f=\Dbxy —-> if b then x .*x. [y] else y

makes instance inference go into a loop, because it requires the constraint (Mul a [b] b).

Nevertheless, GHC allows you to experiment with more liberal rules. If you use the experimental flag ~-XUndecidableIn
stances , both the Paterson Conditions and the Coverage Condition (described in Section 7.6.3.3) are lifted. Termination is
ensured by having a fixed-depth recursion stack. If you exceed the stack depth you get a sort of backtrace, and the opportunity to
increase the stack depth with —fcontext-stack=N.

7.6.3.5 Overlapping instances

In general, as discussed in Section 7.6.3.1, GHC requires that it be unambiguous which instance declaration should be used to
resolve a type-class constraint. This behaviour can be modified by two flags: ~-XOverlappingInstances and —~XIncohe
rentInstances, as this section discusses. Both these flags are dynamic flags, and can be set on a per-module basis, using an
LANGUAGE pragma if desired (Section 7.19.1).

The —XOverlappingInstances flag instructs GHC to loosen the instance resolution described in Section 7.6.3.1, by al-
lowing more than one instance to match, provided there is a most specific one. The —XIncoherentInstances flag further
loosens the resolution, by allowing more than one instance to match, irespective of whether there is a most specific one.

For example, consider

instance contextl => C Int b where ... —-— (A)
instance context2 => C a Bool where ... —-— (B)
instance context3 => C a [b] where ... -— (C)
instance context4 => C Int [Int] where ... -— (D)

compiled with ~-XOverlappingInstances enabled. The constraint C Int [Int] matches instances (A), (C) and (D),
but the last is more specific, and hence is chosen.

If (D) did not exist then (A) and (C) would still be matched, but neither is most specific. In that case, the program would be
rejected even with —-XOverlappingInstances. With -XIncoherentInstances enabled, it would be accepted and (A)
or (C) would be chosen arbitrarily.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 189/316

An instance declaration is more specific than another iff the head of former is a substitution instance of the latter. For example
(D) is "more specific" than (C) because you can get from (C) to (D) by substituting a : =Int.

However, GHC is conservative about committing to an overlapping instance. For example:
£ :: [b] —> [Db]
f x =

Suppose that from the RHS of £ we get the constraint C b [b]. But GHC does not commit to instance (C), because in a
particular call of £, b might be instantiate to Int, in which case instance (D) would be more specific still. So GHC rejects the
program.

If, however, you add the flag ~XIncoherentInstances when compiling the module that contians (D), GHC will instead
pick (C), without complaining about the problem of subsequent instantiations.

Notice that we gave a type signature to £, so GHC had to check that £ has the specified type. Suppose instead we do not give a
type signature, asking GHC to infer it instead. In this case, GHC will refrain from simplifying the constraint C Int [b] (for
the same reason as before) but, rather than rejecting the program, it will infer the type

f :: Cb [b]l] => [b] —> [b]

That postpones the question of which instance to pick to the call site for £ by which time more is known about the type b. You
can write this type signature yourself if you use the -XFlexibleContexts flag.

Exactly the same situation can arise in instance declarations themselves. Suppose we have

class Foo a where

f :: a > a
instance Foo [b] where
f x =

and, as before, the constraint C Int [b] arises from f’s right hand side. GHC will reject the instance, complaining as before
that it does not know how to resolve the constraint C Int [b], because it matches more than one instance declaration. The
solution is to postpone the choice by adding the constraint to the context of the instance declaration, thus:

instance C Int [b] => Foo [b] where
f x =
(You need -XFlexiblelnstances to do this.)

Warning: overlapping instances must be used with care. They can give rise to incoherence (i.e. different instance choices are
made in different parts of the program) even without ~-XIncoherentInstances. Consider:

{-# LANGUAGE OverlappingInstances #-}
module Help where

class MyShow a where
myshow :: a —> String

instance MyShow a => MyShow [a] where
myshow xs = concatMap myshow xs

showHelp :: MyShow a => [a] —-> String
showHelp xs = myshow xs

{—# LANGUAGE FlexiblelInstances, OverlappingInstances #-}
module Main where
import Help

data T = MKT

instance MyShow T where
myshow x = "Used generic instance"

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 190/316

instance MyShow [T] where
myshow xs = "Used more specific instance"

main = do { print (myshow [MkT]); print (showHelp [MkT]) }

In function showHelp GHC sees no overlapping instances, and so uses the MyShow [a] instance without complaint. In the
call to myshow in main, GHC resolves the MyShow [T] constraint using the overlapping instance declaration in module
Main. As a result, the program prints

"Used more specific instance"
"Used generic instance"

(An alternative possible behaviour, not currently implemented, would be to reject module Help on the grounds that a later
instance declaration might overlap the local one.)

The willingness to be overlapped or incoherent is a property of the instance declaration itself, controlled by the presence or
otherwise of the -XOverlappingInstances and -XIncoherentInstances flags when that module is being defined.
Suppose we are searching for an instance of the target constraint (C tyl ..tyn). The search works like this.

 Find all instances I that march the target constraint; that is, the target constraint is a substitution instance of I. These instance
declarations are the candidates.

* Find all non-candidate instances that unify with the target constraint. Such non-candidates instances might match when the
target constraint is further instantiated. If all of them were compiled with —~-XIncoherentInstances, proceed; if not, the
search fails.

* Eliminate any candidate IX for which both of the following hold:

— There is another candidate IY that is strictly more specific; that is, I'Y is a substitution instance of IX but not vice versa.
— Either IX or IY was compiled with -XOverlappingInstances.

* If only one candidate remains, pick it. Otherwise if all remaining candidates were compiled with —~XInccoherentInstan
ces, pick an arbitrary candidate.

These rules make it possible for a library author to design a library that relies on overlapping instances without the library client
having to know.

The -XIncoherentInstances flag implies the -XOverlappingInstances flag, but not vice versa.

7.6.3.6 Type signatures in instance declarations

In Haskell, you can’t write a type signature in an instance declaration, but it is sometimes convenient to do so, and the language
extension —XInstanceSigs allows you to do so. For example:

data T a = MkT a a

instance Eq a => Eq (T a) where
(==) :: T a ->T a —> Bool —— The signature
(==) (MkT x1 x2) (MkTy yl y2) = xl==yl && x2==y2

The type signature in the instance declaration must be precisely the same as the one in the class declaration, instantiated with the
instance type.

One stylistic reason for wanting to write a type signature is simple documentation. Another is that you may want to bring scoped
type variables into scope. For example:

class C a where
foo :: b -> a —> (a, [b])

instance C a => C (T a) where
foo :: forall b. b > T a -> (T a, [bl)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 191/316

foo x (T y) = (T y, xs)
where
xs :: [b]
xs = [xX,X,X]

Provided that you also specify ~XScopedTypeVariables (Section 7.12.8), the forall b scopes over the definition of
foo, and in particular over the type signature for xs.

7.6.4 Overloaded string literals
GHC supports overloaded string literals. Normally a string literal has type St ring, but with overloaded string literals enabled
(with —-XOverloadedStrings) a string literal has type (IsString a) => a.

This means that the usual string syntax can be used, e.g., for ByteString, Text, and other variations of string like types.
String literals behave very much like integer literals, i.e., they can be used in both expressions and patterns. If used in a pattern
the literal with be replaced by an equality test, in the same way as an integer literal is.

The class IsString is defined as:
class IsString a where
fromString :: String -> a
The only predefined instance is the obvious one to make strings work as usual:
instance IsString [Char] where

fromString cs = cs

The class TsString is not in scope by default. If you want to mention it explicitly (for example, to give an instance declaration
for it), you can import it from module GHC . Exts.

Haskell’s defaulting mechanism is extended to cover string literals, when ~XOverloadedStrings is specified. Specifically:

* Each type in a default declaration must be an instance of Num or of IsString.

e The standard defaulting rule (Haskell Report, Section 4.3.4) is extended thus: defaulting applies when all the unresolved
constraints involve standard classes or IsString; and at least one is a numeric class or IsString.

A small example:

module Main where

import GHC.Exts(IsString(..))

newtype MyString = MyString String deriving (Eqg, Show)

instance IsString MyString where
fromString = MyString

greet :: MyString -> MyString
greet "hello" = "world"

greet other = other

main = do

print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets translated into an equality comparison.

http://www.haskell.org/onlinereport/decls.html#sect4.3.4

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 192/316

7.6.5 Overloaded lists

GHC supports overloading of the list notation. Let us recap the notation for constructing lists. In Haskell, the list notation can
be be used in the following seven ways:

[-— Empty list

[x] -— x : []

[x,V,2] -— x :y :z : []

[x ..] —— enumFrom x

[x,y ..] —— enumFromThen x y

[x v —-— enumFromTo x y

[x,v .. z] —-— enumFromThenTo x y z

When the OverloadedLists extension is turned on, the aforementioned seven notations are desugared as follows:

[] —— fromListN 0 []

[x] —— fromListN 1 (x : [])

[x,V,2] —— fromListN 3 (x : y : z : [])

[x .. 1] —— fromList (enumFrom Xx)

[x,y ..] —— fromList (enumFromThen x y)

[x v —— fromList (enumFromTo x y)

[x,v .. z] —-— fromList (enumFromThenTo x y z)

This extension allows programmers to use the list notation for construction of structures like: Set, Map, IntMap, Vector,
Text and Array. The following code listing gives a few examples:

[0 .. "9"] :: Set Char

[1 .. 10] :: Vector Int
[("default",0), (kl,v1l)] :: Map String Int
[fa’ .. "z'"] :: Text

List patterns are also overloaded. When the OverloadedLists extension is turned on, these definitions are desugared as
follows

£f[] = ... -—— f (toList -> []) =
g [XIYVZ] = ... -— g (toList —> [XIYVZ]) =

(Here we are using view-pattern syntax for the translation, see Section 7.3.7.)

7.6.5.1 The IsList class

In the above desugarings, the functions toList, fromList and fromListN are all methods of the IsList class, which is
itself exported from the GHC . Ext s module. The type class is defined as follows:

class IsList 1 where
type Item 1

fromList :: [Item 1] -> 1

tolList :: 1 => [Item 1]
fromListN :: Int -> [Item 1] —> 1
fromListN _ = fromList

The FromList class and its methods are intended to be used in conjunction with the OverloadedLists extension.

* The type function Item returns the type of items of the structure 1.

e The function fromList constructs the structure 1 from the given list of Ttem 1.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 193/316

* The function fromListN takes the input list’s length as a hint. Its behaviour should be equivalent to fromList. The hint
can be used for more efficient construction of the structure 1 compared to fromList. If the given hint is not equal to the
input list’s length the behaviour of fromListN is not specified.

¢ The function t oList should be the inverse of fromList.

It is perfectly fine to declare new instances of IsList, so that list notation becomes useful for completely new data types. Here
are several example instances:

instance FromList [a] where
type Item [a] = a
fromList = id

toList = id

instance (Ord a) => FromList (Set a) where
type Item (Set a) = a
fromList = Set.fromList

toList = Set.tolist

instance (Ord k) => FromList (Map k v) where
type Item (Map k v) = (k,Vv)
fromList = Map.fromList
toList = Map.tolList

instance FromList (IntMap v) where
type Item (IntMap v) = (Int,v)
fromList = IntMap.fromList
toList = IntMap.tolList

instance FromList Text where
type Item Text = Char
fromList = Text.pack
toList = Text.unpack

instance FromList (Vector a) where
type Item (Vector a) = a
fromList = Vector.fromList
fromListN = Vector.fromListN
tolList = Vector.tolList

7.6.5.2 Rebindable syntax
When desugaring list notation with ~-XOverloadedLists GHC uses the fromList (etc) methods from module GHC . Exts.
You do not need to import GHC . Ext s for this to happen.

However if you use —XRebindableSyntax, then GHC instead uses whatever is in scope with the names of toList, from
List and fromListN. That is, these functions are rebindable; c.f. Section 7.3.15.

7.6.5.3 Defaulting

Currently, the IsList class is not accompanied with defaulting rules. Although feasible, not much thought has gone into how
to specify the meaning of the default declarations like:

default ([a])

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 194 /316

7.6.5.4 Speculation about the future

The current implementation of the OverloadedList s extension can be improved by handling the lists that are only populated
with literals in a special way. More specifically, the compiler could allocate such lists statically using a compact representation
and allow IsList instances to take advantage of the compact representation. Equipped with this capability the Overloade
dLists extension will be in a good position to subsume the OverloadedStrings extension (currently, as a special case,
string literals benefit from statically allocated compact representation).

7.7 Type families

Indexed type families form an extension to facilitate type-level programming. Type families are a generalisation of associated
data types (“Associated Types with Class”, M. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. In Proceedings of “The
32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05)”, pages 1-13, ACM
Press, 2005) and associated type synonyms (“Type Associated Type Synonyms”. M. Chakravarty, G. Keller, and S. Peyton Jones.
In Proceedings of “The Tenth ACM SIGPLAN International Conference on Functional Programming”, ACM Press, pages 241-
253, 2005). Type families themselves are described in the paper “Type Checking with Open Type Functions”, T. Schrijvers,
S. Peyton-Jones, M. Chakravarty, and M. Sulzmann, in Proceedings of “ICFP 2008: The 13th ACM SIGPLAN International
Conference on Functional Programming”, ACM Press, pages 51-62, 2008. Type families essentially provide type-indexed data
types and named functions on types, which are useful for generic programming and highly parameterised library interfaces as
well as interfaces with enhanced static information, much like dependent types. They might also be regarded as an alternative
to functional dependencies, but provide a more functional style of type-level programming than the relational style of functional
dependencies.

Indexed type families, or type families for short, are type constructors that represent sets of types. Set members are denoted
by supplying the type family constructor with type parameters, which are called type indices. The difference between vanilla
parametrised type constructors and family constructors is much like between parametrically polymorphic functions and (ad-hoc
polymorphic) methods of type classes. Parametric polymorphic functions behave the same at all type instances, whereas class
methods can change their behaviour in dependence on the class type parameters. Similarly, vanilla type constructors imply the
same data representation for all type instances, but family constructors can have varying representation types for varying type
indices.

Indexed type families come in three flavours: data families, open type synonym families, and closed type synonym families. They
are the indexed family variants of algebraic data types and type synonyms, respectively. The instances of data families can be
data types and newtypes.

Type families are enabled by the flag -XTypeFamilies. Additional information on the use of type families in GHC is available
on the Haskell wiki page on type families.

7.7.1 Data families

Data families appear in two flavours: (1) they can be defined on the toplevel or (2) they can appear inside type classes (in which
case they are known as associated types). The former is the more general variant, as it lacks the requirement for the type-indexes
to coincide with the class parameters. However, the latter can lead to more clearly structured code and compiler warnings if some
type instances were - possibly accidentally - omitted. In the following, we always discuss the general toplevel form first and then
cover the additional constraints placed on associated types.

7.7.1.1 Data family declarations

Indexed data families are introduced by a signature, such as

data family GMap k :: * —> x

The special family distinguishes family from standard data declarations. The result kind annotation is optional and, as usual,
defaults to « if omitted. An example is

data family Array e

http://www.cse.unsw.edu.au/~chak/papers/CKPM05.html
http://www.cse.unsw.edu.au/~chak/papers/CKP05.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html
http://www.haskell.org/haskellwiki/GHC/Indexed_types

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 195/316

Named arguments can also be given explicit kind signatures if needed. Just as with [http://www.haskell.org/ghc/docs/latest/html/users_gt
GADT declarations] named arguments are entirely optional, so that we can declare Array alternatively with

data family Array :: * —> «x

7.7.1.2 Data instance declarations

Instance declarations of data and newtype families are very similar to standard data and newtype declarations. The only two
differences are that the keyword data or newtype is followed by instance and that some or all of the type arguments can
be non-variable types, but may not contain forall types or type synonym families. However, data families are generally allowed
in type parameters, and type synonyms are allowed as long as they are fully applied and expand to a type that is itself admissible
- exactly as this is required for occurrences of type synonyms in class instance parameters. For example, the Either instance
for GMap is

data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)

In this example, the declaration has only one variant. In general, it can be any number.

Data and newtype instance declarations are only permitted when an appropriate family declaration is in scope - just as a class
instance declaration requires the class declaration to be visible. Moreover, each instance declaration has to conform to the kind
determined by its family declaration. This implies that the number of parameters of an instance declaration matches the arity
determined by the kind of the family.

A data family instance declaration can use the full expressiveness of ordinary data or newtype declarations:

* Although, a data family is introduced with the keyword "data", a data family instance can use either data or newtype. For
example:

data family T a
data instance T Int = Tl Int | T2 Bool
newtype instance T Char TC Bool

* Adata instance can use GADT syntax for the data constructors, and indeed can define a GADT. For example:

data family G a b

data instance G [a] b where
Gl :: ¢ —> G [Int] b
G2 :: G [a] Bool

* Youcanuse aderiving clause onadata instance or newtype instance declaration.

Even if data families are defined as toplevel declarations, functions that perform different computations for different family
instances may still need to be defined as methods of type classes. In particular, the following is not possible:

data family T a

data instance T Int = A

data instance T Char = B

foo :: T a —> Int

foo A =1 —— WRONG: These two equations together...
foo B = 2 -— ...will produce a type error.

Instead, you would have to write foo as a class operation, thus:

class Foo a where

foo :: T a —> Int
instance Foo Int where
foo A =1

instance Foo Char where
foo B = 2

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 196 /316

(Given the functionality provided by GADTs (Generalised Algebraic Data Types), it might seem as if a definition, such as the
above, should be feasible. However, type families are - in contrast to GADTS - are open; i.e., new instances can always be added,
possibly in other modules. Supporting pattern matching across different data instances would require a form of extensible case
construct.)

7.7.1.3 Overlap of data instances

The instance declarations of a data family used in a single program may not overlap at all, independent of whether they are
associated or not. In contrast to type class instances, this is not only a matter of consistency, but one of type safety.

7.7.2 Synonym families

Type families appear in three flavours: (1) they can be defined as open families on the toplevel, (2) they can be defined as closed
families on the toplevel, or (3) they can appear inside type classes (in which case they are known as associated type synonyms).
Toplevel families are more general, as they lack the requirement for the type-indexes to coincide with the class parameters.
However, associated type synonyms can lead to more clearly structured code and compiler warnings if some type instances were
- possibly accidentally - omitted. In the following, we always discuss the general toplevel forms first and then cover the additional
constraints placed on associated types. Note that closed associated type synonyms do not exist.

7.7.2.1 Type family declarations

Open indexed type families are introduced by a signature, such as

type family Elem c :: =

The special family distinguishes family from standard type declarations. The result kind annotation is optional and, as usual,
defaults to » if omitted. An example is

type family Elem c

Parameters can also be given explicit kind signatures if needed. We call the number of parameters in a type family declaration,
the family’s arity, and all applications of a type family must be fully saturated w.r.t. to that arity. This requirement is unlike
ordinary type synonyms and it implies that the kind of a type family is not sufficient to determine a family’s arity, and hence in
general, also insufficient to determine whether a type family application is well formed. As an example, consider the following
declaration:

type family F a b :: x —> « -- F’s arity is 2,
—— although its overall kind is * —=> x —=> % —> x

Given this declaration the following are examples of well-formed and malformed types:

F Char [Int] —-— OK! Kind: x —-> x

F Char [Int] Bool —- OK! Kind: =«

F IO Bool —— WRONG: kind mismatch in the first argument
F Bool —— WRONG: unsaturated application

7.7.2.2 Type instance declarations

Instance declarations of type families are very similar to standard type synonym declarations. The only two differences are that
the keyword t ype is followed by instance and that some or all of the type arguments can be non-variable types, but may not
contain forall types or type synonym families. However, data families are generally allowed, and type synonyms are allowed as
long as they are fully applied and expand to a type that is admissible - these are the exact same requirements as for data instances.
For example, the [e] instance for Elem is

type instance Elem [e] = e

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 197 /316

Type family instance declarations are only legitimate when an appropriate family declaration is in scope - just like class instances
require the class declaration to be visible. Moreover, each instance declaration has to conform to the kind determined by its
family declaration, and the number of type parameters in an instance declaration must match the number of type parameters in
the family declaration. Finally, the right-hand side of a type instance must be a monotype (i.e., it may not include foralls) and
after the expansion of all saturated vanilla type synonyms, no synonyms, except family synonyms may remain.

7.7.2.3 Closed type families

A type family can also be declared with a where clause, defining the full set of equations for that family. For example:

type family F a where

F Int = Double
F Bool = Char
F a = String

A closed type family’s equations are tried in order, from top to bottom, when simplifying a type family application. In this
example, we declare an instance for F such that F Int simplifies to Double, F Bool simplifies to Char, and for any other
type a that is known not to be Int or Bool, F a simplifies to St ring. Note that GHC must be sure that a cannot unify with
Int or Bool in that last case; if a programmer specifies just F a in their code, GHC will not be able to simplify the type. After
all, a might later be instantiated with Int.

A closed type family’s equations have the same restrictions as the equations for an open type family instances.

7.7.2.4 Type family examples

Here are some examples of admissible and illegal type instances:

type family F a :: x
type instance F [Int] = Int -— OK!
type instance F String = Char —-— OK!
type instance F (F a) = a —— WRONG: type parameter mentions a type <+
family
type instance F (forall a. (a, b)) =b —— WRONG: a forall type appears in a type <+
parameter
type instance F Float = forall a.a —-- WRONG: right-hand side may not be a <+
forall type
type family H a where —-— OK!
H Int = Int
H Bool = Bool
H a = String
type instance H Char = Char —— WRONG: cannot have instances of closed family
type family G a b :: » —> %
type instance G Int = (,) —— WRONG: must be two type parameters
type instance G Int Char Float = Double -- WRONG: must be two type parameters

7.7.2.5 Compatibility and apartness of type family equations

There must be some restrictions on the equations of type families, lest we define an ambiguous rewrite system. So, equations of
open type families are restricted to be compatible. Two type patterns are compatible if

1. all corresponding types in the patterns are apart, or

2. the two patterns unify producing a substitution, and the right-hand sides are equal under that substitution.

Two types are considered apart if, for all possible substitutions, the types cannot reduce to a common reduct.

The first clause of "compatible" is the more straightforward one. It says that the patterns of two distinct type family instances
cannot overlap. For example, the following is disallowed:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 198/316

type instance F Int = Bool
type instance F Int = Char

The second clause is a little more interesting. It says that two overlapping type family instances are allowed if the right-hand
sides coincide in the region of overlap. Some examples help here:

type instance F (a, Int) = [a]

type instance F (Int, b) = [b] —-— overlap permitted

type instance G (a, Int) = [a]

type instance G (Char, a) = [a] —-— ILLEGAL overlap, as [Char] /= [Int]

Note that this compatibility condition is independent of whether the type family is associated or not, and it is not only a matter
of consistency, but one of type safety.

The definition for "compatible" uses a notion of "apart", whose definition in turn relies on type family reduction. This condition
of "apartness", as stated, is impossible to check, so we use this conservative approximation: two types are considered to be apart
when the two types cannot be unified, even by a potentially infinite unifier. Allowing the unifier to be infinite disallows the
following pair of instances:

type instance H x x = Int
type instance H [x] x = Bool

The type patterns in this pair equal if x is replaced by an infinite nesting of lists. Rejecting instances such as these is necessary
for type soundness.

Compatibility also affects closed type families. When simplifying an application of a closed type family, GHC will select an
equation only when it is sure that no incompatible previous equation will ever apply. Here are some examples:

type family F a where
F Int = Bool
F a = Char

type family G a where
G Int = Int
G a = a

In the definition for F, the two equations are incompatible -- their patterns are not apart, and yet their right-hand sides do not
coincide. Thus, before GHC selects the second equation, it must be sure that the first can never apply. So, the type F a does
not simplify; only a type such as F Double will simplify to Char. In G, on the other hand, the two equations are compatible.
Thus, GHC can ignore the first equation when looking at the second. So, G a will simplify to a.

However see Section 2.4.4 for the overlap rules in GHCi.

7.7.2.6 Decidability of type synonym instances

In order to guarantee that type inference in the presence of type families decidable, we need to place a number of additional
restrictions on the formation of type instance declarations (c.f., Definition 5 (Relaxed Conditions) of “Type Checking with Open
Type Functions™). Instance declarations have the general form

type instance F tl1 .. tn = t
where we require that for every type family application (G sl ..sm) int,

1. s1 ..smdo notcontain any type family constructors,

2. the total number of symbols (data type constructors and type variables) in s1 . .sm s strictly smaller thanint1l ..tn,
and

3. for every type variable a, a occurs in s1 ..smatmostasoftenasintl ..tn.

http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 199/316

These restrictions are easily verified and ensure termination of type inference. However, they are not sufficient to guarantee com-
pleteness of type inference in the presence of, so called, “loopy equalities”, suchas a ~ [F a], where a recursive occurrence
of a type variable is underneath a family application and data constructor application - see the above mentioned paper for details.

If the option —~XUndecidableInstances is passed to the compiler, the above restrictions are not enforced and it is on the
programmer to ensure termination of the normalisation of type families during type inference.

7.7.3 Associated data and type families

A data or type synonym family can be declared as part of a type class, thus:

class GMapKey k where
data GMap k :: x —> *

class Collects ce where
type Elem ce :: *

When doing so, we (optionally) may drop the "family" keyword.

The type parameters must all be type variables, of course, and some (but not necessarily all) of then can be the class parameters.
Each class parameter may only be used at most once per associated type, but some may be omitted and they may be in an order
other than in the class head. Hence, the following contrived example is admissible:

class C a b ¢ where
type T ¢c a x :: *

Here ¢ and a are class parameters, but the type is also indexed on a third parameter x.

7.7.3.1 Associated instances

When an associated data or type synonym family instance is declared within a type class instance, we (optionally) may drop the
instance keyword in the family instance:

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)

instance (Egq (Elem [e])) => Collects ([e]) where
type Elem [e] = e

The most important point about associated family instances is that the type indexes corresponding to class parameters must be
identical to the type given in the instance head; here this is the first argument of GMap, namely Either a b, which coincides
with the only class parameter.

Instances for an associated family can only appear as part of instance declarations of the class in which the family was declared
- just as with the equations of the methods of a class. Also in correspondence to how methods are handled, declarations of
associated types can be omitted in class instances. If an associated family instance is omitted, the corresponding instance type is
not inhabited; i.e., only diverging expressions, such as undefined, can assume the type.

Although it is unusual, there can be multiple instances for an associated family in a single instance declaration. For example, this
is legitimate:
instance GMapKey Flob where

data GMap Flob [v] = Gl v
data GMap Flob Int = G2 Int

Here we give two data instance declarations, one in which the last parameter is [v], and one for which it is Int. Since you
cannot give any subsequent instances for (GMap Flob ...), this facility is most useful when the free indexed parameter is
of a kind with a finite number of alternatives (unlike *).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 200/ 316

7.7.3.2 Associated type synonym defaults
It is possible for the class defining the associated type to specify a default for associated type instances. So for example, this is
OK:

class IsBoolMap v where
type Key v
type instance Key v = Int

lookupKey :: Key v —> v —-> Maybe Bool

instance IsBoolMap [(Int, Bool)] where
lookupKey = lookup

The instance keyword is optional.
There can also be multiple defaults for a single type, as long as they do not overlap:

class C a where
type F a b
type F a Int = Bool
type F a Bool Int

A default declaration is not permitted for an associated data type.

7.7.3.3 Scoping of class parameters
The visibility of class parameters in the right-hand side of associated family instances depends solely on the parameters of the
family. As an example, consider the simple class declaration

class C a b where
data T a

Only one of the two class parameters is a parameter to the data family. Hence, the following instance declaration is invalid:

instance C [c] d where
data T [c] = MKT (c, d) —— WRONG!! "d’” is not in scope

Here, the right-hand side of the data instance mentions the type variable d that does not occur in its left-hand side. We cannot
admit such data instances as they would compromise type safety.

7.7.3.4 Instance contexts and associated type and data instances

Associated type and data instance declarations do not inherit any context specified on the enclosing instance. For type instance
declarations, it is unclear what the context would mean. For data instance declarations, it is unlikely a user would want the
context repeated for every data constructor. The only place where the context might likely be useful is in a deriving clause
of an associated data instance. However, even here, the role of the outer instance context is murky. So, for clarity, we just stick
to the rule above: the enclosing instance context is ignored. If you need to use a non-trivial context on a derived instance, use a
standalone deriving clause (at the top level).

7.7.4 Import and export

The rules for export lists (Haskell Report Section 5.2) needs adjustment for type families:

* The form T (. .), where T is a data family, names the family T and all the in-scope constructors (whether in scope qualified
or unqualified) that are data instances of T.

http://www.haskell.org/onlinereport/modules.html#sect5.2

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 201/316

e The form T(.., ci, .., £j, ..),where T is a data family, names T and the specified constructors ci and fields f]
as usual. The constructors and field names must belong to some data instance of T, but are not required to belong to the same
instance.

e The form C (. .), where C is a class, names the class C and all its methods and associated types.

e The fom C (.., mi, .., type Tj, ..), where C is a class, names the class C, and the specified methods mi and

associated types T 7. The types need a keyword "t ype" to distinguish them from data constructors.

7.7.41 Examples

Recall our running GMapKey class example:

class GMapKey k where

data GMap k :: x —> *

insert :: GMap k v -> k -> v -> GMap k v
lookup :: GMap k v —> k —-> Maybe v

empty :: GMap k v

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
..method declarations...

Here are some export lists and their meaning:

* module GMap (GMapKey): Exports just the class name.

* module GMap (GMapKey (..)): Exports the class, the associated type GMap and the member functions empty,
lookup, and insert. The data constructors of GMap (in this case GMapEither) are not exported.

* module GMap (GMapKey (type GMap, empty, lookup, insert

"type" keyword.

) : Same as the previous item. Note the

* module GMap (GMapKey(..), GMap(..)): Same as previous item, but also exports all the data constructors for

GMap, namely GMapEither.

* module GMap (GMapKey (empty, lookup, insert), GMap(..)

* module GMap (GMapKey, empty, lookup, insert, GMap(..)

Two things to watch out for:

) : Same as previous item.

) : Same as previous item.

* You cannot write GMapKey (type GMap (..)) —i.e., sub-component specifications cannot be nested. To specify GMap’s

data constructors, you have to list it separately.

¢ Consider this example:

module X where
data family D

module Y where
import X
data instance D Int = D1 | D2

Module Y exports all the entities defined in Y, namely the data constructors D1 and D2, but not the data family D. That
(annoyingly) means that you cannot selectively import Y selectively, thus "import Y (D(D1,D2))", because Y does not

export D. Instead you should list the exports explicitly, thus:

module Y(D(..)) where
or module Y (module Y, D) where

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 202 /316

7.7.4.2 Instances

Family instances are implicitly exported, just like class instances. However, this applies only to the heads of instances, not to the
data constructors an instance defines.

7.7.5 Type families and instance declarations
Type families require us to extend the rules for the form of instance heads, which are given in Section 7.6.3.2. Specifically:

* Data type families may appear in an instance head

* Type synonym families may not appear (at all) in an instance head

The reason for the latter restriction is that there is no way to check for instance matching. Consider

type family F a
type instance F Bool = Int

class C a

instance C Int
instance C (F a)

Now a constraint (C (F Bool)) would match both instances. The situation is especially bad because the type instance for F
Bool might be in another module, or even in a module that is not yet written.

However, type class instances of instances of data families can be defined much like any other data type. For example, we can
say

data instance T Int = Tl Int | T2 Bool
instance Eq (T Int) where

il) = @l g) = fi==j
(T2 1) == (T2 j) = i==]
== = False

Note that class instances are always for particular instances of a data family and never for an entire family as a whole. This is for
essentially the same reasons that we cannot define a toplevel function that performs pattern matching on the data constructors of
different instances of a single type family. It would require a form of extensible case construct.

Data instance declarations can also have deriving clauses. For example, we can write
data GMap () v = GMapUnit (Maybe v)

deriving Show
which implicitly defines an instance of the form

instance Show v => Show (GMap () v) where

7.8 Kind polymorphism

This section describes kind polymorphism, and extension enabled by —~XPolyKinds. It is described in more detail in the paper
Giving Haskell a Promotion, which appeared at TLDI 2012.

http://dreixel.net/research/pdf/ghp.pdf

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 203 /316

7.8.1 Overview of kind polymorphism

Currently there is a lot of code duplication in the way Typeable is implemented (Section 7.5.3):

class Typeable (t :: x) where
typeOf :: t —-> TypeRep

class Typeablel (t :: * —> x) where
typeOfl :: t a —> TypeRep

class Typeable2 (t :: * —> x —> %) where
typeOf2 :: t a b -> TypeRep

Kind polymorphism (with ~-XPolyKinds) allows us to merge all these classes into one:

data Proxy t = Proxy

class Typeable t where

typeOf :: Proxy t —-> TypeRep
instance Typeable Int where typeOf _ = TypeRep
instance Typeable [] where typeOf _ = TypeRep

Note that the datatype Proxy has kind forall k.k —-> « (inferred by GHC), and the new Typeable class has kind
forall k.k -> Constraint.

7.8.2 Overview
Generally speaking, with -XPolyKinds, GHC will infer a polymorphic kind for un-decorated declarations, whenever possible.
For example:

data T m a = MKkT (m a)
—— GHC infers kind T :: forall k. (k —> %) —> k —> *

Just as in the world of terms, you can restrict polymorphism using a kind signature (sometimes called a kind annotation) (-
XPolyKinds implies ~-XKindSignatures):

data T m (a :: *) = MkT (m a)
—— GHC now infers kind T 1 (% —=> %) —> % —> %

There is no "forall" for kind variables. Instead, when binding a type variable, you can simply mention a kind variable in a kind
annotation for that type-variable binding, thus:

data T (m :: k —> %) a = MkT (m a)
—— GHC now infers kind T :: forall k. (k —> *) —> k —-> =«

The kind "forall" is placed just outside the outermost type-variable binding whose kind annotation mentions the kind variable.
For example

f1 :: (forall a m. m a —> Int) —-> Int
-—— f1 :: forall (k:BOX).
—— (forall (a:k) (m:k->%). m a —> Int)
—— —> Int
f2 :: (forall (a::k) m. m a -> Int) -> Int
—— f2 :: (forall (k:BOX) (a:k) (m:k->x). m a —-> Int)

== —> Int

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 204 /316

Here in £1 there is no kind annotation mentioning the polymorphic kind variable, so k is generalised at the top level of the
signature for £1, making the signature for £1 is as polymorphic as possible. But in the case of of £2 we give a kind annotation
inthe forall (a:k) binding, and GHC therefore puts the kind forall right there too.

(Note: These rules are a bit indirect and clumsy. Perhaps GHC should allow explicit kind quantification. But the implicit
quantification (e.g. in the declaration for data type T above) is certainly very convenient, and it is not clear what the syntax for
explicit quantification should be.)

7.8.3 Polymorphic kind recursion and complete kind signatures

Just as in type inference, kind inference for recursive types can only use monomorphic recursion. Consider this (contrived)
example:

data T m a = MKT (m a) (T Maybe (m a))
—— GHC infers kind T :: (x => %) —=> x —> x

The recursive use of T forced the second argument to have kind ». However, just as in type inference, you can achieve polymor-
phic recursion by giving a complete kind signature for T. The way to give a complete kind signature for a data type is to use a
GADT-style declaration with an explicit kind signature thus:

data T :: (k —> *) —-> k —> *x where
MKT :: ma —> T Maybe (m a) -> T m a

The complete user-supplied kind signature specifies the polymorphic kind for T, and this signature is used for all the calls to T
including the recursive ones. In particular, the recursive use of T is at kind *.

What exactly is considered to be a "complete user-supplied kind signature" for a type constructor? These are the forms:

* A GADT-style data type declaration, with an explicit ": : " in the header. For example:
data Tl :: (k => %) -> k —-> % where ... -—— Yes T1 :: forall k (k=>%) -> k —-> «
data T2 (a k => %) :: k —> * where ... -—— Yes T2 :: forall k. (k->%) -—> k -> =«
data T3 (a :: k —> %) (b :: k) :: % where ... -—— Yes T3 :: forall k. (k->%) -—> k —-> «
data T4 a (b :: k) :: x where ... -—— YES T4 :: forall k. x —> k —> %
data T5 a b where ... —— NO kind is inferred
data T4 (a :: k —> x) (b :: k) where ... —— NO kind is inferred

It makes no difference where you put the ": :" but it must be there. You cannot give a complete kind signature using a
Haskell-98-style data type declaration; you must use GADT syntax.

* An open type or data family declaration always has a complete user-specified kind signature; no ": : " is required:
data family D1 a —— D1 :: x —> «*
data family D2 (a :: k) —-— D2 :: forall k. k —> =«
data family D3 (a :: k) :: % —— D3 :: forall k. k —> =«
type family S1 a :: k —> = -— S1 :: forall k. x» —> k —> =«
class C a where -— C :: k -> Constraint
type AT a b —— AT :: k —> x —> %

In the last example, the variable a has an implicit kind variable annotation from the class declaration. It keeps its polymorphic
kind in the associated type declaration. The variable b, however, gets defaulted to =.

In a complete user-specified kind signature, any un-decorated type variable to the left of the ": : " is considered to have kind "+".
If you want kind polymorphism, specify a kind variable.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 205/316

7.8.4 Kind inference in closed type families

Although all open type families are considered to have a complete user-specified kind signature, we can relax this condition for
closed type families, where we have equations on which to perform kind inference. GHC will infer a kind for any type variable in
a closed type family when that kind is never used in pattern-matching. If you want a kind variable to be used in pattern-matching,
you must declare it explicitly.

Here are some examples (assuming —XDataKinds is enabled):

type family Not a where —-— Not :: Bool —> Bool
Not False = True
Not True = False

type family F a where —-— ERROR: requires pattern-matching on a kind variable
F Int = Bool

F Maybe = Char

type family G (a :: k) where —— G :: k —>
G Int = Bool
G Maybe = Char

type family SafeHead where —-— SafeHead :: [k] —-> Maybe k
SafeHead ' [] = Nothing —-— note that k is not required for pattern-matching
SafeHead (h ": t) = Just h

7.8.5 Kind inference in class instance declarations

Consider the following example of a poly-kinded class and an instance for it:

class C a where
type F a

instance C b where
type F b = b > b

In the class declaration, nothing constrains the kind of the type a, so it becomes a poly-kinded type variable (a ::k). Yet, in
the instance declaration, the right-hand side of the associated type instance b —> b says that b must be of kind x. GHC could
theoretically propagate this information back into the instance head, and make that instance declaration apply only to type of
kind «, as opposed to types of any kind. However, GHC does not do this.

In short: GHC does not propagate kind information from the members of a class instance declaration into the instance declaration
head.

This lack of kind inference is simply an engineering problem within GHC, but getting it to work would make a substantial change
to the inference infrastructure, and it’s not clear the payoff is worth it. If you want to restrict b’s kind in the instance above, just
use a kind signature in the instance head.

7.9 Datatype promotion

This section describes data type promotion, an extension to the kind system that complements kind polymorphism. It is enabled
by -XDataKinds, and described in more detail in the paper Giving Haskell a Promotion, which appeared at TLDI 2012.

7.9.1 Motivation

Standard Haskell has a rich type language. Types classify terms and serve to avoid many common programming mistakes. The
kind language, however, is relatively simple, distinguishing only lifted types (kind *), type constructors (eg. kind * —-> * —>
=), and unlifted types (Section 7.2.1). In particular when using advanced type system features, such as type families (Section 7.7)

http://dreixel.net/research/pdf/ghp.pdf

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 206 /316

or GADTs (Section 7.4.8), this simple kind system is insufficient, and fails to prevent simple errors. Consider the example of
type-level natural numbers, and length-indexed vectors:

data Ze
data Su n

data Vec :: x —> % —> x where
Nil =:: Vec a Ze
Cons :: a —> Vec a n —> Vec a (Su n)

The kind of Vec is » —> % —> . This means that eg. Vec Int Char is a well-kinded type, even though this is not what
we intend when defining length-indexed vectors.

With -XDataKinds, the example above can then be rewritten to:

data Nat = Ze | Su Nat

data Vec :: x —> Nat -> * where
Nil =:: Vec a Ze
Cons :: a —> Vec a n —> Vec a (Su n)

With the improved kind of Vec, things like Vec Int Char are now ill-kinded, and GHC will report an error.

7.9.2 Overview

With -XDataKinds, GHC automatically promotes every suitable datatype to be a kind, and its (value) constructors to be type
constructors. The following types

data Nat = Ze | Su Nat
data List a = Nil | Cons a (List a)
data Pair a b = Pair a b

data Sum a b = L a | R Db

give rise to the following kinds and type constructors:

Nat :: BOX

Ze :: Nat

Su :: Nat —> Nat

List k :: BOX

Nil :: List k

Cons :: k -> List k -> List k
Pair k1 k2 :: BOX

Pair :: k1 -> k2 —> Pair k1l k2
Sum k1l k2 :: BOX

L :: k1 —> Sum k1 k2

R :: k2 -> Sum k1l k2

where BOX is the (unique) sort that classifies kinds. Note that Li st, for instance, does not get sort BOX —> BOX, because we
do not further classify kinds; all kinds have sort BOX.

The following restrictions apply to promotion:

* We promote data types and newt ypes, but not type synonyms, or type/data families (Section 7.7).

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 207 /316

* We only promote types whose kinds are of the form ~ -> ...-> x —> «. In particular, we do not promote higher-kinded
datatypes such as data Fix f =In (f (Fix f)), or datatypes whose kinds involve promoted types such as Vec
* —> Nat —-> =*.

* We do not promote data constructors that are kind polymorphic, involve constraints, mention type or data families, or involve
types that are not promotable.

7.9.3 Distinguishing between types and constructors

Since constructors and types share the same namespace, with promotion you can get ambiguous type names:

data P == 1
data Prom = P == 2
type T = P -— 1 or promoted 27?

In these cases, if you want to refer to the promoted constructor, you should prefix its name with a quote:

type T1 P == 1

type T2 = 'P —-— promoted 2

Note that promoted datatypes give rise to named kinds. Since these can never be ambiguous, we do not allow quotes in kind
names.

Just as in the case of Template Haskell (Section 7.15.1), there is no way to quote a data constructor or type constructor whose
second character is a single quote.

7.9.4 Promoted lists and tuples types

Haskell’s list and tuple types are natively promoted to kinds, and enjoy the same convenient syntax at the type level, albeit
prefixed with a quote:

data HList :: [*] —> x where

HNil :: HList '’ []

HCons :: a —> HList t -> HList (a ’": t)
data Tuple :: (x,*) —> % where

Tuple :: a -> b —-> Tuple ' (a,b)

Note that this requires ~-XTypeOperators.

7.9.5 Promoted Literals

Numeric and string literals are promoted to the type level, giving convenient access to a large number of predefined type-level
constants. Numeric literals are of kind Nat, while string literals are of kind Symbol. These kinds are defined in the module
GHC.Typelits.

Here is an exampe of using type-level numeric literals to provide a safe interface to a low-level function:

import GHC.Typelits
import Data.Word
import Foreign

newtype ArrPtr (n :: Nat) a = ArrPtr (Ptr a)

clearPage :: ArrPtr 4096 Word8 -> IO ()
clearPage (ArrPtr p) =

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 208 /316

Here is an example of using type-level string literals to simulate simple record operations:

data Label (1 :: Symbol) = Get

class Has a 1 b | a 1 —> b where
from :: a —> Label 1 -> b

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ =y
example = from (Point 1 2) (Get :: Label "x")

7.9.6 Promoting existential data constructors

Note that we do promote existential data constructors that are otherwise suitable. For example, consider the following:

data Ex :: % where
MkEx :: forall a. a —> Ex

Both the type Ex and the data constructor MkEx get promoted, with the polymorphic kind ' MkEx ::forall k.k —-> Ex.
Somewhat surprisingly, you can write a type family to extract the member of a type-level existential:

type family UnEx (ex :: Ex) :: k
type instance UnEx (MkEx x) = x

At first blush, UnEx seems poorly-kinded. The return kind k is not mentioned in the arguments, and thus it would seem that an
instance would have to return a member of k for any k. However, this is not the case. The type family UnEx is a kind-indexed
type family. The return kind k is an implicit parameter to UnEx. The elaborated definitions are as follows:

type family UnEx (k :: BOX) (ex :: Ex) :: k
type instance UnEx k (MkEx k x) = x

Thus, the instance triggers only when the implicit parameter to UnEx matches the implicit parameter to MkEx. Because k is
actually a parameter to UnEx, the kind is not escaping the existential, and the above code is valid.

See also Trac #7347.

7.9.7 Promoting type operators

Type operators are not promoted to the kind level. Why not? Because * is a kind, parsed the way identifiers are. Thus, if
a programmer tried to write Either » Bool, would it be Either applied to » and Bool? Or would it be * applied to
Either and Bool. To avoid this quagmire, we simply forbid promoting type operators to the kind level.

7.10 Equality constraints

A type context can include equality constraints of the form t1 ~ t2, which denote that the types t1 and t2 need to be the
same. In the presence of type families, whether two types are equal cannot generally be decided locally. Hence, the contexts of
function signatures may include equality constraints, as in the following example:

sumCollects :: (Collects cl, Collects c¢2, Elem cl ~ Elem c2) => cl -> c2 -> c2

where we require that the element type of c1 and c2 are the same. In general, the types t1 and t2 of an equality constraint
may be arbitrary monotypes; i.e., they may not contain any quantifiers, independent of whether higher-rank types are otherwise
enabled.

http://ghc.haskell.org/trac/ghc/ticket/7347

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 209/316

Equality constraints can also appear in class and instance contexts. The former enable a simple translation of programs using
functional dependencies into programs using family synonyms instead. The general idea is to rewrite a class declaration of the
form

class C ab | a —>Db

to

class (F a ~ b) => C a b where
type F a

That is, we represent every functional dependency (FD) al ..an —-> b by an FD type family F al ..an and a superclass
context equality F al ..an ~ b, essentially giving a name to the functional dependency. In class instances, we define the
type instances of FD families in accordance with the class head. Method signatures are not affected by that process.

7.11 The Constraint kind

Normally, constraints (which appear in types to the left of the => arrow) have a very restricted syntax. They can only be:

¢ Class constraints, e.g. Show a
 Implicit parameter constraints, e.g. ?x: : Int (with the -XImplicitParams flag)

* Equality constraints, e.g. a ~ Int (withthe -XTypeFamilies or ~XGADTs flag)

With the -XConstraintKinds flag, GHC becomes more liberal in what it accepts as constraints in your program. To be
precise, with this flag any rype of the new kind Constraint can be used as a constraint. The following things have kind
Constraint:

* Anything which is already valid as a constraint without the flag: saturated applications to type classes, implicit parameter and
equality constraints.

* Tuples, all of whose component types have kind Constraint. So for example the type (Show a, Ord a) is of kind
Constraint.

* Anything whose form is not yet know, but the user has declared to have kind Constraint (for which they need to im-
port it from GHC . Exts). So for example type Foo (f ::+ -> Constraint) =forall b.f b => b -> bis
allowed, as well as examples involving type families:

type family Typ a b :: Constraint
type instance Typ Int b = Show b
type instance Typ Bool b = Num b

func :: Typ a b => a -=> b -> b
func =

Note that because constraints are just handled as types of a particular kind, this extension allows type constraint synonyms:

type Stringy a = (Read a, Show a)
foo :: Stringy a => a -> (String, String -> a)
foo x = (show x, read)

Presently, only standard constraints, tuples and type synonyms for those two sorts of constraint are permitted in instance contexts
and superclasses (without extra flags). The reason is that permitting more general constraints can cause type checking to loop, as
it would with these two programs:

type family Clsish u a
type instance Clsish () a = Cls a
class Clsish () a => Cls a where

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 210/316

class OkCls a where

type family OkClsish u a
type instance OkClsish () a = OkCls a
instance OkClsish () a => 0OkCls a where

You may write programs that use exotic sorts of constraints in instance contexts and superclasses, but to do so you must use —
XUndecidableInstances to signal that you don’t mind if the type checker fails to terminate.

7.12 Other type system extensions

7.12.1 Explicit universal quantification (forall)
Haskell type signatures are implicitly quantified. When the language option ~XExplicitForAll is used, the keyword for
all allows us to say exactly what this means. For example:

g :: b —>Db

means this:

g :: forall b. (b —> b)

The two are treated identically.

Of course forall becomes a keyword; you can’t use forall as a type variable any more!

7.12.2 The context of a type signature

The -XFlexibleContexts flag lifts the Haskell 98 restriction that the type-class constraints in a type signature must have the
form (class type-variable) or (class (type-variable typel type2 ... typen)). With —~XFlexibleContexts these type signatures
are perfectly OK

g :: Eg [a] => ...
g :: Ord (T a ()) => ...

The flag -XFlexibleContexts also lifts the corresponding restriction on class declarations (Section 7.6.1.2) and instance
declarations (Section 7.6.3.3).

7.12.3 Ambiguous types and the ambiguity check
Each user-written type signature is subjected to an ambiguity check. The ambiguity check rejects functions that can never be
called; for example:

f :: C a => Int

The idea is there can be no legal calls to £ because every call will give rise to an ambiguous constraint. Indeed, the only
purpose of the ambiguity check is to report functions that cannot possibly be called. We could soundly omit the ambiguity
check on type signatures entirely, at the expense of delaying ambiguity errors to call sites. Indeed, the language extension —
XAllowAmbiguousTypes switches off the ambiguity check.

Ambiguity can be subtle. Consider this example which uses functional dependencies:

class D a b | a —> b where ..
h :: D Int b => Int

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 211/316

The Int may well fix b at the call site, so that signature should not be rejected. Moreover, the dependencies might be hidden.
Consider

class X a b where

class D a b | a —> b where
instance D a b => X [a] b where...
h :: Xab-=>a->a

Here h’s type looks ambiguous in b, but here’s a legal call:

...(h [Truel)...

That gives rise to a (X [Bool] beta) constraint, and using the instance means we need (D Bool beta) and that fixes
beta viaD’s fundep!

Behind all these special cases there is a simple guiding principle. Consider

f :: type

f = ...blah...
g :: type

g =f

You would think that the definition of g would surely typecheck! After all £ has exactly the same type, and g=£. But in fact £’s
type is instantiated and the instantiated constraints are solved against the constraints bound by g’s signature. So, in the case an
ambiguous type, solving will fail. For example, consider the earlier definition £ ::C a => Int:

f :: C a => Int
f = ...blah...
g :: C a => Int
g =f

In g’s definition, we’ll instantiate to (C alpha) and try to deduce (C alpha) from (C a), and fail.

So in fact we use this as our definition of ambiguity: a type ty is ambiguious if and only if ((undefined ::ty) ::ty)
would fail to typecheck. We use a very similar test for inferred types, to ensure that they too are unambiguous.

Switching off the ambiguity check. Even if a function is has an ambiguous type according the "guiding principle", it is possible
that the function is callable. For example:

class D a b where
instance D Bool b where

strange :: D a b => a -> a
strange = ...blah...
foo = strange True

Here st range’s type is ambiguous, but the call in foo is OK because it gives rise to a constraint (D Bool beta), which is
soluble by the (D Bool D) instance. So the language extension —XAllowAmbiguousTypes allows you to switch off the
ambiguity check. But even with ambiguity checking switched off, GHC will complain about a function that can never be called,
such as this one:

f :: (Int ~ Bool) => a —> a

A historical note. GHC used to impose some more restrictive and less principled conditions on type signatures. For type type
forall tvl..tvn (cl, ...,cn) => type GHC used torequire (a) that each universally quantified type variable t vi
must be "reachable” from t ype, and (b) that every constraint ci mentions at least one of the universally quantified type variables
tvi. These ad-hoc restrictions are completely subsumed by the new ambiguity check. End of historical note.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 212/316

7.12.4 Implicit parameters

Implicit parameters are implemented as described in "Implicit parameters: dynamic scoping with static types", J Lewis, MB
Shields, E Meijer, J Launchbury, 27th ACM Symposium on Principles of Programming Languages (POPL’00), Boston, Jan
2000. (Most of the following, still rather incomplete, documentation is due to Jeff Lewis.)

Implicit parameter support is enabled with the option ~-XImplicitParams.

A variable is called dynamically bound when it is bound by the calling context of a function and statically bound when bound
by the callee’s context. In Haskell, all variables are statically bound. Dynamic binding of variables is a notion that goes back
to Lisp, but was later discarded in more modern incarnations, such as Scheme. Dynamic binding can be very confusing in an
untyped language, and unfortunately, typed languages, in particular Hindley-Milner typed languages like Haskell, only support
static scoping of variables.

However, by a simple extension to the type class system of Haskell, we can support dynamic binding. Basically, we express the
use of a dynamically bound variable as a constraint on the type. These constraints lead to types of the form (?x::t’) => t,
which says "this function uses a dynamically-bound variable ?x of type t’ ". For example, the following expresses the type of a
sort function, implicitly parameterized by a comparison function named cmp.

sort :: (?2cmp :: a —> a —> Bool) => [a] —> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.

An implicit parameter occurs in an expression using the special form ?x, where x is any valid identifier (e.g. ord ?x isa
valid expression). Use of this construct also introduces a new dynamic-binding constraint in the type of the expression. For
example, the following definition shows how we can define an implicitly parameterized sort function in terms of an explicitly
parameterized sortBy function:

sortBy :: (a -> a -> Bool) —-> [a] —-> [a]
sort :: (2cmp :: a —-> a —> Bool) => [a] -> [a]
sort = sortBy ?cmp

7.12.4.1 Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are automatically propagated. Thus, when
a function is used, its implicit parameters are inherited by the function that called it. For example, our sort function might be
used to pick out the least value in a list:

least :: (?cmp :: a —> a -> Bool) => [a] —-> a
least xs = head (sort xs)

Without lifting a finger, the ? cmp parameter is propagated to become a parameter of 1east as well. With explicit parameters,
the default is that parameters must always be explicit propagated. With implicit parameters, the default is to always propagate
them.

An implicit-parameter type constraint differs from other type class constraints in the following way: All uses of a particular
implicit parameter must have the same type. This means that the type of (?x, ?x) is (?x::a) => (a,a),andnot (?x::
a, ?x::b) => (a, b),aswould be the case for type class constraints.

You can’t have an implicit parameter in the context of a class or instance declaration. For example, both these declarations are
illegal:

class (?x::Int) => C a where
instance (?x::a) => Foo [a] where

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a function. But the ““invocation” of
instance declarations is done behind the scenes by the compiler, so it’s hard to figure out exactly where it is done. Easiest thing
is to outlaw the offending types.

Implicit-parameter constraints do not cause ambiguity. For example, consider:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 213/316

f :: (?x :: [a]) => Int -> Int
f n=n+ length ?x

(Read a, Show a) => String —-> String

g
g s = show (read s)

Here, g has an ambiguous type, and is rejected, but £ is fine. The binding for ?x at £’s call site is quite unambiguous, and fixes
the type a.

7.12.4.2 Implicit-parameter bindings
An implicit parameter is bound using the standard let or where binding forms. For example, we define the min function by
binding cmp.

min :: [a] —-> a

min = let ?cmp = (<=) in least

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bindings can occur, except at top level.
That is, they can occur in a 1et (including in a list comprehension, or do-notation, or pattern guards), or a where clause. Note
the following points:

* An implicit-parameter binding group must be a collection of simple bindings to implicit-style variables (no function-style
bindings, and no type signatures); these bindings are neither polymorphic or recursive.

* You may not mix implicit-parameter bindings with ordinary bindings in a single 1et expression; use two nested 1ets instead.
(In the case of where you are stuck, since you can’t nest where clauses.)

* You may put multiple implicit-parameter bindings in a single binding group; but they are not treated as a mutually recursive
group (as ordinary 1et bindings are). Instead they are treated as a non-recursive group, simultaneously binding all the implicit
parameter. The bindings are not nested, and may be re-ordered without changing the meaning of the program. For example,
consider:

f t =1let { ?2x =t; 2y = ?x+(1l::Int) } in ?x + 2y

The use of ?x in the binding for ?y does not "see" the binding for ?x, so the type of £ is

f :: (?x::Int) => Int -> Int

7.12.4.3 Implicit parameters and polymorphic recursion

Consider these two definitions:

lenl :: [a] -> Int

lenl xs = let ?acc = 0 in len_accl xs

len_accl [] = ?acc

len_accl (x:xs) = let ?acc = 2acc + (l::Int) in len_accl xs
len2 :: [a] —> Int

len2 xs = let ?acc = 0 in len_acc?2 xs

len_acc2 :: (?2acc :: Int) => [a] -> Int

len_acc2 [] = ?acc

len_acc?2 (x:xs) = let ?acc = 2acc + (l::Int) in len_acc2 xs

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 214 /316

The only difference between the two groups is that in the second group len_acc is given a type signature. In the former case,
len_accl is monomorphic in its own right-hand side, so the implicit parameter ?acc is not passed to the recursive call. In the
latter case, because 1en_acc?2 has a type signature, the recursive call is made to the polymorphic version, which takes ?acc as
an implicit parameter. So we get the following results in GHCi:

Prog> lenl "hello"
0
Prog> len2 "hello"
5

Adding a type signature dramatically changes the result! This is a rather counter-intuitive phenomenon, worth watching out for.

7.12.4.4 Implicit parameters and monomorphism

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to implicit parameters. For example,
consider:

f :: Int -> Int
f v =1let ?x =0 in
let y = ?x + v in
let ?x = 5 in
Yy

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the type of y is simply Int, not (?
x::Int) => Int. Hence, (£ 9) returns result 9. If you add a type signature for y, then y will get type (?x::Int) =>
Int, so the occurrence of y in the body of the 1et will see the inner binding of ?x, so (£ 9) will return 14.

7.12.5 Explicitly-kinded quantification

Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind explicitly as (machine-checked)
documentation, just as it is nice to give a type signature for a function. On some occasions, it is essential to do so. For example,
in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a —> ())

The only use for the Unused constructor was to force the correct kind for the type variable cxt.

GHC now instead allows you to specify the kind of a type variable directly, wherever a type variable is explicitly bound, with the
flag -XKindSignatures.

This flag enables kind signatures in the following places:

e data declarations:

data Set (cxt :: * —-> %) a = Set [a]

* type declarations:

type T (£ :: x =—> %) = f Int

e class declarations:

class (Eq a) => C (f :: » —=> %) a where ...

e forall’sin type signatures:

f :: forall (cxt :: * —=> x). Set cxt Int

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 215/316

The parentheses are required. Some of the spaces are required too, to separate the lexemes. If you write (f£::x—->x) you will
get a parse error, because ": : x—>*" is a single lexeme in Haskell.

As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: %) —-> Int
g :: forall a. a —> (a :: x)

The syntax is

atype ::= ' (’ ctype ’'::’ kind ")

The parentheses are required.

7.12.6 Arbitrary-rank polymorphism

GHC’s type system supports arbitrary-rank explicit universal quantification in types. For example, all the following types are
legal:

f1 :: forall a b. a —> b -> a

gl :: forall a b. (Ord a, Eg b) =>a -> b -> a

f2 :: (forall a. a->a) —-> Int -> Int

g2 :: (forall a. Eq a => [a] -> a —> Bool) -> Int -> Int
f3 :: ((forall a. a->a) —-> Int) -> Bool -> Bool

f4 :: Int -> (forall a. a —> a)

Here, £1 and g1 are rank-1 types, and can be written in standard Haskell (e.g. £1 ::a->b->a). The forall makes explicit
the universal quantification that is implicitly added by Haskell.

The functions £2 and g2 have rank-2 types; the forall is on the left of a function arrow. As g2 shows, the polymorphic type
on the left of the function arrow can be overloaded.

The function £ 3 has a rank-3 type; it has rank-2 types on the left of a function arrow.

The language option ~XRankNTypes (which implies ~-XExplicitForAll, Section 7.12.1) enables higher-rank types. That
is, you can nest foral 1s arbitrarily deep in function arrows. For example, a forall-type (also called a "type scheme"), including
a type-class context, is legal:

* On the left or right (see f£4, for example) of a function arrow

* As the argument of a constructor, or type of a field, in a data type declaration. For example, any of the £1, £2, £3, g1, g2
above would be valid field type signatures.

* As the type of an implicit parameter

¢ In a pattern type signature (see Section 7.12.8)

The -XRankNTypes option is also required for any type with a forall or context to the right of an arrow (e.g. £ ::Int —>
forall a.a->a,org ::Int -> Ord a => a -> a). Suchtypes are technically rank 1, but are clearly not Haskell-98,
and an extra flag did not seem worth the bother.

The obselete language options —~XPolymorphicComponents and —XRank2Types are synonyms for —XRankNTypes.
They used to specify finer distinctions that GHC no longer makes. (They should really elicit a deprecation warning, but they
don’t, purely to avoid the need to library authors to change their old flags specifciations.)

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 216/316

7.12.6.1 Examples

In a data or newtype declaration one can quantify the types of the constructor arguments. Here are several examples:

data T a = Tl (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. ma —> (a > mb) > mb
}
newtype Swizzle = MkSwizzle (Ord a => [a] —-> [a])

The constructors have rank-2 types:

Tl :: forall a. (forall b. b > b -> b) > a —> T a
MkMonad :: forall m. (forall a. a -> m a)
-> (forall a b. ma -> (a -> m b) —-> m b)
—> MonadT m
MkSwizzle :: (Ord a => [a] —-> [a]) —> Swizzle

Notice that you don’t need to use a forall if there’s an explicit context. For example in the first argument of the constructor
MkSwizzle, an implicit "forall a." is prefixed to the argument type. The implicit forall quantifies all type variables
that are not already in scope, and are mentioned in the type quantified over. (Arguably, it would be better to require explicit
quantification on constructor arguments where that is what is wanted. See Trac #4426.)

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write this:

f :: (a —> a) —> a

it’s just as if you had written this:

f :: forall a. (a -> a) -> a

That is, since the type variable a isn’t in scope, it’s implicitly universally quantified.

You construct values of types T1, MonadT, Swizzle by applying the constructor to suitable values, just as usual. For
example,

al :: T Int
al = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x
b m k = case m of

Just y —> k vy
Nothing -> Nothing
in
MkMonad r b

mkTs :: (forall b. b -=> b -> b) -> a -> [T a]
mkTs £ x y = [Tl £ x, Tl f y]

The type of the argument can, as usual, be more general than the type required, as (MkSwizzle reverse) shows. (reverse
does not need the Ord constraint.)

When you use pattern matching, the bound variables may now have polymorphic types. For example:

http://ghc.haskell.org/trac/ghc/ticket/4426

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 217 /316

f :: T a->a —-> (a, Char)
f (Tl w k) x= (wkx, w'c’ d)
g :: (Ord a, Ord b) => Swizzle -> [a] —-> (a -> b) —> [Db]
g (MkSwizzle s) xs f = s (map £ (s xs))
h :: MonadT m -> [m a] -> m [a]
hm [] = return m []
hm (x:xs) = bind m x S \y —>
bind m (h m xs) $ \ys —>

return m (y:ys)

In the function h we use the record selectors return and bind to extract the polymorphic bind and return functions from the
MonadT data structure, rather than using pattern matching.

7.12.6.2 Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm proposed by Odersky and Laufer
("Putting type annotations to work", POPL’96) to get a decidable algorithm by requiring some help from the programmer. We do
not yet have a formal specification of "some help" but the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an explicit polymorphic type for x, or GHC'’s
type inference will assume that x’s type has no foralls in it.

What does it mean to "provide" an explicit type for x? You can do that by giving a type signature for x directly, using a pattern
type signature (Section 7.12.8), thus:

\ £ :: (forall a. a->a) —-> (f True, f ’c’)

Alternatively, you can give a type signature to the enclosing context, which GHC can "push down" to find the type for the
variable:

(\ £ —> (£ True, £ ’c’)) :: (forall a. a—->a) —-> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for f. Similarly, and more commonly,
one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h £f = (f True, £ ’c’)

You don’t need to give a type signature if the lambda bound variable is a constructor argument. Here is an example we saw
earlier:

f :: T a->a —-> (a, Char)
f (Tl w k) x = (w k x, w'c’ d")

Here we do not need to give a type signature to w, because it is an argument of constructor T1 and that tells GHC all it needs to
know.

7.12.6.3 Implicit quantification

GHC performs implicit quantification as follows. At the top level (only) of user-written types, if and only if there is no explicit
forall, GHC finds all the type variables mentioned in the type that are not already in scope, and universally quantifies them.
For example, the following pairs are equivalent:

f ::a > a
f :: forall a. a —> a

g (x::a) = let

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 218/316

h :: a —>b ->0b
hxy=y
in ...
g (x::a) = let
h :: forall b. a > b —> b
hxy=y

in ...

Notice that GHC does not find the innermost possible quantification point. For example:

f :: (a —> a) —> Int
—— MEANS
f :: forall a. (a —> a) —-> Int
-— NOT
f :: (forall a. a —> a) —-> Int
g :: (Ord a => a —-> a) —> Int
—— MEANS the illegal type
g :: forall a. (Ord a => a —-> a) —-> Int
—-— NOT
g :: (forall a. Ord a => a —-> a) —-> Int

The latter produces an illegal type, which you might think is silly, but at least the rule is simple. If you want the latter type, you
can write your for-alls explicitly. Indeed, doing so is strongly advised for rank-2 types.

7.12.7 Impredicative polymorphism

GHC supports impredicative polymorphism, enabled with —XImpredicativeTypes. This means that you can call a poly-
morphic function at a polymorphic type, and parameterise data structures over polymorphic types. For example:

f :: Maybe (forall a. [a] —-> [a]) —> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing

Notice here that the Maybe type is parameterised by the polymorphic type (forall a.[a] -> [a]).

The technical details of this extension are described in the paper Boxy types: type inference for higher-rank types and impred-
icativity, which appeared at ICFP 2006.

7.12.8 Lexically scoped type variables

GHC supports lexically scoped type variables, without which some type signatures are simply impossible to write. For example:

f :: forall a. [a] —> [al]
f xs = ys ++ ys
where
ys :: [a]
ys = reverse Xxs

The type signature for £ brings the type variable a into scope, because of the explicit forall (Section 7.12.8.2). The type
variables bound by a forall scope over the entire definition of the accompanying value declaration. In this example, the type
variable a scopes over the whole definition of £, including over the type signature for ys. In Haskell 98 it is not possible to
declare a type for ys; a major benefit of scoped type variables is that it becomes possible to do so.

Lexically-scoped type variables are enabled by ~XScopedTypeVariables. This flag implies ~-XRelaxedPolyRec.

http://research.microsoft.com/%7Esimonpj/papers/boxy/
http://research.microsoft.com/%7Esimonpj/papers/boxy/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 219/316

7.12.8.1 Overview
The design follows the following principles

* A scoped type variable stands for a type variable, and not for a type. (This is a change from GHC’s earlier design.)

* Furthermore, distinct lexical type variables stand for distinct type variables. This means that every programmer-written type
signature (including one that contains free scoped type variables) denotes a rigid type; that is, the type is fully known to the
type checker, and no inference is involved.

 Lexical type variables may be alpha-renamed freely, without changing the program.
A lexically scoped type variable can be bound by:

* A declaration type signature (Section 7.12.8.2)
* An expression type signature (Section 7.12.8.3)
* A pattern type signature (Section 7.12.8.4)

¢ (Class and instance declarations (Section 7.12.8.5)
In Haskell, a programmer-written type signature is implicitly quantified over its free type variables (Section 4.1.2 of the Haskell

Report). Lexically scoped type variables affect this implicit quantification rules as follows: any type variable that is in scope is
not universally quantified. For example, if type variable a is in scope, then

(e :: a —> a) means (e :: a —> a)
(e :: b —> b) means (e :: forall b. b->b)
(e :: a —> b) means (e :: forall b. a->b)

7.12.8.2 Declaration type signatures
A declaration type signature that has explicit quantification (using forall) brings into scope the explicitly-quantified type
variables, in the definition of the named function. For example:
f :: forall a. [a] —> [a]
f (x:xs) = xs ++ [x :: a]
The "forall a"brings "a" into scope in the definition of "f".

This only happens if:

* The quantification in £’s type signature is explicit. For example:
g :: [a] —> [al
g (x:xs) = xs ++ [x :: a]
This program will be rejected, because "a" does not scope over the definition of "g", so "x: :a" means "x: : forall a.a"

by Haskell’s usual implicit quantification rules.

» The signature gives a type for a function binding or a bare variable binding, not a pattern binding. For example:

fl :: forall a. [a] —> [a]

fl (x:xs) = xs ++ [x :: a] -— OK

f2 :: forall a. [a] —> [a]

f2 = \(x:xs) —> xs ++ [x :: a | -— OK

f3 :: forall a. [a] —> [a]

Just f£3 = Just (\(x:xs) —> xs ++ [x :: a 1) —-— Not OK!

The binding for £3 is a pattern binding, and so its type signature does not bring a into scope. However £1 is a function
binding, and £2 binds a bare variable; in both cases the type signature brings a into scope.

http://www.haskell.org/onlinereport/decls.html#sect4.1.2

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 220/ 316

7.12.8.3 Expression type signatures
An expression type signature that has explicit quantification (using forall) brings into scope the explicitly-quantified type
variables, in the annotated expression. For example:

f = runST ((op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool)

Here, the type signature forall s.ST s Bool brings the type variable s into scope, in the annotated expression (op >>=
\(x ::STRef s Int) -> g x).

7.12.8.4 Pattern type signatures

A type signature may occur in any pattern; this is a pattern type signature. For example:

-— f and g assume that ’a’ is already in scope
f = \(x::Int, y::a) —> x

g (x::a) = x

h ((x,y) :: (Int,Bool)) = (y,x)

In the case where all the type variables in the pattern type signature are already in scope (i.e. bound by the enclosing context),
matters are simple: the signature simply constrains the type of the pattern in the obvious way.

Unlike expression and declaration type signatures, pattern type signatures are not implicitly generalised. The pattern in a pattern
binding may only mention type variables that are already in scope. For example:

f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
where
(ys::[a], n) = (reverse xs, length xs) —— OK
zs::[a] = xs ++ ys -— OK
Just (v::b) = ... —-- Not OK; b is not in scope

Here, the pattern signatures for ys and zs are fine, but the one for v is not because b is not in scope.

However, in all patterns other than pattern bindings, a pattern type signature may mention a type variable that is not in scope; in
this case, the signature brings that type variable into scope. This is particularly important for existential data constructors. For
example:

data T = forall a. MkT [a]

k :: T ->T
k (MKT [t::a]) = MkT t3
where
t3::[a] = [t,t,t]

Here, the pattern type signature (t::a) mentions a lexical type variable that is not already in scope. Indeed, it cannot already
be in scope, because it is bound by the pattern match. GHC’s rule is that in this situation (and only then), a pattern type signature
can mention a type variable that is not already in scope; the effect is to bring it into scope, standing for the existentially-bound
type variable.

When a pattern type signature binds a type variable in this way, GHC insists that the type variable is bound to a rigid, or
fully-known, type variable. This means that any user-written type signature always stands for a completely known type.

If all this seems a little odd, we think so too. But we must have some way to bring such type variables into scope, else we could
not name existentially-bound type variables in subsequent type signatures.

This is (now) the only situation in which a pattern type signature is allowed to mention a lexical variable that is not already in
scope. For example, both £ and g would be illegal if a was not already in scope.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 221/316

7.12.8.5 Class and instance declarations

The type variables in the head of a class or instance declaration scope over the methods defined in the where part. For
example:

class C a where

op :: [a] —> a
op xs = let ys::[a]
yS = reverse Xs
in
head ys

7.12.9 Bindings and generalisation
7.12.9.1 Switching off the dreaded Monomorphism Restriction

Haskell’s monomorphism restriction (see Section 4.5.5 of the Haskell Report) can be completely switched off by ~XNoMonomo
rphismRestriction. Since GHC 7.8.1, the monomorphism restriction is switched off by default in GHCi.

7.12.9.2 Generalised typing of mutually recursive bindings

The Haskell Report specifies that a group of bindings (at top level, or in a 1et or where) should be sorted into strongly-
connected components, and then type-checked in dependency order (Haskell Report, Section 4.5.1). As each group is type-
checked, any binders of the group that have an explicit type signature are put in the type environment with the specified poly-
morphic type, and all others are monomorphic until the group is generalised (Haskell Report, Section 4.5.2).

Following a suggestion of Mark Jones, in his paper Typing Haskell in Haskell, GHC implements a more general scheme. If -
XRelaxedPolyRec is specified: the dependency analysis ignores references to variables that have an explicit type signature.
As a result of this refined dependency analysis, the dependency groups are smaller, and more bindings will typecheck. For
example, consider:

f :: Eg a => a —> Bool
f x = (x ==1x) || g True || g "Yes"
gy = (y <=y) Il £ True

This is rejected by Haskell 98, but under Jones’s scheme the definition for g is typechecked first, separately from that for f,
because the reference to f in g’s right hand side is ignored by the dependency analysis. Then g’s type is generalised, to get

g :: Ord a => a —> Bool

Now, the definition for £ is typechecked, with this type for g in the type environment.

The same refined dependency analysis also allows the type signatures of mutually-recursive functions to have different contexts,
something that is illegal in Haskell 98 (Section 4.5.2, last sentence). With ~XRelaxedPolyRec GHC only insists that the type
signatures of a refined group have identical type signatures; in practice this means that only variables bound by the same pattern
binding must have the same context. For example, this is fine:

f :: Eg a => a —-> Bool
f x = (x ==x) || g True

:: Ord a => a —-> Bool

g
gy = (y <=vy) || £ True

http://www.haskell.org/onlinereport/decls.html#sect4.5.5
http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://citeseer.ist.psu.edu/424440.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 222 /316

7.12.9.3 Let-generalisation
An ML-style language usually generalises the type of any let-bound or where-bound variable, so that it is as polymorphic
as possible. With the flag ~-XMonoLocalBinds GHC implements a slightly more conservative policy: it generalises only

"closed" bindings. A binding is considered "closed" if either

* Itis one of the top-level bindings of a module, or

e Its free variables are all themselves closed

For example, consider

f x=x+1
gx=1let hy = £fy * 2
k z = z+x
in h x + k x

Here f and g are closed because they are bound at top level. Also h is closed because its only free variable £ is closed. But k is
not closed because it mentions x which is locally bound. Another way to think of it is this: all closed bindings could be defined
at top level. (In the example, we could move h to top level.)

All of this applies only to bindings that lack an explicit type signature, so that GHC has to infer its type. If you supply a type
signature, then that fixes type of the binding, end of story.

The rationale for this more conservative strategy is given in the papers "Let should not be generalised" and "Modular type
inference with local assumptions", and a related blog post.

The flag ~-XMonoLocalBinds is implied by ~-XTypeFamilies and ~XGADTs. You can switch it off again with —~XNoMon
oLocalBinds but type inference becomes less predicatable if you do so. (Read the papers!)

7.13 Typed Holes

Typed hole support is enabled with the option ~-fwarn-typed-holes, which is enabled by default.

nonon non

This option allows special placeholders, written with a leading underscore (e.g. "_","_foo","_bar"), to be used as an expres-
sion. During compilation these holes will generate an error message describing what type is expected there, information about
the origin of any free type variables, and a list of local bindings that might help fill the hole with actual code.

The goal of the typed holes warning is not to change the type system, but to help with writing Haskell code. Typed holes can be
used to obtain extra information from the type checker, which might otherwise be hard to get. Normally, using GHCi, users can
inspect the (inferred) type signatures of all top-level bindings. However, this method is less convenient with terms which are not
defined on top-level or inside complex expressions. Holes allow to check the type of the term you’re about to write.

Holes work together well with deferring type errors to runtime: with —~-fdefer—-type-errors, the error from a hole is also
deferred, effctively making the hole typecheck just like undefined, but with the added benefit that it will show its warning
message if it gets evaluated. This way, other parts of the code can still be executed and tested.

For example, compiling the following module with GHC:
f::a->a

f x = _

will fail with the following error:

hole.hs:2:7:
Found hole ‘_’ with type: a

Where: ‘a’ is a rigid type variable bound by

the type signature for £ :: a -> a at hole.hs:1:6
Relevant bindings include
f :: a —> a (bound at hole.hs:2:1)
X :: a (bound at hole.hs:2:3)

In the expression: _
In an equation for ‘f’: f x =

http://research.microsoft.com/~simonpj/papers/constraints/index.htm
http://ghc.haskell.org/trac/ghc/blog/LetGeneralisationInGhc7

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 223 /316

Multiple typed holes can be used to find common type variables between expressions. For example:

sum :: [Int] -> Int
sum xs = foldr _f _z xs
Shows:

holes.hs:2:15:
Found hole ‘_f’ with type: Int -> Int -> Int
In the first argument of ‘foldr’, namely ‘_’'
In the expression: foldr _a _b _c
In an equation for ‘sum’: sum x = foldr _a _b _c

holes.hs:2:17:
Found hole ‘_z’ with type: Int
In the second argument of ‘foldr’, namely ‘_’/
In the expression: foldr _a _b _c

In an equation for ‘sum’: sum x = foldr _a _b _c

Unbound identifiers with the same name are never unified, even within the same function, but always printed individually. For
example:

cons = _xX : _X

results in the following errors:

unbound.hs:1:8:
Found hole ’_x’ with type: a
Where: ‘a’ is a rigid type variable bound by

the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the first argument of ‘(:)’, namely ‘_x'
In the expression: _x : _x
In an equation for ‘cons’: cons = _xX : _X

unbound.hs:1:13:
Found hole ’_x’ with type: [a]
Arising from: an undeclared identifier ‘_x’ at unbound.hs:1:13-14
Where: ‘a’ is a rigid type variable bound by

the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the second argument of ‘(:)’, namely ‘_x’
In the expression: _x : _x
In an equation for ‘cons’: cons = _x : _X

This ensures that an unbound identifier is never reported with a too polymorphic type, like forall a.a, when used multiple
times for types that can not be unified.

7.14 Deferring type errors to runtime

While developing, sometimes it is desirable to allow compilation to succeed even if there are type errors in the code. Consider
the following case:

module Main where

a :: Int
a:la!

main = print "b"

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 224 /316

Even though a is ill-typed, it is not used in the end, so if all that we’re interested in is main it can be useful to be able to ignore
the problems in a.

For more motivation and details please refer to the HaskellWiki page or the original paper.

7.14.1 Enabling deferring of type errors

The flag ~fdefer-type-errors controls whether type errors are deferred to runtime. Type errors will still be emitted as
warnings, but will not prevent compilation.

At runtime, whenever a term containing a type error would need to be evaluated, the error is converted into a runtime exception.
Note that type errors are deferred as much as possible during runtime, but invalid coercions are never performed, even when they
would ultimately result in a value of the correct type. For example, given the following code:

x :: Int
x =0
y :: Char
y = X
: Int
=Yy

evaluating z will result in a runtime type error.

7.14.2 Deferred type errors in GHCi

The flag —fdefer-type-errors works in GHCi as well, with one exception: for "naked" expressions typed at the prompt,
type errors don’t get delayed, so for example:

Prelude> fst (True, 1 == "a’)

<interactive>:2:12:

No instance for (Num Char) arising from the literal ‘1’
Possible fix: add an instance declaration for (Num Char)

In the first argument of ‘(==)’, namely ‘1’
In the expression: 1 == "a’
In the first argument of ‘fst’, namely ‘(True, 1 == ’a’)’

Otherwise, in the common case of a simple type error such as typing reverse True at the prompt, you would get a warning
and then an immediately-following type error when the expression is evaluated.

This exception doesn’t apply to statements, as the following example demonstrates:
Prelude> let x = (True, 1 == "a’)
<interactive>:3:16: Warning:

No instance for (Num Char) arising from the literal ‘1’
Possible fix: add an instance declaration for (Num Char)

In the first argument of ‘(==)’, namely ‘1’
In the expression: 1 == "a’
In the expression: (True, 1 == 'a’)

Prelude> fst x
True

http://ghc.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 225/316

7.15 Template Haskell

Template Haskell allows you to do compile-time meta-programming in Haskell. The background to the main technical innova-
tions is discussed in "Template Meta-programming for Haskell" (Proc Haskell Workshop 2002).

There is a Wiki page about Template Haskell at http://www.haskell.org/haskellwiki/Template_Haskell, and that is the best place
to look for further details. You may also consult the online Haskell library reference material (look for module Language.
Haskell.TH). Many changes to the original design are described in Notes on Template Haskell version 2. Not all of these
changes are in GHC, however.

The first example from that paper is set out below (Section 7.15.3) as a worked example to help get you started.

The documentation here describes the realisation of Template Haskell in GHC. It is not detailed enough to understand Template
Haskell; see the Wiki page.

7.15.1 Syntax

Template Haskell has the following new syntactic constructions. You need to use the flag ~-XTemplateHaskell to switch
these syntactic extensions on.

* A splice is written $x, where x is an identifier, or $ (. . .), where the "..." is an arbitrary expression. There must be no space
between the "$" and the identifier or parenthesis. This use of "$" overrides its meaning as an infix operator, just as "M.x"
overrides the meaning of "." as an infix operator. If you want the infix operator, put spaces around it.

A splice can occur in place of

an expression; the spliced expression must have type O Exp

a pattern; the spliced pattern must have type Q Pat

a type; the spliced expression must have type Q Type

a list of declarations; the spliced expression must have type Q [Dec]
Inside a splice you can only call functions defined in imported modules, not functions defined elsewhere in the same module.

* A expression quotation is written in Oxford brackets, thus:

- [l ...ll,or[e|l ...|],wherethe".."is an expression; the quotation has type Q Exp.
— [dl ...1|1,wherethe"..." is a list of top-level declarations; the quotation has type 0 [Dec].
— [t| ...|1,wherethe"..." is a type; the quotation has type O Type.
- [pl ...|],wherethe".." is a pattern; the quotation has type Q Pat.
* A typed expression splice is written $$x, where x is an identifier, or $$ (. . .), where the "..." is an arbitrary expression.

A typed expression splice can occur in place of an expression; the spliced expression must have type 0 (TExp a)

* A typed expression quotation is written as [|| ...||],or [e|]| ...]||], where the "..." is an expression; if the "..."
expression has type a, then the quotation has type 0 (TExp a).

Values of type TExp a may be converted to values of type Exp using the function unType ::TExp a —> Exp.
* A quasi-quotation can appear in either a pattern context or an expression context and is also written in Oxford brackets:

— [varid| ...|], where the "..." is an arbitrary string; a full description of the quasi-quotation facility is given in Sec-
tion 7.15.5.

* A name can be quoted with either one or two prefix single quotes:

— ' f has type Name, and names the function f£. Similarly ’ C has type Name and names the data constructor C. In general
" thing interprets thing in an expression context.
A name whose second character is a single quote (sadly) cannot be quoted in this way, because it will be parsed instead as
a quoted character. For example, if the function is called £’ 7 (which is a legal Haskell identifier), an attempt to quote it as
" £/ 7 would be parsed as the character literal * £’ followed by the numeric literal 7. There is no current escape mechanism
in this (unusual) situation.

http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps
http://haskell.org/haskellwiki/Template_Haskell

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 226 /316

— ”T has type Name, and names the type constructor T. That is, ” thing interprets thing in a type context.

These Names can be used to construct Template Haskell expressions, patterns, declarations etc. They may also be given as an
argument to the re i fy function.

* You may omit the $ (. ..) in a top-level declaration splice. Simply writing an expression (rather than a declaration) implies
a splice. For example, you can write

module Foo where
import Bar

f x =x

S (deriveStuff ’f) —— Uses the $(...) notation
gy =ytl

deriveStuff ’'g —— Omits the $(...)
hz=2z-1

This abbreviation makes top-level declaration slices quieter and less intimidating.

* Binders are lexically scoped. For example, consider the following code, where a value g of type Bool —-> Q Pat isin
scope, having been imported from another module

y Int
y =7

f :: Int -> Int -> Int
fn=\ $(g True) —> y+n

The v in the right-hand side of £ refers to the top-level y =7, even if the pattern splice $ (g n) also generates a binder y.

Note that a pattern quasiquoter may generate binders that scope over the right-hand side of a definition because these binders
are in scope lexically. For example, given a quasiquoter haskell that parses Haskell, in the following code, the y in the
right-hand side of £ refers to the y bound by the haskell pattern quasiquoter, not the top-level y =7.

y Int

y =7

f :: Int -> Int -> Int

f n =\ [haskell|y|] —> y+n

* The type environment seen by rei fy includes all the top-level declaration up to the end of the immediately preceding decla-
ration group, but no more.

A declaration group is the group of declarations created by a top-level declaration splice, plus those following it, down to but
not including the next top-level declaration splice. The first declaration group in a module includes all top-level definitions
down to but not including the first top-level declaration splice.

Concretely, consider the following code

module M where
import
f x =x
$(thl 4)
hy=%yy $(blahl)
$(th2 10)
w z = $(blah2)

In this example

1. A reify inside the splice $ (thl ..) would see the definition of f.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 227 /316

2. A reify inside the splice $ (blahl) would see the definition of £, but would not see the definition of h.

3. A reify inside the splice $ (th2..) would see the definition of £, all the bindings created by $ (thl..), and the
definition of h.

4. A reify inside the splice $ (blah2) would see the same definitions as the splice $ (th2...).

(Compared to the original paper, there are many differences of detail. The syntax for a declaration splice uses "$" not "splice".
The type of the enclosed expression mustbe Q [Dec],not [Q Dec]. Typed expression splices and quotations are supported.)

7.15.2 Using Template Haskell

* The data types and monadic constructor functions for Template Haskell are in the library Language . Haskell.THSyntax.

* You can only run a function at compile time if it is imported from another module. That is, you can’t define a function in a
module, and call it from within a splice in the same module. (It would make sense to do so, but it’s hard to implement.)

* You can only run a function at compile time if it is imported from another module that is not part of a mutually-recursive group
of modules that includes the module currently being compiled. Furthermore, all of the modules of the mutually-recursive group
must be reachable by non-SOURCE imports from the module where the splice is to be run.

For example, when compiling module A, you can only run Template Haskell functions imported from B if B does not import
A (directly or indirectly). The reason should be clear: to run B we must compile and run A, but we are currently type-checking
A.

e The flag —ddump-splices shows the expansion of all top-level splices as they happen.

 If you are building GHC from source, you need at least a stage-2 bootstrap compiler to run Template Haskell. A stage-
1 compiler will reject the TH constructs. Reason: TH compiles and runs a program, and then looks at the result. So it’s
important that the program it compiles produces results whose representations are identical to those of the compiler itself.

Template Haskell works in any mode (-—-make, ——interactive, or file-at-a-time). There used to be a restriction to the
former two, but that restriction has been lifted.

7.15.3 A Template Haskell Worked Example

To help you get over the confidence barrier, try out this skeletal worked example. First cut and paste the two modules below into
"Main.hs" and "Printf.hs":

{- Main.hs -}
module Main where

—-— Import our template "pr"
import Printf (pr)

—— The splice operator $ takes the Haskell source code
—— generated at compile time by "pr" and splices it into
—-— the argument of "putStrLn".

main = putStrLn ($(pr "Hello"))

{- Printf.hs -}

module Printf where

—— Skeletal printf from the paper.

—— It needs to be in a separate module to the one where

-— you intend to use it.

—-— Import some Template Haskell syntax

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 228 /316

import Language.Haskell.TH

—— Describe a format string
data Format = D | S | L String

—-— Parse a format string. This is left largely to you

—-— as we are here interested in building our first ever
—-— Template Haskell program and not in building printf.
parse :: String -> [Format]

parse s = [L s]

—— Generate Haskell source code from a parsed representation

—— of the format string. This code will be spliced into
—— the module which calls "pr", at compile time.

gen :: [Format] -> Q Exp

gen [D] = [| \n => show n |]

gen [S] = [l \s =—> s |]

gen [L s] = stringE s

—— Here we generate the Haskell code for the splice
—— from an input format string.

pr :: String -> Q Exp

pr s = gen (parse s)

Now run the compiler (here we are a Cygwin prompt on Windows):

$ ghc --make -XTemplateHaskell main.hs -o main.exe

Run "main.exe" and here is your output:

$./main
Hello

7.15.4 Using Template Haskell with Profiling

Template Haskell relies on GHC’s built-in bytecode compiler and interpreter to run the splice expressions. The bytecode inter-
preter runs the compiled expression on top of the same runtime on which GHC itself is running; this means that the compiled
code referred to by the interpreted expression must be compatible with this runtime, and in particular this means that object code
that is compiled for profiling cannot be loaded and used by a splice expression, because profiled object code is only compatible
with the profiling version of the runtime.

This causes difficulties if you have a multi-module program containing Template Haskell code and you need to compile it for
profiling, because GHC cannot load the profiled object code and use it when executing the splices. Fortunately GHC provides a
workaround. The basic idea is to compile the program twice:

1. Compile the program or library first the normal way, without ~prof.

2. Then compile it again with —prof, and additionally use ~osuf p_o to name the object files differently (you can choose
any suffix that isn’t the normal object suffix here). GHC will automatically load the object files built in the first step when
executing splice expressions. If you omit the —osuf flag when building with —prof and Template Haskell is used, GHC
will emit an error message.

7.15.5 Template Haskell Quasi-quotation

Quasi-quotation allows patterns and expressions to be written using programmer-defined concrete syntax; the motivation behind
the extension and several examples are documented in "Why It’s Nice to be Quoted: Quasiquoting for Haskell" (Proc Haskell
Workshop 2007). The example below shows how to write a quasiquoter for a simple expression language.

Here are the salient features

http://www.eecs.harvard.edu/~mainland/ghc-quasiquoting/

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228

229 /316

* A quasi-quote has the form [quoter|

string |].

The quoter must be the (unqualified) name of an imported quoter; it cannot be an arbitrary expression.

non

The quoter cannot be "e", "t", "d", or "p", since those overlap with Template Haskell quotations.
There must be no spaces in the token [quoter]|.
The quoted string can be arbitrary, and may contain newlines.

The quoted string finishes at the first occurrence of the two-character sequence " |] ". Absolutely no escaping is per-
formed. If you want to embed that character sequence in the string, you must invent your own escape convention (such as,

say, using the string " | ~] " instead), and make your quoter function interpret " |~]" as " |]". One way to implement
this is to compose your quoter with a pre-processing pass to perform your escape conversion. See the discussion in Trac for
details.

* A quasiquote may appear in place of

— An expression

A pattern
- Atype

A top-level declaration

(Only the first two are described in the paper.)

* A quoter is a value of type Language . Haskell.TH.Quote.QuasiQuoter, which is defined thus:

data QuasiQuoter = QuasiQuoter { quoteExp String —-> Q Exp,
quotePat String -> Q Pat,
quoteType String -> Q Type,
quoteDec String -> Q [Dec] }

That is, a quoter is a tuple of four parsers, one for each of the contexts in which a quasi-quote can occur.

* A quasi-quote is expanded by applying the appropriate parser to the string enclosed by the Oxford brackets. The context of the
quasi-quote (expression, pattern, type, declaration) determines which of the parsers is called.

The example below shows quasi-quotation in action. The quoter expr is bound to a value of type QuasiQuoter defined
in module Expr. The example makes use of an antiquoted variable n, indicated by the syntax ’ int : n (this syntax for anti-
quotation was defined by the parser’s author, not by GHC). This binds n to the integer value argument of the constructor IntE
xpr when pattern matching. Please see the referenced paper for further details regarding anti-quotation as well as the description
of a technique that uses SYB to leverage a single parser of type String —> a to generate both an expression parser that returns
a value of type Q Exp and a pattern parser that returns a value of type Q Pat.

Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in the example, expr cannot be defined in Main.

hs where it is used, but must be imported.

= === file Main.hs

module Main where

import Expr

main I0 ()
main = do { print $ eval [expr|l + 2]]
; case IntExpr 1 of
{ [expr|’int:n|] -> print n
8 _ -> return ()
}
}
{- - file Expr.hs —————————————- -}

module Expr where

http://ghc.haskell.org/trac/ghc/ticket/5348

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 230/ 316

import qualified Language.Haskell.TH as TH
import Language.Haskell.TH.Quote

data Expr = IntExpr Integer
| AntiIntExpr String
| BinopExpr BinOp Expr Expr
| AntiExpr String

deriving (Show, Typeable, Data)

data BinOp = AddOp
| SubOp
| MulOp
| DivOp
deriving (Show, Typeable, Data)

eval :: Expr —-> Integer

eval (IntExpr n) = n

eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)
where

opToFun AddOp
opToFun SubOp
opToFun MulOp
opToFun DivOp = div

Il
_ -~
|

expr = QuasiQuoter { quoteExp = parseExprExp, quotePat = parseExprPat }

—-— Parse an Expr, returning its representation as

—-— either a Q Exp or a Q Pat. See the referenced paper
—-— for how to use SYB to do this by writing a single
—-— parser of type String -> Expr instead of two

—— separate parsers.

parseExprExp :: String —-> Q Exp
parseExprExp
parseExprPat :: String -> Q Pat
parseExprPat

Now run the compiler:

$ ghc —--make —-XQuasiQuotes Main.hs -o main

Run "main" and here is your output:

$./main
3
1

7.16 Arrow notation

Arrows are a generalization of monads introduced by John Hughes. For more details, see

* “Generalising Monads to Arrows”, John Hughes, in Science of Computer Programming 37, pp67-111, May 2000. The paper
that introduced arrows: a friendly introduction, motivated with programming examples.

e “A New Notation for Arrows”, Ross Paterson, in ICFP, Sep 2001. Introduced the notation described here.

* “Arrows and Computation”, Ross Paterson, in The Fun of Programming, Palgrave, 2003.

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 231/316

e “Programming with Arrows”, John Hughes, in 5th International Summer School on Advanced Functional Programming, Lec-
ture Notes in Computer Science vol. 3622, Springer, 2004. This paper includes another introduction to the notation, with
practical examples.

* “Type and Translation Rules for Arrow Notation in GHC”, Ross Paterson and Simon Peyton Jones, September 16, 2004. A
terse enumeration of the formal rules used (extracted from comments in the source code).

e The arrows web page at http://www.haskell.org/arrows/.

With the -XArrows flag, GHC supports the arrow notation described in the second of these papers, translating it using com-
binators from the Control .Arrow module. What follows is a brief introduction to the notation; it won’t make much sense
unless you’ve read Hughes’s paper.

The extension adds a new kind of expression for defining arrows:
expl0 ::=

| proc apat —-> cmd

where proc is a new keyword. The variables of the pattern are bound in the body of the proc-expression, which is a new sort
of thing called a command. The syntax of commands is as follows:

cmd 1= expl0 -< exp
| expl0 -<< exp
| cmd0

with cmd® up to cma® defined using infix operators as for expressions, and

emdl0 ::= \ apat ... apat —-> cmd
| let decls in cmd
| if exp then cmd else cmd
| case exp of { calts }
| do { cstmt ; ... cstmt ; cmd }
| fcmd

fcmd i := fcmd aexp
| (cmd)
| (| aexp cmd ... cmd |)

cstmt ::= let decls
| pat <- cmd
| rec { cstmt ; ... cstmt [;] }
| cmd

where calts are like alts except that the bodies are commands instead of expressions.

Commands produce values, but (like monadic computations) may yield more than one value, or none, and may do other things as
well. For the most part, familiarity with monadic notation is a good guide to using commands. However the values of expressions,
even monadic ones, are determined by the values of the variables they contain; this is not necessarily the case for commands.

A simple example of the new notation is the expression

proc x —> f —-< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable x is a new variable bound within the
proc-expression. It refers to the input to the arrow. In the above example, —< is not an identifier but an new reserved symbol
used for building commands from an expression of arrow type and an expression to be fed as input to that arrow. (The weird
look will make more sense later.) It may be read as analogue of application for arrows. The above example is equivalent to the
Haskell expression

arr (\ x —> x+1) >>> f

http://www.cs.chalmers.se/~rjmh/afp-arrows.pdf
http://www.haskell.org/ghc/docs/papers/arrow-rules.pdf
http://www.haskell.org/arrows/
../libraries/base-4.7.0.0/Control-Arrow.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 232/316

That would make no sense if the expression to the left of —< involves the bound variable x. More generally, the expression to the
left of —< may not involve any local variable, i.e. a variable bound in the current arrow abstraction. For such a situation there is
a variant —<<, as in

proc x —> f x —-<< x+1

which is equivalent to

arr (\ x —> (f x, x+1)) >>> app

so in this case the arrow must belong to the ArrowApply class. Such an arrow is equivalent to a monad, so if you’re using this
form you may find a monadic formulation more convenient.

7.16.1 do-notation for commands

Another form of command is a form of do-notation. For example, you can write

proc x —> do
y <— £ —-< x+1
g —< 2%y
let z = x+y
t <— h —< xxz
returnA —-< t+z

You can read this much like ordinary do-notation, but with commands in place of monadic expressions. The first line sends the
value of x+1 as an input to the arrow £, and matches its output against y. In the next line, the output is discarded. The arrow
returnA is defined in the Control .Arrow module as arr id. The above example is treated as an abbreviation for

arr (\ x —> (x, X)) >>>
first (arr (\ x —> x+1) >>> f) >>>
arr (\ (y, x) => (y, (%, y))) >>>

first (arr (\ y —> 2xy) >>> g) >>>
arr snd >>>

arr (\ (x, y) —> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) —-> x%xz) >>> h) >>>

arr (\ (t, z) —-> t+z) >>>

returnA

Note that variables not used later in the composition are projected out. After simplification using rewrite rules (see Section 7.20)
defined in the Cont rol . Arrow module, this reduces to

arr (\ x —> (x+1, x)) >>>
first £ >>>
arr (\ (y, x) —> (2*xy, (%, y))) >>>
first g >>>
arr (\ (_, (x, y)) —> let z = x+y in (x*z, z)) >>>

first h >>>
arr (\ (t, z) —-> t+z)

which is what you might have written by hand. With arrow notation, GHC keeps track of all those tuples of variables for you.

Note that although the above translation suggests that 1et-bound variables like z must be monomorphic, the actual translation
produces Core, so polymorphic variables are allowed.

It’s also possible to have mutually recursive bindings, using the new rec keyword, as in the following example:

counter :: ArrowCircuit a => a Bool Int
counter = proc reset —-> do
rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+l
returnA —-< output

The translation of such forms uses the 1oop combinator, so the arrow concerned must belong to the ArrowLoop class.

../libraries/base-4.7.0.0/Control-Arrow.html
../libraries/base-4.7.0.0/Control-Arrow.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 233/316

7.16.2 Conditional commands

In the previous example, we used a conditional expression to construct the input for an arrow. Sometimes we want to conditionally
execute different commands, as in

proc (x,y) —>
if £ x vy
then g -< x+1
else h —< y+2

which is translated to

arr (\ (x,y) —> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> g) ||| (arr (\y —> y+2) >>> h)

Since the translation uses | | |, the arrow concerned must belong to the ArrowChoice class.
There are also case commands, like

case input of
[1 > £ -< 0
[x] —> g -< x+1
x1l:x2:xs —> do
y <= h —-< (x1, x2)
ys <- k —-< xs
returnA -< y:ys

The syntax is the same as for case expressions, except that the bodies of the alternatives are commands rather than expressions.
The translation is similar to that of i f commands.

7.16.3 Defining your own control structures

As we’re seen, arrow notation provides constructs, modelled on those for expressions, for sequencing, value recursion and
conditionals. But suitable combinators, which you can define in ordinary Haskell, may also be used to build new commands out
of existing ones. The basic idea is that a command defines an arrow from environments to values. These environments assign
values to the free local variables of the command. Thus combinators that produce arrows from arrows may also be used to build
commands from commands. For example, the ArrowP lus class includes a combinator

ArrowPlus a => (<+>) :: ab c ->abc->abc

SO we can use it to build commands:

expr’ = proc x —> do

returnA -< x

<+> do
symbol Plus —-< ()
y <= term —-< ()
expr’ -< x + vy

<+> do
symbol Minus -< ()
y <- term —-< ()
expr’ -< x -y

(The do on the first line is needed to prevent the first <+> ... from being interpreted as part of the expression on the previous
line.) This is equivalent to

expr’ = (proc x —> returnA —-< Xx)
<+> (proc x —-> do
symbol Plus —-< ()
y <—= term —-< ()

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 234 /316

expr’ -< x + y)
<+> (proc x —-> do

symbol Minus -< ()

y <— term —-< ()

expr’ -< x — V)

We are actually using <+> here with the more specific type

ArrowPlus a => (<+>) :: a (e, ()) c¢c > a (e, ()) ¢ —> a (e, ()) c

It is essential that this operator be polymorphic in e (representing the environment input to the command and thence to its
subcommands) and satisfy the corresponding naturality property

arr (first k) >>> (f <+> g) = (arr (first k) >>> f) <+> (arr (first k) >>> qg)

at least for strict k. (This should be automatic if you’re not using seq.) This ensures that environments seen by the subcom-
mands are environments of the whole command, and also allows the translation to safely trim these environments. (The second
component of the input pairs can contain unnamed input values, as described in the next section.) The operator must also not use
any variable defined within the current arrow abstraction.

We could define our own operator

untilA :: ArrowChoice a => a (e,s) () —> a (e,s) Bool -> a (e,s) ()
untilA body cond = proc x —>
b <= cond —< x
if b then returnA -< ()
else do
body -< x
untilA body cond —-< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators; there is also a more general syntax
involving special brackets:

proc x —> do
y <— £ —< x+1
(JuntilA (increment -< x+y) (within 0.5 -< x)|)

7.16.4 Primitive constructs

Some operators will need to pass additional inputs to their subcommands. For example, in an arrow type supporting exceptions,
the operator that attaches an exception handler will wish to pass the exception that occurred to the handler. Such an operator
might have a type

handleA :: ... => a (e,s) ¢ —> a (e, (Ex,s)) c —> a (e,s) c

where Ex is the type of exceptions handled. You could then use this with arrow notation by writing a command

body ‘handleA‘ \ ex —-> handler

so that if an exception is raised in the command body, the variable ex is bound to the value of the exception and the command
handler, which typically refers to ex, is entered. Though the syntax here looks like a functional lambda, we are talking about
commands, and something different is going on. The input to the arrow represented by a command consists of values for the free
local variables in the command, plus a stack of anonymous values. In all the prior examples, we made no assumptions about this
stack. In the second argument to handleA, the value of the exception has been added to the stack input to the handler. The
command form of lambda merely gives this value a name.

More concretely, the input to a command consists of a pair of an environment and a stack. Each value on the stack is paired
with the remainder of the stack, with an empty stack being (). So operators like handleA that pass extra inputs to their
subcommands can be designed for use with the notation by placing the values on the stack paired with the environment in this
way. More precisely, the type of each argument of the operator (and its result) should have the form

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 235/316

a (e, (£1, ... (tn, ())...)) t

where e is a polymorphic variable (representing the environment) and ¢ i are the types of the values on the stack, with t 1 being
the “top”. The polymorphic variable e must not occur in a, ti or t. However the arrows involved need not be the same. Here
are some more examples of suitable operators:

bracketA :: ... => a (e,s) b > a (e, (b,s)) ¢ —> a (e, (c,s)) d —> a (e,s) d
runReader :: ... => a (e,s) ¢ -> a’ (e, (State,s)) c
runState :: ... => a (e,s) c —-> a’ (e, (State,s)) (c,State)

We can supply the extra input required by commands built with the last two by applying them to ordinary expressions, as in
proc x —> do

s <— ...

(| runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using runReader.

The command versions of lambda abstraction and application are analogous to the expression versions. In particular, the beta
and eta rules describe equivalences of commands. These three features (operators, lambda abstraction and application) are the
core of the notation; everything else can be built using them, though the results would be somewhat clumsy. For example, we
could simulate do-notation by defining

bind :: Arrow a => a (e,s) b -—> a (e, (b,s)) ¢ —> a (e,s) c
u ‘bind' f = returnA &&& u >>> f

bind_ :: Arrow a => a (e,s) b -—> a (e,s) ¢ —> a (e,s) c
u ‘bind_' f = u ‘bind‘ (arr fst >>> f)

We could simulate if by defining

cond :: ArrowChoice a => a (e,s) b -—> a (e,s) b > a (e, (Bool,s)) b
cond £ g = arr (\ (e, (b,s)) —> if b then Left (e,s) else Right (e,s)) >>> f ||| g

7.16.5 Differences with the paper

* Instead of a single form of arrow application (arrow tail) with two translations, the implementation provides two forms “-<”
(first-order) and “-<<” (higher-order).

 User-defined operators are flagged with banana brackets instead of a new form keyword.

* In the paper and the previous implementation, values on the stack were paired to the right of the environment in a single
argument, but now the environment and stack are separate arguments.

7.16.6 Portability

Although only GHC implements arrow notation directly, there is also a preprocessor (available from the arrows web page) that
translates arrow notation into Haskell 98 for use with other Haskell systems. You would still want to check arrow programs
with GHC; tracing type errors in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor must
observe some additional restrictions:

* The module must import Control .Arrow.
* The preprocessor cannot cope with other Haskell extensions. These would have to go in separate modules.

* Because the preprocessor targets Haskell (rather than Core), 1et-bound variables are monomorphic.

http://www.haskell.org/arrows/
../libraries/base-4.7.0.0/Control-Arrow.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 236 /316

7.17 Bang patterns

GHC supports an extension of pattern matching called bang patterns, written ! pat. Bang patterns are under consideration for
Haskell Prime. The Haskell prime feature description contains more discussion and examples than the material below.

The key change is the addition of a new rule to the semantics of pattern matching in the Haskell 98 report. Add new bullet 10,
saying: Matching the pattern ! pat against a value v behaves as follows:

* if v is bottom, the match diverges

* otherwise, pat is matched against v

Bang patterns are enabled by the flag ~-XBangPatterns.

7.17.1 Informal description of bang patterns

The main idea is to add a single new production to the syntax of patterns:
pat ::= !pat
Matching an expression e against a pattern ! p is done by first evaluating e (to WHNF) and then matching the result against p.

Example:

fl !x = True

This definition makes f1 is strict in x, whereas without the bang it would be lazy. Bang patterns can be nested of course:

£2 (!'x, y) = [x,¥]

Here, £2 is strict in x but not in y. A bang only really has an effect if it precedes a variable or wild-card pattern:

£f3 1 (x,y) = [x,y]
f4 (x,y)

I
x
<

Here, £3 and £4 are identical; putting a bang before a pattern that forces evaluation anyway does nothing.

There is one (apparent) exception to this general rule that a bang only makes a difference when it precedes a variable or wild-
card: a bang at the top level of a 1et or where binding makes the binding strict, regardless of the pattern. (We say "apparent”
exception because the Right Way to think of it is that the bang at the top of a binding is not part of the pattern; rather it is part of
the syntax of the binding, creating a "bang-pattern binding".) For example:

let !'[x,y] = e in b

is a bang-pattern binding. Operationally, it behaves just like a case expression:

case e of [x,y] —> b

Like a case expression, a bang-pattern binding must be non-recursive, and is monomorphic. However, nested bangs in a pattern
binding behave uniformly with all other forms of pattern matching. For example

let (!'x,[y]) = e in b

is equivalent to this:

\ \

let { t = case e of (x,[y]) —> x
x = fst t
y = snd t }

in b

seqg" (x,Vy)

http://ghc.haskell.org/trac/haskell-prime/wiki/BangPatterns
http://haskell.org/onlinereport/exps.html#sect3.17.2

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 237 /316

The binding is lazy, but when either x or y is evaluated by b the entire pattern is matched, including forcing the evaluation of x.
Bang patterns work in case expressions too, of course:

gb x = let y = £ x in body
g6 x = case £ x of { y —> body }
g7 x = case £ x of { !y —> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (£ x), binds y to the result, and then evaluates body.

7.17.2 Syntax and semantics

We add a single new production to the syntax of patterns:

pat ::= !pat

There is one problem with syntactic ambiguity. Consider:

Is this a definition of the infix function " (!) ", or of the "f" with a bang pattern? GHC resolves this ambiguity in favour of the
latter. If you want to define (!) with bang-patterns enabled, you have to do so using prefix notation:

The semantics of Haskell pattern matching is described in Section 3.17.2 of the Haskell Report. To this description add one extra
item 10, saying:

* Matching the pattern ! pat against a value v behaves as follows:

— if v is bottom, the match diverges

— otherwise, pat is matched against v

Similarly, in Figure 4 of Section 3.17.3, add a new case (t):
case v of { !pat —> e; _ —> e’ }

= v ‘seqg' case v of { pat > e; _ —> e’ }

That leaves let expressions, whose translation is given in Section 3.12 of the Haskell Report. In the translation box, first apply the
following transformation: for each pattern pi that is of form !gi =ei, transformitto (xi, !gi) =((),ei), and replace
e0 by (xi “seqg’ e0). Then, when none of the left-hand-side patterns have a bang at the top, apply the rules in the existing
box.

The effect of the let rule is to force complete matching of the pattern gi before evaluation of the body is begun. The bang is
retained in the translated form in case gi is a variable, thus:

let 'y = £ x in b

The let-binding can be recursive. However, it is much more common for the let-binding to be non-recursive, in which case the
following law holds: (let !p =rhs in body) isequivalentto (case rhs of !p —> body)

A pattern with a bang at the outermost level is not allowed at the top level of a module.

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 238 /316

7.18 Assertions

If you want to make use of assertions in your standard Haskell code, you could define a function like the following:

assert :: Bool -> a —-> a
assert False x = error "assertion failed!"
assert _ X = X

which works, but gives you back a less than useful error message -- an assertion failed, but which and where?

One way out is to define an extended assert function which also takes a descriptive string to include in the error message and
perhaps combine this with the use of a pre-processor which inserts the source location where assert was used.

Ghc offers a helping hand here, doing all of this for you. For every use of assert in the user’s source:

kelvinToC :: Double —-> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Control.Exception.assert, so you can still
define and use your own versions of assert, should you so wish. If not, import Control .Exception to make use assert
in your code.

GHC ignores assertions when optimisation is turned on with the —O flag. That is, expressions of the form assert pred e
will be rewritten to e. You can also disable assertions using the ~-fignore-asserts option. The option —~fno-ignore-
asserts allows enabling assertions even when optimisation is turned on.

Assertion failures can be caught, see the documentation for the Control .Exception library for the details.

7.19 Pragmas

GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas don’t normally affect the
meaning of the program, but they might affect the efficiency of the generated code.

Pragmas all take the form {-#word ...#-} where word indicates the type of pragma, and is followed optionally by informa-
tion specific to that type of pragma. Case is ignored in word. The various values for word that GHC understands are described
in the following sections; any pragma encountered with an unrecognised word is ignored. The layout rule applies in pragmas, so
the closing #-} should start in a column to the right of the opening {—#.

Certain pragmas are file-header pragmas:

A file-header pragma must precede the module keyword in the file.
* There can be as many file-header pragmas as you please, and they can be preceded or followed by comments.

* File-header pragmas are read once only, before pre-processing the file (e.g. with cpp).

The file-header pragmas are: {-—#LANGUAGE #-}, {-#OPTIONS_GHC #-1},and {-#INCLUDE #-}.

7.19.1 LANGUAGE pragma

The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the intention that all Haskell compilers
support the LANGUAGE pragma with the same syntax, although not all extensions are supported by all compilers, of course. The
LANGUAGE pragma should be used instead of OPTIONS_GHC, if possible.

For example, to enable the FFI and preprocessing with CPP:

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 239/316

{—# LANGUAGE ForeignFunctionInterface, CPP #-}

LANGUAGE is a file-header pragma (see Section 7.19).

Every language extension can also be turned into a command-line flag by prefixing it with "-X"; for example ~-XForeignFun
ctionInterface. (Similarly, all "-X" flags can be written as LANGUAGE pragmas.)

A list of all supported language extensions can be obtained by invoking ghc —-—-supported-extensions (see Section 4.5).

Any extension from the Extension type defined in Language .Haskell.Extension may be used. GHC will report an
error if any of the requested extensions are not supported.

7.19.2 OPTIONS_GHC pragma

The OPTIONS_GHC pragma is used to specify additional options that are given to the compiler when compiling this source file.
See Section 4.2.2 for details.

Previous versions of GHC accepted OPTIONS rather than OPTIONS_GHC, but that is now deprecated.

OPTIONS_GHC is a file-header pragma (see Section 7.19).

7.19.3 INCLUDE pragma

The INCLUDE used to be necessary for specifying header files to be included when using the FFI and compiling via C. It is no
longer required for GHC, but is accepted (and ignored) for compatibility with other compilers.

7.19.4 WARNING and DEPRECATED pragmas

The WARNING pragma allows you to attach an arbitrary warning to a particular function, class, or type. A DEPRECATED
pragma lets you specify that a particular function, class, or type is deprecated. There are two ways of using these pragmas.

¢ You can work on an entire module thus:

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where

Or:

module Wibble {-# WARNING "This is an unstable interface." #-} where

When you compile any module that import Wibble, GHC will print the specified message.

* You can attach a warning to a function, class, type, or data constructor, with the following top-level declarations:

{—# DEPRECATED f, C, T "Don’t use these" #-}
{—# WARNING unsafePerformIO "This is unsafe; I hope you know what you’re doing" #-}

When you compile any module that imports and uses any of the specified entities, GHC will print the specified message.

You can only attach to entities declared at top level in the module being compiled, and you can only use unqualified names in
the list of entities. A capitalised name, such as T refers to either the type constructor T or the data constructor T, or both if
both are in scope. If both are in scope, there is currently no way to specify one without the other (c.f. fixities Section 7.4.3).

Warnings and deprecations are not reported for (a) uses within the defining module, (b) defining a method in a class instance,
and (c) uses in an export list. The latter reduces spurious complaints within a library in which one module gathers together and
re-exports the exports of several others.

You can suppress the warnings with the flag ~-fno-warn-warnings-deprecations.

../libraries/Cabal-1.18.1.3/Language-Haskell-Extension.html

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 240/ 316

7.19.5 MINIMAL pragma

The MINIMAL pragma is used to specify the minimal complete definition of a class. IL.e. specify which methods must be
implemented by all instances. If an instance does not satisfy the minimal complete definition, then a warning is generated. This
can be useful when a class has methods with circular defaults. For example

class Eg a where
(==) :: a —> a —> Bool

(/=) :: a —> a —> Bool
X ==y = not (x /= V)
x /=y = not (x ==y)
{-# MINIMAL (==) | (/=) #-}

Without the MINIMAL pragma no warning would be generated for an instance that implements neither method.
The syntax for minimal complete definition is:
mindef ::= name

| " (" mindef 7))’

| mindef 7|’ mindef

| mindef ’,’ mindef

A vertical bar denotes disjunction, i.e. one of the two sides is required. A comma denotes conjunction, i.e. both sides are
required. Conjunction binds stronger than disjunction.

If no MINIMAL pragma is given in the class declaration, it is just as if a pragma { -#MINIMAL opl, op2, ..., opn #
—} was given, where the opi are the methods (a) that lack a default method in the class declaration, and (b) whose name that
does not start with an underscore (c.f. —-fwarn-missing-methods, Section 4.8).

This warning can be turned off with the flag ~fno-warn-missing-methods.

7.19.6 INLINE and NOINLINE pragmas

These pragmas control the inlining of function definitions.

7.19.6.1 INLINE pragma

GHC (with -0, as always) tries to inline (or “unfold”) functions/values that are “small enough,” thus avoiding the call overhead
and possibly exposing other more-wonderful optimisations. GHC has a set of heuristics, tuned over a long period of time using
many benchmarks, that decide when it is beneficial to inline a function at its call site. The heuristics are designed to inline
functions when it appears to be beneficial to do so, but without incurring excessive code bloat. If a function looks too big, it
won’t be inlined, and functions larger than a certain size will not even have their definition exported in the interface file. Some
of the thresholds that govern these heuristic decisions can be changed using flags, see Section 4.10.2.

Normally GHC will do a reasonable job of deciding by itself when it is a good idea to inline a function. However, sometimes
you might want to override the default behaviour. For example, if you have a key function that is important to inline because it
leads to further optimisations, but GHC judges it to be too big to inline.

The sledgehammer you can bring to bear is the INLINE pragma, used thusly:
key_function :: Int -> String -> (Bool, Double)

{-# INLINE key_function #-}

The major effect of an INLINE pragma is to declare a function’s “cost” to be very low. The normal unfolding machinery will
then be very keen to inline it. However, an INLINE pragma for a function "£" has a number of other effects:

* While GHC is keen to inline the function, it does not do so blindly. For example, if you write

map key_function xs

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.0.20140228 241 /316

there really isn’t any point in inlining key_ function to get

map (\x —> body) xs

In general, GHC only inlines the function if there is some reason (no matter how slight) to suppose that it is useful to do so.

* Moreover, GHC will only inline the function if it is fully applied, where "fully applied" means applied to as many arguments
as appear (syntactically) on the LHS of the function definition. For example:

compl :: (b -> ¢) -> (a -> b) -> a —> ¢

{—# INLINE compl #-}
compl f g = \x —> f (g x)

comp2 :: (b ->c) —> (a —> b) —> a -> ¢
{-# INLINE comp2 #-}
comp2 f g x = £ (g x)

The two functions compl and comp2 have the same semantics, but compl will be inlined when applied to two arguments,
while comp?2 requires three. This might make a big difference if you say

map (not ‘compl' not) xs

which will optimise better than the corresponding use of “comp?2”.

e It is useful for GHC to optimise the definition of an INLINE function £ just like any other non-INLINE function, in case the
non-inlined version of £ is ultimately called. But we don’t want to inline the optimised version of f; a major reason for INLINE
pragmas is to expose functions in £’s RHS that have rewrite rules, and it’s no good if those functions have been optimised away.

So GHC guarantees to inline precisely the code that you wrote, no more and no less. It does this by capturing a copy of the
definition of the function to use for inlining (we call this the "inline-RHS"), which it leaves untouched, while optimising the
ordinarily RHS as usual. For externally-visible functions the inline-RHS (not the optimised RHS) is recorded in the interface
file.

* An INLINE function is not worker/wrappered by strictness analysis. It’s going to be inlined wholesale instead.

GHC ensures that inlining cannot go on forever: every mutually-recursive group is cut by o