% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % HsTypes: Abstract syntax: user-defined types \begin{code}
{-# LANGUAGE DeriveDataTypeable #-}

module HsTypes (
        HsType(..), LHsType, HsKind, LHsKind,
        HsTyVarBndr(..), LHsTyVarBndr, 
        LHsTyVarBndrs(..),
        HsWithBndrs(..),
        HsTupleSort(..), HsExplicitFlag(..),
        HsContext, LHsContext,
        HsQuasiQuote(..),
        HsTyWrapper(..),
        HsTyLit(..),
        HsIPName(..), hsIPNameFS,

        LBangType, BangType, HsBang(..), 
        getBangType, getBangStrictness, 

        ConDeclField(..), pprConDeclFields,
        
        mkHsQTvs, hsQTvBndrs,
        mkExplicitHsForAllTy, mkImplicitHsForAllTy, hsExplicitTvs,
        hsTyVarName, mkHsWithBndrs, hsLKiTyVarNames,
        hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsLTyVarLocNames,
        splitLHsInstDeclTy_maybe,
        splitHsClassTy_maybe, splitLHsClassTy_maybe,
        splitHsFunType,
        splitHsAppTys, hsTyGetAppHead_maybe, mkHsAppTys, mkHsOpTy,

        -- Printing
        pprParendHsType, pprHsForAll, pprHsContext, pprHsContextNoArrow, ppr_hs_context,
    ) where

import {-# SOURCE #-} HsExpr ( HsSplice, pprUntypedSplice )

import HsLit

import Name( Name )
import RdrName( RdrName )
import DataCon( HsBang(..) )
import Type
import HsDoc
import BasicTypes
import SrcLoc
import StaticFlags
import Outputable
import FastString

import Data.Data
\end{code} %************************************************************************ %* * Quasi quotes; used in types and elsewhere %* * %************************************************************************ \begin{code}
data HsQuasiQuote id = HsQuasiQuote 
                           id           -- The quasi-quoter
                           SrcSpan      -- The span of the enclosed string
                           FastString   -- The enclosed string
  deriving (Data, Typeable)

instance OutputableBndr id => Outputable (HsQuasiQuote id) where
    ppr = ppr_qq

ppr_qq :: OutputableBndr id => HsQuasiQuote id -> SDoc
ppr_qq (HsQuasiQuote quoter _ quote) =
    char '[' <> ppr quoter <> ptext (sLit "|") <>
    ppr quote <> ptext (sLit "|]")
\end{code} %************************************************************************ %* * \subsection{Bang annotations} %* * %************************************************************************ \begin{code}
type LBangType name = Located (BangType name)
type BangType name  = HsType name       -- Bangs are in the HsType data type

getBangType :: LHsType a -> LHsType a
getBangType (L _ (HsBangTy _ ty)) = ty
getBangType ty                    = ty

getBangStrictness :: LHsType a -> HsBang
getBangStrictness (L _ (HsBangTy s _)) = s
getBangStrictness _                    = HsNoBang
\end{code} %************************************************************************ %* * \subsection{Data types} %* * %************************************************************************ This is the syntax for types as seen in type signatures. Note [HsBSig binder lists] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider a binder (or pattern) decoarated with a type or kind, \ (x :: a -> a). blah forall (a :: k -> *) (b :: k). blah Then we use a LHsBndrSig on the binder, so that the renamer can decorate it with the variables bound by the pattern ('a' in the first example, 'k' in the second), assuming that neither of them is in scope already See also Note [Kind and type-variable binders] in RnTypes \begin{code}
type LHsContext name = Located (HsContext name)

type HsContext name = [LHsType name]

type LHsType name = Located (HsType name)
type HsKind name = HsType name
type LHsKind name = Located (HsKind name)

type LHsTyVarBndr name = Located (HsTyVarBndr name)

data LHsTyVarBndrs name 
  = HsQTvs { hsq_kvs :: [Name]                  -- Kind variables
           , hsq_tvs :: [LHsTyVarBndr name]     -- Type variables
             -- See Note [HsForAllTy tyvar binders]
    }
  deriving( Data, Typeable )

mkHsQTvs :: [LHsTyVarBndr RdrName] -> LHsTyVarBndrs RdrName
-- Just at RdrName because in the Name variant we should know just
-- what the kind-variable binders are; and we don't
-- We put an empty list (rather than a panic) for the kind vars so 
-- that the pretty printer works ok on them.
mkHsQTvs tvs = HsQTvs { hsq_kvs = [], hsq_tvs = tvs }

emptyHsQTvs :: LHsTyVarBndrs name   -- Use only when you know there are no kind binders
emptyHsQTvs =  HsQTvs { hsq_kvs = [], hsq_tvs = [] }

hsQTvBndrs :: LHsTyVarBndrs name -> [LHsTyVarBndr name]
hsQTvBndrs = hsq_tvs

data HsWithBndrs thing
  = HsWB { hswb_cts :: thing         -- Main payload (type or list of types)
         , hswb_kvs :: [Name]        -- Kind vars
         , hswb_tvs :: [Name]        -- Type vars
    }                  
  deriving (Data, Typeable)

mkHsWithBndrs :: thing -> HsWithBndrs thing
mkHsWithBndrs x = HsWB { hswb_cts = x, hswb_kvs = panic "mkHsTyWithBndrs:kvs"
                                     , hswb_tvs = panic "mkHsTyWithBndrs:tvs" }


-- | These names are used eary on to store the names of implicit
-- parameters.  They completely disappear after type-checking.
newtype HsIPName = HsIPName FastString-- ?x
  deriving( Eq, Data, Typeable )

hsIPNameFS :: HsIPName -> FastString
hsIPNameFS (HsIPName n) = n

instance Outputable HsIPName where
    ppr (HsIPName n) = char '?' <> ftext n -- Ordinary implicit parameters

instance OutputableBndr HsIPName where
    pprBndr _ n   = ppr n         -- Simple for now
    pprInfixOcc  n = ppr n
    pprPrefixOcc n = ppr n

data HsTyVarBndr name
  = UserTyVar        -- no explicit kinding
         name

  | KindedTyVar
         name
         (LHsKind name)  -- The user-supplied kind signature
  deriving (Data, Typeable)

data HsType name
  = HsForAllTy  HsExplicitFlag          -- Renamer leaves this flag unchanged, to record the way
                                        -- the user wrote it originally, so that the printer can
                                        -- print it as the user wrote it
                (LHsTyVarBndrs name) 
                (LHsContext name)
                (LHsType name)

  | HsTyVar             name            -- Type variable, type constructor, or data constructor
                                        -- see Note [Promotions (HsTyVar)]

  | HsAppTy             (LHsType name)
                        (LHsType name)

  | HsFunTy             (LHsType name)   -- function type
                        (LHsType name)

  | HsListTy            (LHsType name)  -- Element type

  | HsPArrTy            (LHsType name)  -- Elem. type of parallel array: [:t:]

  | HsTupleTy           HsTupleSort
                        [LHsType name]  -- Element types (length gives arity)

  | HsOpTy              (LHsType name) (LHsTyOp name) (LHsType name)

  | HsParTy             (LHsType name)   -- See Note [Parens in HsSyn] in HsExpr
        -- Parenthesis preserved for the precedence re-arrangement in RnTypes
        -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c!

  | HsIParamTy          HsIPName         -- (?x :: ty)
                        (LHsType name)   -- Implicit parameters as they occur in contexts

  | HsEqTy              (LHsType name)   -- ty1 ~ ty2
                        (LHsType name)   -- Always allowed even without TypeOperators, and has special kinding rule

  | HsKindSig           (LHsType name)  -- (ty :: kind)
                        (LHsKind name)  -- A type with a kind signature

  | HsQuasiQuoteTy      (HsQuasiQuote name)

  | HsSpliceTy          (HsSplice name) 
                        PostTcKind

  | HsDocTy             (LHsType name) LHsDocString -- A documented type

  | HsBangTy    HsBang (LHsType name)   -- Bang-style type annotations 
  | HsRecTy [ConDeclField name]         -- Only in data type declarations

  | HsCoreTy Type       -- An escape hatch for tunnelling a *closed* 
                        -- Core Type through HsSyn.  

  | HsExplicitListTy     -- A promoted explicit list
        PostTcKind       -- See Note [Promoted lists and tuples]
        [LHsType name]   
                         
  | HsExplicitTupleTy    -- A promoted explicit tuple
        [PostTcKind]     -- See Note [Promoted lists and tuples]
        [LHsType name]   

  | HsTyLit HsTyLit      -- A promoted numeric literal.

  | HsWrapTy HsTyWrapper (HsType name)  -- only in typechecker output
  deriving (Data, Typeable)


data HsTyLit
  = HsNumTy Integer
  | HsStrTy FastString
    deriving (Data, Typeable)

data HsTyWrapper
  = WpKiApps [Kind]  -- kind instantiation: [] k1 k2 .. kn
  deriving (Data, Typeable)

type LHsTyOp name = HsTyOp (Located name)
type HsTyOp name = (HsTyWrapper, name)

mkHsOpTy :: LHsType name -> Located name -> LHsType name -> HsType name
mkHsOpTy ty1 op ty2 = HsOpTy ty1 (WpKiApps [], op) ty2
\end{code} Note [HsForAllTy tyvar binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ After parsing: * Implicit => empty Explicit => the variables the user wrote After renaming * Implicit => the *type* variables free in the type Explicit => the variables the user wrote (renamed) The kind variables bound in the hsq_kvs field come both a) from the kind signatures on the kind vars (eg k1) b) from the scope of the forall (eg k2) Example: f :: forall (a::k1) b. T a (b::k2) Note [Unit tuples] ~~~~~~~~~~~~~~~~~~ Consider the type type instance F Int = () We want to parse that "()" as HsTupleTy HsBoxedOrConstraintTuple [], NOT as HsTyVar unitTyCon Why? Because F might have kind (* -> Constraint), so we when parsing we don't know if that tuple is going to be a constraint tuple or an ordinary unit tuple. The HsTupleSort flag is specifically designed to deal with that, but it has to work for unit tuples too. Note [Promotions (HsTyVar)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ HsTyVar: A name in a type or kind. Here are the allowed namespaces for the name. In a type: Var: not allowed Data: promoted data constructor Tv: type variable TcCls before renamer: type constructor, class constructor, or promoted data constructor TcCls after renamer: type constructor or class constructor In a kind: Var, Data: not allowed Tv: kind variable TcCls: kind constructor or promoted type constructor Note [Promoted lists and tuples] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Notice the difference between HsListTy HsExplicitListTy HsTupleTy HsExplicitListTupleTy E.g. f :: [Int] HsListTy g3 :: T '[] All these use g2 :: T '[True] HsExplicitListTy g1 :: T '[True,False] g1a :: T [True,False] (can omit ' where unambiguous) kind of T :: [Bool] -> * This kind uses HsListTy! E.g. h :: (Int,Bool) HsTupleTy; f is a pair k :: S '(True,False) HsExplicitTypleTy; S is indexed by a type-level pair of booleans kind of S :: (Bool,Bool) -> * This kind uses HsExplicitTupleTy Note [Distinguishing tuple kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Apart from promotion, tuples can have one of three different kinds: x :: (Int, Bool) -- Regular boxed tuples f :: Int# -> (# Int#, Int# #) -- Unboxed tuples g :: (Eq a, Ord a) => a -- Constraint tuples For convenience, internally we use a single constructor for all of these, namely HsTupleTy, but keep track of the tuple kind (in the first argument to HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing, because of the #. However, with -XConstraintKinds we can only distinguish between constraint and boxed tuples during type checking, in general. Hence the four constructors of HsTupleSort: HsUnboxedTuple -> Produced by the parser HsBoxedTuple -> Certainly a boxed tuple HsConstraintTuple -> Certainly a constraint tuple HsBoxedOrConstraintTuple -> Could be a boxed or a constraint tuple. Produced by the parser only, disappears after type checking \begin{code}
data HsTupleSort = HsUnboxedTuple
                 | HsBoxedTuple
                 | HsConstraintTuple
                 | HsBoxedOrConstraintTuple
                 deriving (Data, Typeable)

data HsExplicitFlag = Explicit | Implicit deriving (Data, Typeable)

data ConDeclField name  -- Record fields have Haddoc docs on them
  = ConDeclField { cd_fld_name :: Located name,
                   cd_fld_type :: LBangType name, 
                   cd_fld_doc  :: Maybe LHsDocString }
  deriving (Data, Typeable)

-----------------------
-- Combine adjacent for-alls. 
-- The following awkward situation can happen otherwise:
--      f :: forall a. ((Num a) => Int)
-- might generate HsForAll (Just [a]) [] (HsForAll Nothing [Num a] t)
-- Then a isn't discovered as ambiguous, and we abstract the AbsBinds wrt []
-- but the export list abstracts f wrt [a].  Disaster.
--
-- A valid type must have one for-all at the top of the type, or of the fn arg types

mkImplicitHsForAllTy ::                           LHsContext RdrName -> LHsType RdrName -> HsType RdrName
mkExplicitHsForAllTy :: [LHsTyVarBndr RdrName] -> LHsContext RdrName -> LHsType RdrName -> HsType RdrName
mkImplicitHsForAllTy     ctxt ty = mkHsForAllTy Implicit []  ctxt ty
mkExplicitHsForAllTy tvs ctxt ty = mkHsForAllTy Explicit tvs ctxt ty

mkHsForAllTy :: HsExplicitFlag -> [LHsTyVarBndr RdrName] -> LHsContext RdrName -> LHsType RdrName -> HsType RdrName
-- Smart constructor for HsForAllTy
mkHsForAllTy exp tvs (L _ []) ty = mk_forall_ty exp tvs ty
mkHsForAllTy exp tvs ctxt     ty = HsForAllTy exp (mkHsQTvs tvs) ctxt ty

-- mk_forall_ty makes a pure for-all type (no context)
mk_forall_ty :: HsExplicitFlag -> [LHsTyVarBndr RdrName] -> LHsType RdrName -> HsType RdrName
mk_forall_ty exp  tvs  (L _ (HsParTy ty))                    = mk_forall_ty exp tvs ty
mk_forall_ty exp1 tvs1 (L _ (HsForAllTy exp2 qtvs2 ctxt ty)) = mkHsForAllTy (exp1 `plus` exp2) (tvs1 ++ hsq_tvs qtvs2) ctxt ty
mk_forall_ty exp  tvs  ty                                    = HsForAllTy exp (mkHsQTvs tvs) (noLoc []) ty
        -- Even if tvs is empty, we still make a HsForAll!
        -- In the Implicit case, this signals the place to do implicit quantification
        -- In the Explicit case, it prevents implicit quantification    
        --      (see the sigtype production in Parser.y.pp)
        --      so that (forall. ty) isn't implicitly quantified

plus :: HsExplicitFlag -> HsExplicitFlag -> HsExplicitFlag
Implicit `plus` Implicit = Implicit
_        `plus` _        = Explicit

hsExplicitTvs :: LHsType Name -> [Name]
-- The explicitly-given forall'd type variables of a HsType
hsExplicitTvs (L _ (HsForAllTy Explicit tvs _ _)) = hsLKiTyVarNames tvs
hsExplicitTvs _                                   = []

---------------------
hsTyVarName :: HsTyVarBndr name -> name
hsTyVarName (UserTyVar n)     = n
hsTyVarName (KindedTyVar n _) = n

hsLTyVarName :: LHsTyVarBndr name -> name
hsLTyVarName = hsTyVarName . unLoc

hsLTyVarNames :: LHsTyVarBndrs name -> [name]
-- Type variables only
hsLTyVarNames qtvs = map hsLTyVarName (hsQTvBndrs qtvs)

hsLKiTyVarNames :: LHsTyVarBndrs Name -> [Name]
-- Kind and type variables
hsLKiTyVarNames (HsQTvs { hsq_kvs = kvs, hsq_tvs = tvs })
  = kvs ++ map hsLTyVarName tvs

hsLTyVarLocName :: LHsTyVarBndr name -> Located name
hsLTyVarLocName = fmap hsTyVarName

hsLTyVarLocNames :: LHsTyVarBndrs name -> [Located name]
hsLTyVarLocNames qtvs = map hsLTyVarLocName (hsQTvBndrs qtvs)
\end{code} \begin{code}
splitHsAppTys :: LHsType n -> [LHsType n] -> (LHsType n, [LHsType n])
splitHsAppTys (L _ (HsAppTy f a)) as = splitHsAppTys f (a:as)
splitHsAppTys (L _ (HsParTy f))   as = splitHsAppTys f as
splitHsAppTys f                   as = (f,as)

-- retrieve the name of the "head" of a nested type application
-- somewhat like splitHsAppTys, but a little more thorough
-- used to examine the result of a GADT-like datacon, so it doesn't handle
-- *all* cases (like lists, tuples, (~), etc.)
hsTyGetAppHead_maybe :: LHsType n -> Maybe (n, [LHsType n])
hsTyGetAppHead_maybe = go []
  where
    go tys (L _ (HsTyVar n))             = Just (n, tys)
    go tys (L _ (HsAppTy l r))           = go (r : tys) l
    go tys (L _ (HsOpTy l (_, L _ n) r)) = Just (n, l : r : tys)
    go tys (L _ (HsParTy t))             = go tys t
    go tys (L _ (HsKindSig t _))         = go tys t
    go _   _                             = Nothing

mkHsAppTys :: OutputableBndr n => LHsType n -> [LHsType n] -> HsType n
mkHsAppTys fun_ty [] = pprPanic "mkHsAppTys" (ppr fun_ty)
mkHsAppTys fun_ty (arg_ty:arg_tys)
  = foldl mk_app (HsAppTy fun_ty arg_ty) arg_tys
  where
    mk_app fun arg = HsAppTy (noLoc fun) arg    
       -- Add noLocs for inner nodes of the application; 
       -- they are never used 

splitLHsInstDeclTy_maybe
    :: LHsType name 
    -> Maybe (LHsTyVarBndrs name, HsContext name, Located name, [LHsType name])
        -- Split up an instance decl type, returning the pieces
splitLHsInstDeclTy_maybe inst_ty = do
    let (tvs, cxt, ty) = splitLHsForAllTy inst_ty
    (cls, tys) <- splitLHsClassTy_maybe ty
    return (tvs, cxt, cls, tys)

splitLHsForAllTy
    :: LHsType name 
    -> (LHsTyVarBndrs name, HsContext name, LHsType name)
splitLHsForAllTy poly_ty
  = case unLoc poly_ty of
        HsParTy ty              -> splitLHsForAllTy ty
        HsForAllTy _ tvs cxt ty -> (tvs, unLoc cxt, ty)
        _                       -> (emptyHsQTvs, [], poly_ty)
        -- The type vars should have been computed by now, even if they were implicit

splitHsClassTy_maybe :: HsType name -> Maybe (name, [LHsType name])
splitHsClassTy_maybe ty = fmap (\(L _ n, tys) -> (n, tys)) $ splitLHsClassTy_maybe (noLoc ty)

splitLHsClassTy_maybe :: LHsType name -> Maybe (Located name, [LHsType name])
--- Watch out.. in ...deriving( Show )... we use this on 
--- the list of partially applied predicates in the deriving,
--- so there can be zero args.

-- In TcDeriv we also use this to figure out what data type is being
-- mentioned in a deriving (Generic (Foo bar baz)) declaration (i.e. "Foo").
splitLHsClassTy_maybe ty
  = checkl ty []
  where
    checkl (L l ty) args = case ty of
        HsTyVar t          -> Just (L l t, args)
        HsAppTy l r        -> checkl l (r:args)
        HsOpTy l (_, tc) r -> checkl (fmap HsTyVar tc) (l:r:args)
        HsParTy t          -> checkl t args
        HsKindSig ty _     -> checkl ty args
        _                  -> Nothing

-- Splits HsType into the (init, last) parts
-- Breaks up any parens in the result type: 
--      splitHsFunType (a -> (b -> c)) = ([a,b], c)
splitHsFunType :: LHsType name -> ([LHsType name], LHsType name)
splitHsFunType (L _ (HsFunTy x y)) = (x:args, res)
  where
  (args, res) = splitHsFunType y
splitHsFunType (L _ (HsParTy ty))  = splitHsFunType ty
splitHsFunType other               = ([], other)
\end{code} %************************************************************************ %* * \subsection{Pretty printing} %* * %************************************************************************ \begin{code}
instance (OutputableBndr name) => Outputable (HsType name) where
    ppr ty = pprHsType ty

instance Outputable HsTyLit where
    ppr = ppr_tylit

instance (OutputableBndr name) => Outputable (LHsTyVarBndrs name) where
    ppr (HsQTvs { hsq_kvs = kvs, hsq_tvs = tvs }) 
      = sep [ ifPprDebug $ braces (interppSP kvs), interppSP tvs ]

instance (OutputableBndr name) => Outputable (HsTyVarBndr name) where
    ppr (UserTyVar n)     = ppr n
    ppr (KindedTyVar n k) = parens $ hsep [ppr n, dcolon, ppr k]

instance (Outputable thing) => Outputable (HsWithBndrs thing) where
    ppr (HsWB { hswb_cts = ty }) = ppr ty

pprHsForAll :: OutputableBndr name => HsExplicitFlag -> LHsTyVarBndrs name ->  LHsContext name -> SDoc
pprHsForAll exp qtvs cxt 
  | show_forall = forall_part <+> pprHsContext (unLoc cxt)
  | otherwise   = pprHsContext (unLoc cxt)
  where
    show_forall =  opt_PprStyle_Debug
                || (not (null (hsQTvBndrs qtvs)) && is_explicit)
    is_explicit = case exp of {Explicit -> True; Implicit -> False}
    forall_part = ptext (sLit "forall") <+> ppr qtvs <> dot

pprHsContext :: (OutputableBndr name) => HsContext name -> SDoc
pprHsContext []  = empty
pprHsContext cxt = pprHsContextNoArrow cxt <+> darrow

pprHsContextNoArrow :: (OutputableBndr name) => HsContext name -> SDoc
pprHsContextNoArrow []         = empty
pprHsContextNoArrow [L _ pred] = ppr pred
pprHsContextNoArrow cxt        = ppr_hs_context cxt

ppr_hs_context :: (OutputableBndr name) => HsContext name -> SDoc
ppr_hs_context []  = empty
ppr_hs_context cxt = parens (interpp'SP cxt)

pprConDeclFields :: OutputableBndr name => [ConDeclField name] -> SDoc
pprConDeclFields fields = braces (sep (punctuate comma (map ppr_fld fields)))
  where
    ppr_fld (ConDeclField { cd_fld_name = n, cd_fld_type = ty, 
                            cd_fld_doc = doc })
        = ppr n <+> dcolon <+> ppr ty <+> ppr_mbDoc doc
\end{code} Note [Printing KindedTyVars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Trac #3830 reminded me that we should really only print the kind signature on a KindedTyVar if the kind signature was put there by the programmer. During kind inference GHC now adds a PostTcKind to UserTyVars, rather than converting to KindedTyVars as before. (As it happens, the message in #3830 comes out a different way now, and the problem doesn't show up; but having the flag on a KindedTyVar seems like the Right Thing anyway.) \begin{code}
pREC_TOP, pREC_FUN, pREC_OP, pREC_CON :: Int
pREC_TOP = 0  -- type   in ParseIface.y
pREC_FUN = 1  -- btype  in ParseIface.y
              -- Used for LH arg of (->)
pREC_OP  = 2  -- Used for arg of any infix operator
              -- (we don't keep their fixities around)
pREC_CON = 3  -- Used for arg of type applicn:
              -- always parenthesise unless atomic

maybeParen :: Int       -- Precedence of context
           -> Int       -- Precedence of top-level operator
           -> SDoc -> SDoc      -- Wrap in parens if (ctxt >= op)
maybeParen ctxt_prec op_prec p | ctxt_prec >= op_prec = parens p
                               | otherwise            = p
        
-- printing works more-or-less as for Types

pprHsType, pprParendHsType :: (OutputableBndr name) => HsType name -> SDoc

pprHsType ty       = getPprStyle $ \sty -> ppr_mono_ty pREC_TOP (prepare sty ty)
pprParendHsType ty = ppr_mono_ty pREC_CON ty

-- Before printing a type
-- (a) Remove outermost HsParTy parens
-- (b) Drop top-level for-all type variables in user style
--     since they are implicit in Haskell
prepare :: PprStyle -> HsType name -> HsType name
prepare sty (HsParTy ty)          = prepare sty (unLoc ty)
prepare _   ty                    = ty

ppr_mono_lty :: (OutputableBndr name) => Int -> LHsType name -> SDoc
ppr_mono_lty ctxt_prec ty = ppr_mono_ty ctxt_prec (unLoc ty)

ppr_mono_ty :: (OutputableBndr name) => Int -> HsType name -> SDoc
ppr_mono_ty ctxt_prec (HsForAllTy exp tvs ctxt ty)
  = maybeParen ctxt_prec pREC_FUN $
    sep [pprHsForAll exp tvs ctxt, ppr_mono_lty pREC_TOP ty]

ppr_mono_ty _    (HsBangTy b ty)     = ppr b <> ppr_mono_lty pREC_CON ty
ppr_mono_ty _    (HsQuasiQuoteTy qq) = ppr qq
ppr_mono_ty _    (HsRecTy flds)      = pprConDeclFields flds
ppr_mono_ty _    (HsTyVar name)      = pprPrefixOcc name
ppr_mono_ty prec (HsFunTy ty1 ty2)   = ppr_fun_ty prec ty1 ty2
ppr_mono_ty _    (HsTupleTy con tys) = tupleParens std_con (interpp'SP tys)
  where std_con = case con of
                    HsUnboxedTuple -> UnboxedTuple
                    _              -> BoxedTuple
ppr_mono_ty _    (HsKindSig ty kind) = parens (ppr_mono_lty pREC_TOP ty <+> dcolon <+> ppr kind)
ppr_mono_ty _    (HsListTy ty)       = brackets (ppr_mono_lty pREC_TOP ty)
ppr_mono_ty _    (HsPArrTy ty)       = paBrackets (ppr_mono_lty pREC_TOP ty)
ppr_mono_ty prec (HsIParamTy n ty)   = maybeParen prec pREC_FUN (ppr n <+> dcolon <+> ppr_mono_lty pREC_TOP ty)
ppr_mono_ty _    (HsSpliceTy s _)    = pprUntypedSplice s
ppr_mono_ty _    (HsCoreTy ty)       = ppr ty
ppr_mono_ty _    (HsExplicitListTy _ tys) = quote $ brackets (interpp'SP tys)
ppr_mono_ty _    (HsExplicitTupleTy _ tys) = quote $ parens (interpp'SP tys)
ppr_mono_ty _    (HsTyLit t)         = ppr_tylit t

ppr_mono_ty ctxt_prec (HsWrapTy (WpKiApps _kis) ty)
  = ppr_mono_ty ctxt_prec ty
-- We are not printing kind applications. If we wanted to do so, we should do
-- something like this:
{-
  = go ctxt_prec kis ty
  where
    go ctxt_prec [] ty = ppr_mono_ty ctxt_prec ty
    go ctxt_prec (ki:kis) ty
      = maybeParen ctxt_prec pREC_CON $
        hsep [ go pREC_FUN kis ty
             , ptext (sLit "@") <> pprParendKind ki ]
-}

ppr_mono_ty ctxt_prec (HsEqTy ty1 ty2)
  = maybeParen ctxt_prec pREC_OP $
    ppr_mono_lty pREC_OP ty1 <+> char '~' <+> ppr_mono_lty pREC_OP ty2

ppr_mono_ty ctxt_prec (HsAppTy fun_ty arg_ty)
  = maybeParen ctxt_prec pREC_CON $
    hsep [ppr_mono_lty pREC_FUN fun_ty, ppr_mono_lty pREC_CON arg_ty]

ppr_mono_ty ctxt_prec (HsOpTy ty1 (_wrapper, L _ op) ty2)
  = maybeParen ctxt_prec pREC_OP $
    sep [ ppr_mono_lty pREC_OP ty1
        , sep [pprInfixOcc op, ppr_mono_lty pREC_OP ty2 ] ]
    -- Don't print the wrapper (= kind applications)
    -- c.f. HsWrapTy

ppr_mono_ty _         (HsParTy ty)
  = parens (ppr_mono_lty pREC_TOP ty)
  -- Put the parens in where the user did
  -- But we still use the precedence stuff to add parens because
  --    toHsType doesn't put in any HsParTys, so we may still need them

ppr_mono_ty ctxt_prec (HsDocTy ty doc) 
  = maybeParen ctxt_prec pREC_OP $
    ppr_mono_lty pREC_OP ty <+> ppr (unLoc doc)
  -- we pretty print Haddock comments on types as if they were
  -- postfix operators

--------------------------
ppr_fun_ty :: (OutputableBndr name) => Int -> LHsType name -> LHsType name -> SDoc
ppr_fun_ty ctxt_prec ty1 ty2
  = let p1 = ppr_mono_lty pREC_FUN ty1
        p2 = ppr_mono_lty pREC_TOP ty2
    in
    maybeParen ctxt_prec pREC_FUN $
    sep [p1, ptext (sLit "->") <+> p2]

--------------------------
ppr_tylit :: HsTyLit -> SDoc
ppr_tylit (HsNumTy i) = integer i
ppr_tylit (HsStrTy s) = text (show s)
\end{code}