%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%
-----------------
A demand analysis
-----------------
\begin{code}
module DmdAnal ( dmdAnalProgram ) where
#include "HsVersions.h"
import Var ( isTyVar )
import DynFlags
import WwLib ( deepSplitProductType_maybe )
import Demand
import CoreSyn
import Outputable
import VarEnv
import BasicTypes
import FastString
import Data.List
import DataCon
import Id
import CoreUtils ( exprIsHNF, exprType, exprIsTrivial )
import TyCon
import Type ( eqType )
import FamInstEnv
import Util
import Maybes ( isJust )
import TysWiredIn ( unboxedPairDataCon )
import TysPrim ( realWorldStatePrimTy )
import ErrUtils ( dumpIfSet_dyn )
import Name ( getName, stableNameCmp )
import Data.Function ( on )
\end{code}
%************************************************************************
%* *
\subsection{Top level stuff}
%* *
%************************************************************************
\begin{code}
dmdAnalProgram :: DynFlags -> FamInstEnvs -> CoreProgram -> IO CoreProgram
dmdAnalProgram dflags fam_envs binds
= do {
let { binds_plus_dmds = do_prog binds } ;
dumpIfSet_dyn dflags Opt_D_dump_strsigs "Strictness signatures" $
dumpStrSig binds_plus_dmds ;
return binds_plus_dmds
}
where
do_prog :: CoreProgram -> CoreProgram
do_prog binds = snd $ mapAccumL dmdAnalTopBind (emptyAnalEnv dflags fam_envs) binds
dmdAnalTopBind :: AnalEnv
-> CoreBind
-> (AnalEnv, CoreBind)
dmdAnalTopBind sigs (NonRec id rhs)
= (extendAnalEnv TopLevel sigs id sig, NonRec id2 rhs2)
where
( _, _, _, rhs1) = dmdAnalRhs TopLevel Nothing sigs id rhs
(sig, _, id2, rhs2) = dmdAnalRhs TopLevel Nothing (nonVirgin sigs) id rhs1
dmdAnalTopBind sigs (Rec pairs)
= (sigs', Rec pairs')
where
(sigs', _, pairs') = dmdFix TopLevel sigs pairs
\end{code}
%************************************************************************
%* *
\subsection{The analyser itself}
%* *
%************************************************************************
Note [Ensure demand is strict]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important not to analyse e with a lazy demand because
a) When we encounter case s of (a,b) ->
we demand s with U(d1d2)... but if the overall demand is lazy
that is wrong, and we'd need to reduce the demand on s,
which is inconvenient
b) More important, consider
f (let x = R in x+x), where f is lazy
We still want to mark x as demanded, because it will be when we
enter the let. If we analyse f's arg with a Lazy demand, we'll
just mark x as Lazy
c) The application rule wouldn't be right either
Evaluating (f x) in a L demand does *not* cause
evaluation of f in a C(L) demand!
\begin{code}
dmdTransformThunkDmd :: CoreExpr -> Demand -> Demand
dmdTransformThunkDmd e
| exprIsTrivial e = id
| otherwise = oneifyDmd
dmdAnalStar :: AnalEnv
-> Demand
-> CoreExpr -> (BothDmdArg, CoreExpr)
dmdAnalStar env dmd e
| (cd, defer_and_use) <- toCleanDmd dmd
, (dmd_ty, e') <- dmdAnal env cd e
= (postProcessDmdTypeM defer_and_use dmd_ty, e')
dmdAnal :: AnalEnv
-> CleanDemand
-> CoreExpr -> (DmdType, CoreExpr)
dmdAnal _ _ (Lit lit) = (nopDmdType, Lit lit)
dmdAnal _ _ (Type ty) = (nopDmdType, Type ty)
dmdAnal _ _ (Coercion co) = (nopDmdType, Coercion co)
dmdAnal env dmd (Var var)
= (dmdTransform env var dmd, Var var)
dmdAnal env dmd (Cast e co)
= (dmd_ty, Cast e' co)
where
(dmd_ty, e') = dmdAnal env dmd e
dmdAnal env dmd (Tick t e)
= (dmd_ty, Tick t e')
where
(dmd_ty, e') = dmdAnal env dmd e
dmdAnal env dmd (App fun (Type ty))
= (fun_ty, App fun' (Type ty))
where
(fun_ty, fun') = dmdAnal env dmd fun
dmdAnal sigs dmd (App fun (Coercion co))
= (fun_ty, App fun' (Coercion co))
where
(fun_ty, fun') = dmdAnal sigs dmd fun
dmdAnal env dmd (App fun arg)
= let
call_dmd = mkCallDmd dmd
(fun_ty, fun') = dmdAnal env call_dmd fun
(arg_dmd, res_ty) = splitDmdTy fun_ty
(arg_ty, arg') = dmdAnalStar env (dmdTransformThunkDmd arg arg_dmd) arg
in
(res_ty `bothDmdType` arg_ty, App fun' arg')
dmdAnal env dmd (Lam var body)
| isTyVar var
= let
(body_ty, body') = dmdAnal env dmd body
in
(body_ty, Lam var body')
| otherwise
= let (body_dmd, defer_and_use@(_,one_shot)) = peelCallDmd dmd
env' = extendSigsWithLam env var
(body_ty, body') = dmdAnal env' body_dmd body
(lam_ty, var') = annotateLamIdBndr env notArgOfDfun body_ty one_shot var
in
(postProcessUnsat defer_and_use lam_ty, Lam var' body')
dmdAnal env dmd (Case scrut case_bndr ty [alt@(DataAlt dc, _, _)])
| let tycon = dataConTyCon dc
, isProductTyCon tycon
, Just rec_tc' <- checkRecTc (ae_rec_tc env) tycon
= let
env_w_tc = env { ae_rec_tc = rec_tc' }
env_alt = extendAnalEnv NotTopLevel env_w_tc case_bndr case_bndr_sig
(alt_ty, alt') = dmdAnalAlt env_alt dmd alt
(alt_ty1, case_bndr') = annotateBndr env alt_ty case_bndr
(_, bndrs', _) = alt'
case_bndr_sig = cprProdSig (dataConRepArity dc)
scrut_dmd1 = mkProdDmd [idDemandInfo b | b <- bndrs', isId b]
scrut_dmd2 = strictenDmd (idDemandInfo case_bndr')
scrut_dmd = scrut_dmd1 `bothCleanDmd` scrut_dmd2
(scrut_ty, scrut') = dmdAnal env scrut_dmd scrut
res_ty = alt_ty1 `bothDmdType` toBothDmdArg scrut_ty
in
(res_ty, Case scrut' case_bndr' ty [alt'])
dmdAnal env dmd (Case scrut case_bndr ty alts)
= let
(alt_tys, alts') = mapAndUnzip (dmdAnalAlt env dmd) alts
(scrut_ty, scrut') = dmdAnal env cleanEvalDmd scrut
(alt_ty, case_bndr') = annotateBndr env (foldr lubDmdType botDmdType alt_tys) case_bndr
res_ty = alt_ty `bothDmdType` toBothDmdArg scrut_ty
in
(res_ty, Case scrut' case_bndr' ty alts')
dmdAnal env dmd (Let (NonRec id rhs) body)
= (body_ty2, Let (NonRec id2 annotated_rhs) body')
where
(sig, lazy_fv, id1, rhs') = dmdAnalRhs NotTopLevel Nothing env id rhs
(body_ty, body') = dmdAnal (extendAnalEnv NotTopLevel env id sig) dmd body
(body_ty1, id2) = annotateBndr env body_ty id1
body_ty2 = addLazyFVs body_ty1 lazy_fv
annotated_rhs = annLamWithShotness (idDemandInfo id2) rhs'
dmdAnal env dmd (Let (Rec pairs) body)
= let
(env', lazy_fv, pairs') = dmdFix NotTopLevel env pairs
(body_ty, body') = dmdAnal env' dmd body
body_ty1 = deleteFVs body_ty (map fst pairs)
body_ty2 = addLazyFVs body_ty1 lazy_fv
in
body_ty2 `seq`
(body_ty2, Let (Rec pairs') body')
annLamWithShotness :: Demand -> CoreExpr -> CoreExpr
annLamWithShotness d e
| Just u <- cleanUseDmd_maybe d
= go u e
| otherwise = e
where
go u e
| Just (c, u') <- peelUseCall u
, Lam bndr body <- e
= if isTyVar bndr
then Lam bndr (go u body)
else Lam (setOneShotness c bndr) (go u' body)
| otherwise
= e
setOneShotness :: Count -> Id -> Id
setOneShotness One bndr = setOneShotLambda bndr
setOneShotness Many bndr = bndr
dmdAnalAlt :: AnalEnv -> CleanDemand -> Alt Var -> (DmdType, Alt Var)
dmdAnalAlt env dmd (con,bndrs,rhs)
= let
(rhs_ty, rhs') = dmdAnal env dmd rhs
rhs_ty' = addDataConPatDmds con bndrs rhs_ty
(alt_ty, bndrs') = annotateBndrs env rhs_ty' bndrs
final_alt_ty | io_hack_reqd = deferAfterIO alt_ty
| otherwise = alt_ty
io_hack_reqd = con == DataAlt unboxedPairDataCon &&
idType (head bndrs) `eqType` realWorldStatePrimTy
in
(final_alt_ty, (con, bndrs', rhs'))
\end{code}
Note [Aggregated demand for cardinality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use different strategies for strictness and usage/cardinality to
"unleash" demands captured on free variables by bindings. Let us
consider the example:
f1 y = let {-# NOINLINE h #-}
h = y
in (h, h)
We are interested in obtaining cardinality demand U1 on |y|, as it is
used only in a thunk, and, therefore, is not going to be updated any
more. Therefore, the demand on |y|, captured and unleashed by usage of
|h| is U1. However, if we unleash this demand every time |h| is used,
and then sum up the effects, the ultimate demand on |y| will be U1 +
U1 = U. In order to avoid it, we *first* collect the aggregate demand
on |h| in the body of let-expression, and only then apply the demand
transformer:
transf[x](U) = {y |-> U1}
so the resulting demand on |y| is U1.
The situation is, however, different for strictness, where this
aggregating approach exhibits worse results because of the nature of
|both| operation for strictness. Consider the example:
f y c =
let h x = y |seq| x
in case of
True -> h True
False -> y
It is clear that |f| is strict in |y|, however, the suggested analysis
will infer from the body of |let| that |h| is used lazily (as it is
used in one branch only), therefore lazy demand will be put on its
free variable |y|. Conversely, if the demand on |h| is unleashed right
on the spot, we will get the desired result, namely, that |f| is
strict in |y|.
Note [Annotating lambdas at right-hand side]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let us take a look at the following example:
g f = let x = 100
h = \y -> f x y
in h 5
One can see that |h| is called just once, therefore the RHS of h can
be annotated as a one-shot lambda. This is done by the function
annLamWithShotness *a posteriori*, i.e., basing on the aggregated
usage demand on |h| from the body of |let|-expression, which is C1(U)
in this case.
In other words, for locally-bound lambdas we can infer
one-shotness.
\begin{code}
addDataConPatDmds :: AltCon -> [Var] -> DmdType -> DmdType
addDataConPatDmds DEFAULT _ dmd_ty = dmd_ty
addDataConPatDmds (LitAlt _) _ dmd_ty = dmd_ty
addDataConPatDmds (DataAlt con) bndrs dmd_ty
= foldr add dmd_ty str_bndrs
where
add bndr dmd_ty = addVarDmd dmd_ty bndr seqDmd
str_bndrs = [ b | (b,s) <- zipEqual "addDataConPatBndrs"
(filter isId bndrs)
(dataConRepStrictness con)
, isMarkedStrict s ]
\end{code}
Note [Add demands for strict constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this program (due to Roman):
data X a = X !a
foo :: X Int -> Int -> Int
foo (X a) n = go 0
where
go i | i < n = a + go (i+1)
| otherwise = 0
We want the worker for 'foo' too look like this:
$wfoo :: Int# -> Int# -> Int#
with the first argument unboxed, so that it is not eval'd each time
around the loop (which would otherwise happen, since 'foo' is not
strict in 'a'. It is sound for the wrapper to pass an unboxed arg
because X is strict, so its argument must be evaluated. And if we
*don't* pass an unboxed argument, we can't even repair it by adding a
`seq` thus:
foo (X a) n = a `seq` go 0
because the seq is discarded (very early) since X is strict!
There is the usual danger of reboxing, which as usual we ignore. But
if X is monomorphic, and has an UNPACK pragma, then this optimisation
is even more important. We don't want the wrapper to rebox an unboxed
argument, and pass an Int to $wfoo!
%************************************************************************
%* *
Demand transformer
%* *
%************************************************************************
\begin{code}
dmdTransform :: AnalEnv
-> Id
-> CleanDemand
-> DmdType
dmdTransform env var dmd
| isDataConWorkId var
= dmdTransformDataConSig
(idArity var) (idStrictness var) dmd
| gopt Opt_DmdTxDictSel (ae_dflags env),
Just _ <- isClassOpId_maybe var
= dmdTransformDictSelSig (idStrictness var) dmd
| isGlobalId var
= let res = dmdTransformSig (idStrictness var) dmd in
res
| Just (sig, top_lvl) <- lookupSigEnv env var
, let fn_ty = dmdTransformSig sig dmd
=
if isTopLevel top_lvl
then fn_ty
else addVarDmd fn_ty var (mkOnceUsedDmd dmd)
| otherwise
= unitVarDmd var (mkOnceUsedDmd dmd)
\end{code}
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
\begin{code}
dmdFix :: TopLevelFlag
-> AnalEnv
-> [(Id,CoreExpr)]
-> (AnalEnv, DmdEnv,
[(Id,CoreExpr)])
dmdFix top_lvl env orig_pairs
= (updSigEnv env (sigEnv final_env), lazy_fv, pairs')
where
bndrs = map fst orig_pairs
initial_env = addInitialSigs top_lvl env bndrs
(final_env, lazy_fv, pairs') = loop 1 initial_env orig_pairs
loop :: Int
-> AnalEnv
-> [(Id,CoreExpr)]
-> (AnalEnv, DmdEnv, [(Id,CoreExpr)])
loop n env pairs
=
loop' n env pairs
loop' n env pairs
| found_fixpoint
= (env', lazy_fv, pairs')
| n >= 10
=
(env, lazy_fv, orig_pairs)
| otherwise
= loop (n+1) (nonVirgin env') pairs'
where
found_fixpoint = all (same_sig (sigEnv env) (sigEnv env')) bndrs
((env',lazy_fv), pairs') = mapAccumL my_downRhs (env, emptyDmdEnv) pairs
my_downRhs (env, lazy_fv) (id,rhs)
= ((env', lazy_fv'), (id', rhs'))
where
(sig, lazy_fv1, id', rhs') = dmdAnalRhs top_lvl (Just bndrs) env id rhs
lazy_fv' = plusVarEnv_C bothDmd lazy_fv lazy_fv1
env' = extendAnalEnv top_lvl env id sig
same_sig sigs sigs' var = lookup sigs var == lookup sigs' var
lookup sigs var = case lookupVarEnv sigs var of
Just (sig,_) -> sig
Nothing -> pprPanic "dmdFix" (ppr var)
dmdAnalRhs :: TopLevelFlag
-> Maybe [Id]
-> AnalEnv -> Id -> CoreExpr
-> (StrictSig, DmdEnv, Id, CoreExpr)
dmdAnalRhs top_lvl rec_flag env id rhs
| Just fn <- unpackTrivial rhs
, let fn_str = getStrictness env fn
= (fn_str, emptyDmdEnv, set_idStrictness env id fn_str, rhs)
| otherwise
= (sig_ty, lazy_fv, id', mkLams bndrs' body')
where
(bndrs, body) = collectBinders rhs
env_body = foldl extendSigsWithLam env bndrs
(body_ty, body') = dmdAnal env_body body_dmd body
body_ty' = removeDmdTyArgs body_ty
(DmdType rhs_fv rhs_dmds rhs_res, bndrs')
= annotateLamBndrs env (isDFunId id) body_ty' bndrs
sig_ty = mkStrictSig (mkDmdType sig_fv rhs_dmds rhs_res')
id' = set_idStrictness env id sig_ty
body_dmd = case deepSplitProductType_maybe (ae_fam_envs env) (exprType body) of
Nothing -> cleanEvalDmd
Just (dc, _, _, _) -> cleanEvalProdDmd (dataConRepArity dc)
rhs_fv1 = case rec_flag of
Just bs -> reuseEnv (delVarEnvList rhs_fv bs)
Nothing -> rhs_fv
(lazy_fv, sig_fv) = splitFVs is_thunk rhs_fv1
rhs_res' = trimCPRInfo trim_all trim_sums rhs_res
trim_all = is_thunk && not_strict
trim_sums = not (isTopLevel top_lvl)
is_thunk = not (exprIsHNF rhs)
not_strict
= isTopLevel top_lvl
|| isJust rec_flag
|| not (isStrictDmd (idDemandInfo id) || ae_virgin env)
unpackTrivial :: CoreExpr -> Maybe Id
unpackTrivial (Var v) = Just v
unpackTrivial (Cast e _) = unpackTrivial e
unpackTrivial (Lam v e) | isTyVar v = unpackTrivial e
unpackTrivial (App e a) | isTypeArg a = unpackTrivial e
unpackTrivial _ = Nothing
\end{code}
Note [Trivial right-hand sides]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo = plusInt |> co
where plusInt is an arity-2 function with known strictness. Clearly
we want plusInt's strictness to propagate to foo! But because it has
no manifest lambdas, it won't do so automatically. So we have a
special case for right-hand sides that are "trivial", namely variables,
casts, type applications, and the like.
Note [Product demands for function body]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example comes from shootout/binary_trees:
Main.check' = \ b z ds. case z of z' { I# ip ->
case ds_d13s of
Main.Nil -> z'
Main.Node s14k s14l s14m ->
Main.check' (not b)
(Main.check' b
(case b {
False -> I# (-# s14h s14k);
True -> I# (+# s14h s14k)
})
s14l)
s14m } } }
Here we *really* want to unbox z, even though it appears to be used boxed in
the Nil case. Partly the Nil case is not a hot path. But more specifically,
the whole function gets the CPR property if we do.
So for the demand on the body of a RHS we use a product demand if it's
a product type.
%************************************************************************
%* *
\subsection{Strictness signatures and types}
%* *
%************************************************************************
\begin{code}
unitVarDmd :: Var -> Demand -> DmdType
unitVarDmd var dmd
= DmdType (unitVarEnv var dmd) [] topRes
addVarDmd :: DmdType -> Var -> Demand -> DmdType
addVarDmd (DmdType fv ds res) var dmd
= DmdType (extendVarEnv_C bothDmd fv var dmd) ds res
addLazyFVs :: DmdType -> DmdEnv -> DmdType
addLazyFVs dmd_ty lazy_fvs
= dmd_ty `bothDmdType` mkBothDmdArg lazy_fvs
\end{code}
Note [do not strictify the argument dictionaries of a dfun]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker can tie recursive knots involving dfuns, so we do the
conservative thing and refrain from strictifying a dfun's argument
dictionaries.
\begin{code}
annotateBndr :: AnalEnv -> DmdType -> Var -> (DmdType, Var)
annotateBndr env dmd_ty var
| isTyVar var = (dmd_ty, var)
| otherwise = (dmd_ty', set_idDemandInfo env var dmd')
where
(dmd_ty', dmd) = peelFV dmd_ty var
dmd' | gopt Opt_DictsStrict (ae_dflags env)
= strictifyDictDmd (idType var) dmd
| otherwise = dmd
annotateBndrs :: AnalEnv -> DmdType -> [Var] -> (DmdType, [Var])
annotateBndrs env = mapAccumR (annotateBndr env)
annotateLamBndrs :: AnalEnv -> DFunFlag -> DmdType -> [Var] -> (DmdType, [Var])
annotateLamBndrs env args_of_dfun ty bndrs = mapAccumR annotate ty bndrs
where
annotate dmd_ty bndr
| isId bndr = annotateLamIdBndr env args_of_dfun dmd_ty Many bndr
| otherwise = (dmd_ty, bndr)
annotateLamIdBndr :: AnalEnv
-> DFunFlag
-> DmdType
-> Count
-> Id
-> (DmdType,
Id)
annotateLamIdBndr env arg_of_dfun dmd_ty one_shot id
= ASSERT( isId id )
(final_ty, setOneShotness one_shot (set_idDemandInfo env id dmd'))
where
final_ty = case maybeUnfoldingTemplate (idUnfolding id) of
Nothing -> main_ty
Just unf -> main_ty `bothDmdType` unf_ty
where
(unf_ty, _) = dmdAnalStar env dmd unf
main_ty = addDemand dmd dmd_ty'
(dmd_ty', dmd) = peelFV dmd_ty id
dmd' | gopt Opt_DictsStrict (ae_dflags env),
not arg_of_dfun
= strictifyDictDmd (idType id) dmd
| otherwise = dmd
deleteFVs :: DmdType -> [Var] -> DmdType
deleteFVs (DmdType fvs dmds res) bndrs
= DmdType (delVarEnvList fvs bndrs) dmds res
\end{code}
Note [CPR for sum types]
~~~~~~~~~~~~~~~~~~~~~~~~
At the moment we do not do CPR for let-bindings that
* non-top level
* bind a sum type
Reason: I found that in some benchmarks we were losing let-no-escapes,
which messed it all up. Example
let j = \x. ....
in case y of
True -> j False
False -> j True
If we w/w this we get
let j' = \x. ....
in case y of
True -> case j' False of { (# a #) -> Just a }
False -> case j' True of { (# a #) -> Just a }
Notice that j' is not a let-no-escape any more.
However this means in turn that the *enclosing* function
may be CPR'd (via the returned Justs). But in the case of
sums, there may be Nothing alternatives; and that messes
up the sum-type CPR.
Conclusion: only do this for products. It's still not
guaranteed OK for products, but sums definitely lose sometimes.
Note [CPR for thunks]
~~~~~~~~~~~~~~~~~~~~~
If the rhs is a thunk, we usually forget the CPR info, because
it is presumably shared (else it would have been inlined, and
so we'd lose sharing if w/w'd it into a function). E.g.
let r = case expensive of
(a,b) -> (b,a)
in ...
If we marked r as having the CPR property, then we'd w/w into
let $wr = \() -> case expensive of
(a,b) -> (# b, a #)
r = case $wr () of
(# b,a #) -> (b,a)
in ...
But now r is a thunk, which won't be inlined, so we are no further ahead.
But consider
f x = let r = case expensive of (a,b) -> (b,a)
in if foo r then r else (x,x)
Does f have the CPR property? Well, no.
However, if the strictness analyser has figured out (in a previous
iteration) that it's strict, then we DON'T need to forget the CPR info.
Instead we can retain the CPR info and do the thunk-splitting transform
(see WorkWrap.splitThunk).
This made a big difference to PrelBase.modInt, which had something like
modInt = \ x -> let r = ... -> I# v in
...body strict in r...
r's RHS isn't a value yet; but modInt returns r in various branches, so
if r doesn't have the CPR property then neither does modInt
Another case I found in practice (in Complex.magnitude), looks like this:
let k = if ... then I# a else I# b
in ... body strict in k ....
(For this example, it doesn't matter whether k is returned as part of
the overall result; but it does matter that k's RHS has the CPR property.)
Left to itself, the simplifier will make a join point thus:
let $j k = ...body strict in k...
if ... then $j (I# a) else $j (I# b)
With thunk-splitting, we get instead
let $j x = let k = I#x in ...body strict in k...
in if ... then $j a else $j b
This is much better; there's a good chance the I# won't get allocated.
The difficulty with this is that we need the strictness type to
look at the body... but we now need the body to calculate the demand
on the variable, so we can decide whether its strictness type should
have a CPR in it or not. Simple solution:
a) use strictness info from the previous iteration
b) make sure we do at least 2 iterations, by doing a second
round for top-level non-recs. Top level recs will get at
least 2 iterations except for totally-bottom functions
which aren't very interesting anyway.
NB: strictly_demanded is never true of a top-level Id, or of a recursive Id.
Note [Optimistic CPR in the "virgin" case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demand and strictness info are initialized by top elements. However,
this prevents from inferring a CPR property in the first pass of the
analyser, so we keep an explicit flag ae_virgin in the AnalEnv
datatype.
We can't start with 'not-demanded' (i.e., top) because then consider
f x = let
t = ... I# x
in
if ... then t else I# y else f x'
In the first iteration we'd have no demand info for x, so assume
not-demanded; then we'd get TopRes for f's CPR info. Next iteration
we'd see that t was demanded, and so give it the CPR property, but by
now f has TopRes, so it will stay TopRes. Instead, by checking the
ae_virgin flag at the first time round, we say 'yes t is demanded' the
first time.
However, this does mean that for non-recursive bindings we must
iterate twice to be sure of not getting over-optimistic CPR info,
in the case where t turns out to be not-demanded. This is handled
by dmdAnalTopBind.
Note [NOINLINE and strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The strictness analyser used to have a HACK which ensured that NOINLNE
things were not strictness-analysed. The reason was unsafePerformIO.
Left to itself, the strictness analyser would discover this strictness
for unsafePerformIO:
unsafePerformIO: C(U(AV))
But then consider this sub-expression
unsafePerformIO (\s -> let r = f x in
case writeIORef v r s of (# s1, _ #) ->
(# s1, r #)
The strictness analyser will now find that r is sure to be eval'd,
and may then hoist it out. This makes tests/lib/should_run/memo002
deadlock.
Solving this by making all NOINLINE things have no strictness info is overkill.
In particular, it's overkill for runST, which is perfectly respectable.
Consider
f x = runST (return x)
This should be strict in x.
So the new plan is to define unsafePerformIO using the 'lazy' combinator:
unsafePerformIO (IO m) = lazy (case m realWorld# of (# _, r #) -> r)
Remember, 'lazy' is a wired-in identity-function Id, of type a->a, which is
magically NON-STRICT, and is inlined after strictness analysis. So
unsafePerformIO will look non-strict, and that's what we want.
Now we don't need the hack in the strictness analyser. HOWEVER, this
decision does mean that even a NOINLINE function is not entirely
opaque: some aspect of its implementation leaks out, notably its
strictness. For example, if you have a function implemented by an
error stub, but which has RULES, you may want it not to be eliminated
in favour of error!
Note [Lazy and unleasheable free variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We put the strict and once-used FVs in the DmdType of the Id, so
that at its call sites we unleash demands on its strict fvs.
An example is 'roll' in imaginary/wheel-sieve2
Something like this:
roll x = letrec
go y = if ... then roll (x-1) else x+1
in
go ms
We want to see that roll is strict in x, which is because
go is called. So we put the DmdEnv for x in go's DmdType.
Another example:
f :: Int -> Int -> Int
f x y = let t = x+1
h z = if z==0 then t else
if z==1 then x+1 else
x + h (z-1)
in h y
Calling h does indeed evaluate x, but we can only see
that if we unleash a demand on x at the call site for t.
Incidentally, here's a place where lambda-lifting h would
lose the cigar --- we couldn't see the joint strictness in t/x
ON THE OTHER HAND
We don't want to put *all* the fv's from the RHS into the
DmdType, because that makes fixpointing very slow --- the
DmdType gets full of lazy demands that are slow to converge.
Note [Lamba-bound unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow a lambda-bound variable to carry an unfolding, a facility that is used
exclusively for join points; see Note [Case binders and join points]. If so,
we must be careful to demand-analyse the RHS of the unfolding! Example
\x. \y{=Just x}.
Then if uses 'y', then transitively it uses 'x', and we must not
forget that fact, otherwise we might make 'x' absent when it isn't.
%************************************************************************
%* *
\subsection{Strictness signatures}
%* *
%************************************************************************
\begin{code}
type DFunFlag = Bool
notArgOfDfun :: DFunFlag
notArgOfDfun = False
data AnalEnv
= AE { ae_dflags :: DynFlags
, ae_sigs :: SigEnv
, ae_virgin :: Bool
, ae_rec_tc :: RecTcChecker
, ae_fam_envs :: FamInstEnvs
}
type SigEnv = VarEnv (StrictSig, TopLevelFlag)
instance Outputable AnalEnv where
ppr (AE { ae_sigs = env, ae_virgin = virgin })
= ptext (sLit "AE") <+> braces (vcat
[ ptext (sLit "ae_virgin =") <+> ppr virgin
, ptext (sLit "ae_sigs =") <+> ppr env ])
emptyAnalEnv :: DynFlags -> FamInstEnvs -> AnalEnv
emptyAnalEnv dflags fam_envs
= AE { ae_dflags = dflags
, ae_sigs = emptySigEnv
, ae_virgin = True
, ae_rec_tc = initRecTc
, ae_fam_envs = fam_envs
}
emptySigEnv :: SigEnv
emptySigEnv = emptyVarEnv
sigEnv :: AnalEnv -> SigEnv
sigEnv = ae_sigs
updSigEnv :: AnalEnv -> SigEnv -> AnalEnv
updSigEnv env sigs = env { ae_sigs = sigs }
extendAnalEnv :: TopLevelFlag -> AnalEnv -> Id -> StrictSig -> AnalEnv
extendAnalEnv top_lvl env var sig
= env { ae_sigs = extendSigEnv top_lvl (ae_sigs env) var sig }
extendSigEnv :: TopLevelFlag -> SigEnv -> Id -> StrictSig -> SigEnv
extendSigEnv top_lvl sigs var sig = extendVarEnv sigs var (sig, top_lvl)
lookupSigEnv :: AnalEnv -> Id -> Maybe (StrictSig, TopLevelFlag)
lookupSigEnv env id = lookupVarEnv (ae_sigs env) id
getStrictness :: AnalEnv -> Id -> StrictSig
getStrictness env fn
| isGlobalId fn = idStrictness fn
| Just (sig, _) <- lookupSigEnv env fn = sig
| otherwise = nopSig
addInitialSigs :: TopLevelFlag -> AnalEnv -> [Id] -> AnalEnv
addInitialSigs top_lvl env@(AE { ae_sigs = sigs, ae_virgin = virgin }) ids
= env { ae_sigs = extendVarEnvList sigs [ (id, (init_sig id, top_lvl))
| id <- ids ] }
where
init_sig | virgin = \_ -> botSig
| otherwise = idStrictness
nonVirgin :: AnalEnv -> AnalEnv
nonVirgin env = env { ae_virgin = False }
extendSigsWithLam :: AnalEnv -> Id -> AnalEnv
extendSigsWithLam env id
| isId id
, isStrictDmd (idDemandInfo id) || ae_virgin env
, Just (dc,_,_,_) <- deepSplitProductType_maybe (ae_fam_envs env) $ idType id
= extendAnalEnv NotTopLevel env id (cprProdSig (dataConRepArity dc))
| otherwise
= env
set_idDemandInfo :: AnalEnv -> Id -> Demand -> Id
set_idDemandInfo env id dmd
= setIdDemandInfo id (zapDemand (ae_dflags env) dmd)
set_idStrictness :: AnalEnv -> Id -> StrictSig -> Id
set_idStrictness env id sig
= setIdStrictness id (zapStrictSig (ae_dflags env) sig)
dumpStrSig :: CoreProgram -> SDoc
dumpStrSig binds = vcat (map printId ids)
where
ids = sortBy (stableNameCmp `on` getName) (concatMap getIds binds)
getIds (NonRec i _) = [ i ]
getIds (Rec bs) = map fst bs
printId id | isExportedId id = ppr id <> colon <+> pprIfaceStrictSig (idStrictness id)
| otherwise = empty
\end{code}
Note [Initial CPR for strict binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CPR is initialized for a lambda binder in an optimistic manner, i.e,
if the binder is used strictly and at least some of its components as
a product are used, which is checked by the value of the absence
demand.
If the binder is marked demanded with a strict demand, then give it a
CPR signature, because in the likely event that this is a lambda on a
fn defn [we only use this when the lambda is being consumed with a
call demand], it'll be w/w'd and so it will be CPR-ish. E.g.
f = \x::(Int,Int). if ...strict in x... then
x
else
(a,b)
We want f to have the CPR property because x does, by the time f has been w/w'd
Also note that we only want to do this for something that definitely
has product type, else we may get over-optimistic CPR results
(e.g. from \x -> x!).
Note [Initialising strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See section 9.2 (Finding fixpoints) of the paper.
Our basic plan is to initialise the strictness of each Id in a
recursive group to "bottom", and find a fixpoint from there. However,
this group B might be inside an *enclosing* recursiveb group A, in
which case we'll do the entire fixpoint shebang on for each iteration
of A. This can be illustrated by the following example:
Example:
f [] = []
f (x:xs) = let g [] = f xs
g (y:ys) = y+1 : g ys
in g (h x)
At each iteration of the fixpoint for f, the analyser has to find a
fixpoint for the enclosed function g. In the meantime, the demand
values for g at each iteration for f are *greater* than those we
encountered in the previous iteration for f. Therefore, we can begin
the fixpoint for g not with the bottom value but rather with the
result of the previous analysis. I.e., when beginning the fixpoint
process for g, we can start from the demand signature computed for g
previously and attached to the binding occurrence of g.
To speed things up, we initialise each iteration of A (the enclosing
one) from the result of the last one, which is neatly recorded in each
binder. That way we make use of earlier iterations of the fixpoint
algorithm. (Cunning plan.)
But on the *first* iteration we want to *ignore* the current strictness
of the Id, and start from "bottom". Nowadays the Id can have a current
strictness, because interface files record strictness for nested bindings.
To know when we are in the first iteration, we look at the ae_virgin
field of the AnalEnv.